
03/06/2003

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com> 1

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>1Middle

Taming Java Threads

Allen I. Holub

Holub Associates

www.holub.com

allen@holub.com

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>2Middle

What We’ll Do Today

•Programming threads in Java is
fraught with peril, but is mandatory in
a realistic program.

•This talk discusses traps and
pitfalls, along with some solutions

•This talk focuses on material not
covered in most books

Beginning

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>3Middle

Who is the Guy?

• Talk based on my JavaWorld™ “Java Toolbox” column,
now a book:
– Taming Java™ Threads, (Berkeley: APress, 2000;

http://www.apress.com).

• Source code, etc., found at http://www.holub.com.

• My Prejudices and Bias
– I do not work for Sun
– I have opinions and plan to express them. The appearance of

impartiality is always just appearance
– Java is the best thing since sliced bread (but bakery bread is

better than sliced).

Beginning Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>4Middle

I'm assuming that...

• I'm assuming you know:
– the language, including inner classes.
– how to create threads using Thread and
Runnable

– synchronized, wait(), notify()
– the methods of the Thread class.

• You may still get something out of the talk if you
don't have the background, but you'll have to
stretch

Beginning

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>5Middle

We’ll look at

• Thread creation/destruction problems

• Platform-dependence issues

• Synchronization & Semaphores
(synchronized, wait, notify, etc.)

• Memory Barriers and SMP problems
• Lots of other traps and pitfalls

• A catalog of class-based solutions

• An OO-based architectural solution

Beginning Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>6Middle

Books, etc.

• Allen Holub, Taming Java™ Threads. Berkeley, APress,
2000.

• Doug Lea. Concurrent Programming in Java™: Design
Principles and Patterns, 2nd Ed.:. Reading: Addison
Wesley, 2000.

• Scott Oaks and Henry Wong. Java™ Threads.
Sebastopol, Calif.: O'Reilly, 1997.

• Bill Lewis and Daniel J. Berg. Threads Primer: A Guide
to Multithreaded Programming. Englewood Cliffs:
Prentice Hall/SunSoft Press, 1996.

• http://developer.java.sun.com/developer/
technicalArticles /Threads/

Beginning

03/06/2003

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com> 2

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>7Middle

Words to live by

All nontrivial applications
for the Java™ platform are
multithreaded, whether

you like it or not.

It's not okay to have an unresponsive UI.
It’s not okay for a server to reject requests.

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>8Middle

Threads vs. processes

• A Process is an address space.

• A Thread is a flow of control through that
address space.
– Threads share the process’s memory
– Thread context swaps are much lower

overhead than process context swaps

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>9Middle

Threads vs. processes in Java

• A process is a JVM instance.
– The Process contains the heap (everything that comes

from new)

– The heap holds all static memory
• A thread is a runtime (JVM) state

– The "Java Stack" (runtime stack)
– Stored registers
– Local variables
– Instruction pointer

• Thread-safe code can run in a multithreaded environment
– Must synchronize access to resources (eg. memory)

shared with other threads or be reentrant.
– Most code in books isn't thread safe

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>10Middle

Thread behavior is platform
dependent!

• You need to use the OS threading system to get
parallelism (vs. concurrency)

• Different operating systems use different threading
models (more in a moment).

• Behavior often based on timing.

• Multithreaded apps can be slower than single-threaded
apps (but be better organized)

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>11Middle

Priorities

• The Java™ programming language has 10 levels
– but they're worthless---there are no guarantees that the

OS will pay any attention to them.

• The Solaris™ OS has 231 levels
• NT™ offers 5 (sliding) levels within 5 "priority classes."

• NT priorities change by magic.
– After certain (unspecified) I/O operations priority is boosted

(by an indeterminate amount) for some (unspecified) time.
– Stick to Thread.MAX_PRIORITY,
Thread.NORM_PRIORITY, Thread.MIN_PRIORITY)

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>12Middle

Threading models

• Cooperative (Windows 3.1)
– A Thread must voluntarily relinquish control of the CPU.
– Fast context swap, but hard to program and can’t leverage

multiple processors.

• Preemptive (NT)
– Control is taken away from the thread at effectively random

times.
– Slower context swap, but easier to program and multiple

threads can run on multiple processors.

• Hybrid (Solaris™ OS, Posix, HPUX, Etc.)
– Simultaneous cooperative and preemptive models are

supported.

03/06/2003

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com> 3

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>13Middle

NT™ threading model

(Win32 "fibers" are so poorly documented, and so
buggy, they are not a real option.)

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>14Middle

Solaris™ OS threading model

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>15Middle

Do not assume a particular
environment

• Assume both of these rules, all the time:
1.A thread can prevent other threads from running

if it doesn't occasionally yield
– by calling yield(), performing a blocking I/O

operation, etc.

2.A thread can be preempted at any time by
another thread
– even by one that appears to be lower priority than

the current one.

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>16Middle

Thread creation

• Java’s Thread class isn’t (a thread).
– It’s a thread controller

class Operation implements Runnable
{ public void run()

{ // This method (and the methods it calls) are
// the only ones that run on the thread.

}
}

Thread thread_controller=new Thread(new Operation());
thread_controller.start();

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>17Middle

Java™ threads aren’t object
oriented (1)

• Simply putting a method in a Thread
derivative does not cause that method to run
on the thread.
– A method runs on a thread only if it is called

from run() (directly or indirectly).

class Fred extends Thread
{ public void run()

{ // This method (and the methods it calls) are
// the only ones that run on the thread.

}
public foo()
{ // This method will not run on the thread since

// it isn’t called by run()
}

}

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>18Middle

Java™ threads aren’t object
oriented (2)

• Objects do not run on
threads, methods do.

• Several threads can send
messages to the same object
simultaneously.
–They execute the same

code with the same this
reference, so share the
object’s state.

03/06/2003

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com> 4

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>19Middle

Basic concepts: atomic operations
(atomicity).

• Atomic operations can't be interrupted (divided)
• Assignment to double or long is not atomic

long x ;
thread 1:

x = 0x0123456789abcdef
thread 2:

x = 0;
possible results:

0x0123456789abcdef;
0x0123456700000000;
0x0000000089abcdef;
0x0000000000000000;

64-bit assignment is
effectively implemented
as:

x.high = 0x01234567
x.low = 0x89abcdef;

You can be preempted
between the assignment
operations.

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>20Middle

Basic concepts: synchronization

• Mechanisms to assure that multiple threads:
–Start execution at the same time and run

concurrently ("condition variables" or "events").
–Do not run simultaneously when accessing the

same object ("monitors" implemented with
A"mutex").

–Do not run simultaneously when accessing the
same code ("critical sections").

• The synchronized keyword is essential in
implementing synchronization, but is poorly
designed.
–e.g. No timeout, so deadlock detection is

impossible.

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>21Middle

Basic concepts: semaphores

• A semaphore is any object that two
threads can use to synchronize
with one another.
–Don't be confused by Microsoft™

documentation that (incorrectly)
applies the word "semaphore" only
to a Dijkstra counting semaphore.

• Resist the temptation to use a Java
native interface (JNI) call to access
the underlying OS synchronization
mechanisms.

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>22Middle

The mutex (mutual-exclusion
semaphore)
• The mutex is the key to a lock

– Though it is sometimes called a “lock.”
• Ownership is the critical concept

– To cross a synchronized statement, a thread must
have the key, otherwise it blocks (is suspended).

– Only one thread can have the key (own the mutex) at
a time.

• Every Object contains an internal mutex:
Object mutex = new Object();
synchronized(mutex)
{ // guarded code is here.
}

– Arrays are also objects, as is the Class object.

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>23Middle

Monitors and airplane bathrooms

• A monitor is a body of code (not necessarily
contiguous), access to which is guarded by a single
mutex.
– Every object has its own monitor (and its own mutex).

• Think “airplane bathroom”
– Only one person (thread) can be in it at a time (we

hope).
– Locking the door acquires the associated mutex. You

can't leave without unlocking the door.
– Other people must line up outside the door if

somebody's in there.
– Acquisition is not necessarily FIFO order.

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>24Middle

Synchronization with individual
locks

• Monitors create atomicity by using mutual -
exclusion semaphores.

• Enter the monitor by passing over the
synchronized keyword (acquire the mutex).

• Entering the monitor does not restrict access to
objects used inside the monitor—it just prevents
other threads from entering the monitor.

long field;
Object lock = new Object();

synchronized(lock)
{ field = new_value
}

03/06/2003

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com> 5

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>25Middle

Method-level synchronization

• The monitor is associated with the object, not the
code.

– Two threads can happily access the same
synchronized code at the same time, provided that
different objects receive the request.

– E.g. Two threads can enqueue to different queues
at the same time, but they cannot simultaneously
access the same queue:

– Same as synchronized(this)

class Queue
{ public synchronized void enqueue(Object o)

{ /*…*/ }
public synchronized Object dequeue()
{ /*…*/ }

}

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>26Middle

class Bathroom_window
{ private double guard_this;

public synchronized void ringo(double some_value)
{ guard_this = some_value;
}

public double george() // WRONG! Needs
{ return guard_this; // synchronization
}

}

He came in the Bathroom Window.

• The Bathroom can have several doors

• Acquiring a lock on an object
does not prevent other threads
from modifying that object.

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>27Middle

class Unpredictable
{ private final int x;

private final int y;

public Unpredictable(int init_x, int init_y)
{ new Thread()

{ public void run()
{ System.out.println(“x=“ + x + “ y=“ + y);
}

}.start();

x = init_x;
y = init_y;

}
}

Constructors can’t be synchronized, so
always have back doors.

• Putting the thread-creation code at the bottom doesn’t
help (the optimizer might move it).

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>28Middle

class Predictable
{ Object lock = new Object();

public Predictable(int init_x, int init_y)
{ synchronized(lock)

{ new Thread()
{ public void run()

{ synchronized(lock)
{ // Use shared var
}

}
}.start();
//initialize shared var.

}
}

}

Locking the constructor’s back door.

• synchronized(this) does not work in a
constructor. (It's a silent no-op.)

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>29Middle

Be careful to lock the correct object

• An inner-class event handler is also a back
door

class Outer
{ private double d;

private JButton b = new JButton();
public Outer()
{ b.addActionListener

(new ActionListener()
{ public void actionPerformed(ActionEvent e)

{ d = 0.0; // race condition!
}

}
);

}
public void race_condition(double new_value)
{ d = new_value;
}

}
Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>30Middle

Synchronizing the inner-class method doesn't
work

class Outer
{ private double d;

private JButton b = new JButton();
public Outer()
{ b.addActionListener

(new ActionListener()
{ synchronized // grabs the wrong lock!

public void actionPerformed(ActionEvent e)
{ d = 0.0;
}

}
);

}
public void race_condition(double new_value)
{ d = new_value;
}

}

03/06/2003

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com> 6

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>31Middle

Explicitly synchronize on the object that holds
the contested fields.

class Outer
{ private double d;

private JButton b = new JButton();
public Outer()
{ b.addActionListener

(new ActionListener()
{ public void actionPerformed(ActionEvent e)

{ synchronized(Outer.this)
{ d = 0.0;
}

}
}

);
}
synchronized
public void race_condition(double new_value)
{ d = new_value;
}

}
Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>32Middle

class Synch
{ synchronized int locking (int a, int b)

{ return a + b;}
int not_locking (int a, int b)

{ return a + b;}
static public void main(String[] arguments)
{ double start = new Date().get Time();

for(long i = 1000000; --i >= 0 ;)
tester.locking(0,0);

double end = new Date().getTime();

double locking_time = end - start;
// repeat for not_locking

}
}

Synchronization isn’t cheap

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>33Middle

% java -verbose:gc Synch
Pass 0: Time lost: 234 ms. 121.39% increase
Pass 1: Time lost: 139 ms. 149.29% increase
Pass 2: Time lost: 156 ms. 155.52% increase
Pass 3: Time lost: 157 ms. 155.87% increase
Pass 4: Time lost: 157 ms. 155.87% increase
Pass 5: Time lost: 155 ms. 154.96% increase
Pass 6: Time lost: 156 ms. 155.52% increase
Pass 7: Time lost: 3,891 ms. 1,484.70% increase
Pass 8: Time lost: 4,407 ms. 1,668.33% increase

Synchronization isn’t cheap

200MHz Pentium, NT4/SP3, JDK 1.2.1, HotSpot 1.0fcs, E

• Contention in last two passes (Java Hotspot can’t use
atomic-bit-test-and-set).

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>34Middle

Synchronization isn’t cheap

BUT
• The cost of stupidity is always higher than the cost

of synchronization. (Bill Pugh)

– Pick a fast algorithm.

• Overhead can be insignificant when the
synchronized method is doing a time-consuming
operation.
– But in OO systems, small synchronized methods

often chain to small synchronized methods.

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>35Middle

Reentrant Code

• Reentrant code doesn’t need to be
synchronized.
– Code that uses only local variables and arguments

(no static variables, no fields in the class).

• Consider having a synchronized non-reentrant
public method call a reentrant private
method.
– used values are stale, though.

Object some_field = new Some_class();
public synchronized void accessor()
{ workhorse(some_field.clone());
}
private void workhorse(long some_field)
{ // no fields of class are used in here.
}

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>36Middle

Volatile

• Atomic operations on volatile primitive types
often do not need to be synchronized.
– volatile might not work in all JVMs. (HotSpot is

okay.)
– Assignment to all non-64-bit things, including
booleansand references are usually safe.

– Assignment to volatile doubles and floats
should be atomic (but most JVMsdon’t do it).

– Code may be reordered, so assignment to several
atomic variables must be synchronized.

03/06/2003

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com> 7

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>37Middle

Using Volatile Safely

• One-writer, many-reader strategies are best.
– But a change of state might not be immediately visible

to other threads.

• Assignment to non-Boolean is risky.
– Works if a single writer is simply incrementing (but the

change might not be immediately visible).
– Will not work if multiple threads perform updates.

• Do not depend on the "current" value of a volatile.
– The value might change at surprising times.

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>38Middle

Synchronization Rules of Thumb

• Don't synchronize on read-only access.

• Synchronize the smallest block possible to
minimize the odds of contention.
– Method-level synchronization should be

avoided in very-high-performance systems.

• Don’t synchronize the methods of classes that
are called only from one thread.
– Use Collection-style synchronization decorators

when you need synchronized behavior.
Collection c = new ArrayList();
c = Collections.synchronizedCollection(c);

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>39Middle

Don't Nest Synchronization

• Don’t access synchronized methods from
synchronized methods.
– Synchronize public methods. Don’t synchronize
private ones.

• E.g.: Avoid Vector and Hashtable in favor of
Collection and Map derivatives.
– Vector and Hashtable access is synchronized,

but Vector and Hashtable objects are usually
used from within synchronized methods.

– Collections and Maps accessors are not
synchronized.
Collection c =
Collections.synchronizedCollection(c);

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>40Middle

Don't use Buffered Streams

• Avoid heavy use of BufferedInputStream,
BufferedOutputStream,
BufferedReader , or BufferedWriter
– Single-byte access is synchronized!

• How often do multiple threads simultaneously
access the same stream at the byte level?

– You might use write(byte[]),
read(byte[]), etc.

• Best to roll your own version of
BufferedOutputStream that’s not
synchronized.
– You can copy the source and rename the class

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>41Middle

Avoid String Concatentation and
StringBuffer Objects.

• The StringBuffer class's append() method
is synchronized!

• String concatenation uses a StringBuffer:
s1 = s2 + s3;

is really
Stringbuffer t0 = new StringBuffer(s2);
t0.append(s3);
s1 = t0.toString();

• The only solution is not to use string operations
or StringBuffers!

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>42Middle

Don't use protected

• No guarantee that derived classes correctly
synchronize access to protected fields.

• synchronized is not part of the signature
– This is a problem with public methods, too.
– No guarantee that derived-class overrides

synchronize properly:

public class Foo
{ protected synchronized void f(){/*...*/}
}

class Bar extends Foo
{ protected void f() {/*...*/} // AAGH!
}

03/06/2003

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com> 8

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>43Middle

Don't Use Finalizers

• They slow down the garbage collector.

• May run while objects referenced by
fields are still in use!

• Two different objects may be finalized
simultaneously.
– Could be disastrous if they share

references.

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>44Middle

class I_am_immutable
{ private final int some_field;

public I_am_immutable(int initial_value)
{ some_field = initial_value;
}

}

Do use Immutable objects

– Might not compile with inner classes (there’s a long-standing
compiler bug)

• Immutable ≠ constant (but it must be constant to be thread safe)
– A final reference is constant, but the referenced object

can change state.
– Language has no notion of “constant”, so you must

guarantee it by hand

• Synchronization not required (all access read-only).
• All fields of the object are final (e.g. String)

– Blank finals are final fields without initializers.
– Blank finals must be initialized in all constructors.

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>45Middle

static final Object critical_section = new Object();
synchronized(critical_section)
{ // only one thread at a time

// can execute this code
}

Critical sections

• A critical section is a body of code that only one
thread can enter at a time.

• Do not confuse a critical section with a monitor.
– The monitor is associated with an object
– A critical section guards code

• The easiest way to create a critical section is by
synchronizing on a static field:

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>46Middle

class Flintstone
{ public void fred()
{ synchronized(Flintstone.class)

{ // only one thread at a time
// can execute this code

}
}

public static synchronized void wilma()
{ // synchronizes on the same object

// as fred().
}

}

Critical sections can also synchronize on
the class object

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>47Middle

Class vs. instance variables

• All synchronized static methods synchronize
on the same monitor.

• Think class variables vs. instance variables:
– The class (static) variables and methods are

effectively members of the Class object.
– The class (static) variables store the state of the

class as a whole.
– The class (static) methods handle messages sent to

the class as a whole.
– The instance (non-static) variables store the state of

the individual objects.
– The instance (non-static) methods handle

messages sent to the individual objects.

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>48Middle

class Foo
{ static long x = 0;

synchronized static void set_x(long x)
{ Foo.x = x;
}
synchronized /* not static */ double get_x()
{ return x;
}

}

Thread 1: Thread 2:
Foo o1 = new Foo(); Foo.set_x(-1);
long x = o1.get_x();

Results are undefined. (There are two locks here,
one on the class object and one on the instance.)

But remember the bathroom with multiple
doors

03/06/2003

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com> 9

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>49Middle

Lock the extra doors

1. Synchronize explicitly on the class object
when accessing a static field from an
instance method.

class Okay
{ private static long unsafe;

public void foo(long x)
{ //...

synchronized(Okay.class)
{ unsafe = x;
}

}
}

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>50Middle

Lock the extra doors

2. Access all static fields through
synchronized static methods, even if
the accessor is a method of the class that
contains the field.
class Okay
{ private static long unsafe;

private static synchronized get()
{return unsafe;}
private static synchronized set(long x)
{unsafe = x;}

public /*not static*/ void foo(long x)
{ //...

set(x);
}

}

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>51Middle

Lock the extra doors

3. Encapsulate all static fields in an inner
class and provide exclusive access through
synchronized methods of the inner class.

class Okay
{ private static class Class_Variables

{ private long unsafe;
public synchronized void do_something(long x)
{ unsafe = x; //. . .
}

}
static Class_Variables statics =

new Class_Variables();
public foo(long x)
{ statics.do_something(x);
}

}
Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>52Middle

public final class Singleton
{ static

{ new JDK_11_unloading_bug_fix(Singleton.class);
}
private static Singleton instance;
private Singleton(){} // prevent creation by new

public synchronized static Singleton instance()
{ if(instance == null)

instance = new Singleton();
return instance;

}
}
Singleton s = Singleton.instance()

Singletons (one-of-a-kind objects)

• Singletons often use critical sections for
initialization.

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>53Middle

public final class Singleton
{ static

{ new JDK_11_unloading_bug_fix(Singleton.class);
}
private Singleton(){}

private static final Singleton instance
= new Singleton();

public
/*unsynchronized*/ static Singleton instance()
{ return instance;
}

}

Avoiding sychronization in a singleton by
using static

• A degraded case, avoids synchronization.

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>54Middle

public final class Singleton
{ private static Singleton instance;

private Singleton(){}

static{ instance = new Singleton(); }

public static Singleton instance()
{ return instance;
}

}

Or alternatively…

• Thread safe because VM loads only one class at a
time and method can’t be called until class is fully
loaded and initialized.

• No way to control constructor arguments at run time.

03/06/2003

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com> 10

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>55Middle

public class JDK_11_unloading_bug_fix
{ public JDK_11_unloading_bug_fix(final Class keep)

{ if (System.getProperty("java.version")
.startsWith("1.1"))

{ Thread t = new Thread()
{ public void run()

{ Class singleton_class = keep;
synchronized(this)
{ try{ wait();}

catch(InterruptedException e){}
}

}
};
t.setDaemon(true);
t.start();

}
}

}

While we’re on the subject…

In the 1.1 JDK™ All
objects not accessible
via a local-variable or
argument were subject to
garbage collection

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>56Middle

Condition variables

• All objects have a "condition variable" in
addition to a mutex.
– A thread blocks on a condition variable until

the condition becomes true.
– In the Java™ environment, conditions are

"pulsed" — condition reverts to false
immediately after waiting threads are
released.

• wait() and notify() use this condition
variable.

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>57Middle

wait and notify have problems.

• Implicit condition variables don't stay set!
– A thread that comes along after the notify() has

been issued blocks until the next notify().

• wait(timeout) does not tell you if it returned
because of a timeout or because the wait was
satisfied (hard to solve).

• There's no way to test state before waiting.

• wait() releases only one monitor, not all
monitors that were acquired along the way
(nested monitor lockout).

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>58Middle

Notifying_queue():
wait(), notify(), and spin locks

class Notifying_queue
{ private static final queue_size = 10;

private Object[] queue = new Object[queue_size];
private int head = 0;
private int tail = 0;
public void synchronized enqueue(Object item)
{ queue[++head %= queue_size] = item;

this.notify();
}
public Object synchronized dequeue()
{ try

{ while(head == tail) //<-- MUST BE A WHILE
this.wait(); // (NOT AN IF)

}
catch(InterruptedException e)
{ return null; // wait abandoned
}
return queue[++tail %= queue_size];

}
}

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>59Middle

Condition variables. wait is not
atomic (1)

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>60Middle

Condition variables. wait is not
atomic (2)

03/06/2003

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com> 11

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>61Middle

Condition variables. wait is not
atomic (3)

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>62Middle

Condition variables. wait is not
atomic (4)

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>63Middle

Condition variables. wait is not
atomic (5)

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>64Middle

Summarizing wait() behavior

• wait() doesn’t return until the notifying
thread gives up the lock.

• A condition tested before entering a wait()
may not be true after the wait is satisfied.

• There is no way to distinguish a timeout
from a notify().

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>65Middle

Visibility

• Changes made by a CPU are not
transferred from cache to the main memory
store immediately.

• It may take time for a change made by one
thread to become visible to another thread
– Threads are running on different processors.

• The order in which changes become visible
are not always the order in which the
changes are made.

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>66Middle

Beware of symmetric multi-processing
(SMP) environments

• The CPU does not access memory directly.

• CPU read/write requests are given to a “memory
unit,” which actually controls the movement (at the
hardware level) of data between the CPU and main
memory store.

CPU1

CPU2

w r w w r w

w w r r w r

memory
MU2

MU1

03/06/2003

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com> 12

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>67Middle

Some common memory operations are
inefficient

• Processors supporting a “relaxed memory model”
can transfer blocks of memory between cache and
the main memory store in undefined order!

• Consider:
int a[] = new int[10];
int b[] = new int[10];
for(int i = 0; i < a.length; ++i)

b[i] = a[i];

CPU1 Ra[0]

memory
MU1Wb[0]Ra[1]Wb[1]Ra[n]Wb[n]

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>68Middle

Presto Chango!

• The memory unit notices the inefficiency and rearranges
the requests!

• To produce:

• This change is good—it speeds memory access.

CPU1 Ra[0]

memory
MU1Wb[0] Ra[1]Wb[1] Ra[n]Wb[n]

CPU1 Wb[0..n]

memory
MU1Ra[0..n]

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>69Middle

BUT…

• The order in which changes are
made in the source code may not be
preserved at run time!

• The order in which changes are
made may not be the order in which
those changes are reflected in main
memory.

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>70Middle

Don’t Panic

• Reordering doesn’t matter in single-threaded
systems.

• Reordering not permitted across “memory barriers”
(effectively inserted around synchronized
access).

CPU1

CPU2

w r w w r w

w w r r w r

memory
MU2

MU1

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>71Middle

Memory barriers are created indirectly by
synchronization

• synchronized is implemented using a memory
barrier
– so modifications made within a synchronized

block will not move outside that block.

CPU1

CPU2

w r w w r w

w w t&s
memory

MU2

MU1

Atomic test/set to acquire
mutex. (Loop, testing
value, set if nonzero.)

Write a zero value to
release the mutex

t&s

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>72Middle

Avoiding synchronization
(revisited)

• You cannot use volatile fields (e.g. boolean)
to guard other code.

class I_wont_work
{ private volatile boolean okay = false;

private long field = -1;
//. . .
public /*not synchronized*/ void wont_work()
{ if(okay)

{ do something(field);
}

}
public /*not synchronized*/ void enable()
{ okay = false;

field = 0;
okay = true;

}
}

Might be –1.

03/06/2003

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com> 13

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>73Middle

Even worse

• Memory modifications made in the
constructor may not be visible, even though
the object is accessible!
class Surprise
{ public long field;

//. . .
public Surprise()
{ field = -1;
}

}
Thread 1:

Surprise s = new Surprise();

Thread 2:
System.out.println(s.field);

Modification of s might
become visible before
modification of field if
memory unit rearranges
operations.

Holds even if field is
final!

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>74Middle

Synchronization can fix things

Object lock = new Object();

Thread 1:
synchronized(lock)
{ Surprised s = new Surprised();
}

Thread 2:
synchronized(lock)
{ System.out.println(s.get_field());
}

• This works

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>75Middle

The Memory Unit doesn’t know the
word “subroutine.”

• All code between read/write requests are
subject to reordering, whether or not they
are called from a subroutine.

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>76Middle

public final class Singleton
{ static{ new JDK_11_unloading_bug_fix(Std.class); }

private static Singleton instance;
private Singleton(){} // prevent creation by new

public static Singleton instance()
{ if(instance == null)

{ synchronized(Singleton.class)
{ if(instance == null)

instance = new Singleton();
}

}
return instance;

}
}

Double-checked locking doesn’t work!

• Is unreliable even in single-CPU machine.

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>77Middle

This doesn’t work

class Broken_singleton
{

public static Singleton instance()
{ if(instance == null)

{ synchronized(Singleton.class)
{ if(instance == null)

{
Singleton tmp = new Singleton();
instance = tmp;

}
}

}
return instance;

}
}

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>78Middle

This doesn’t work either

class Still_broken_singleton
{

public static Singleton instance()
{ if(instance == null)

{ synchronized(Singleton.class)
{ if(instance == null)

{ instance = factory();
}

}
}
return instance;

}
// Synchronizing the following subroutine does
// not affect the incorrect behavior.
private void Singleton factory()
{ return new Singleton();
}

}

03/06/2003

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com> 14

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>79Middle

“Rules to live by” in an SMP environment
(gotchas)

• To assure that shared memory is visible to two
threads: the writing thread must give up a lock
that is subsequently acquired by the reading
thread.

• Modifications made while sleeping may not be
visible after sleep() returns.

• Operations are not necessarily executed in
source-code order (not relevant
if code is synchronized.)

• ??? Modifications to memory made after a thread
is created, but before it is started, may not be
visible to the new thread.

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>80Middle

“Rules to live by” in an SMP environment
(things that work)

• Modifications made by a thread before it issues a
notify() will be visible to the thread that’s
released from the associated wait().

• Modifications made by a thread that terminates
are visible to a thread that joins the terminated
thread. [must call join()]

• Memory initialized in a static initializer is
safely accessible by all threads, including
the one that caused the class-file load.

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>81Middle

A few articles on SMP Problems

• Paul Jakubik (ObjectSpace):
www.primenet.com/~jakubik/mpsafe/

MultiprocessorSafe.pdf

• Bill Pugh (Univ. of Maryland) mailing list:
www.cs.umd.edu/~pugh/java/memoryModel/

• Allen Holub:
www.javaworld.com/javaworld/ jw-02- 2001/

jw-0209-toolbox.html

• Brian Goetz:
www.javaworld.com/javaworld/jw-02- 2001/

jw-0209-double.html

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>82Middle

Deadlock: The simplest scenario
(1)

• Two or more threads, all waiting for each
other.

• Threads trying to acquire multiple locks, but
in different order.

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>83Middle

Deadlock: The simplest scenario
(2)

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>84Middle

Deadlock: The simplest scenario
(3)

03/06/2003

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com> 15

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>85Middle

class Boss
{ private Sidekick robin;

synchronized
void set_side_kick(Sidekick kid)
{ robin = kid; };
synchronized void to_the_bat_cave()
{

robin.lets_go();
}
synchronized void report(String s)
{/*...*/}

}
class Sidekick
{ private Boss batman;

Sidekick(Boss boss){batman = boss;}
synchronized void lets_go(){..}
synchronized void sock_bam()
{ batman.report(“Ouch!");
}

}
Boss batman = new Boss();
Sidekick robin = new Sidekick(batman);
batman.set_side_kick(robin);

Deadlock: A more-realistic scenario

1.Thread 1 (Alfred) calls
batman.to_the_bat_cave();
Alfred now has the lock on
batman.

2.Thread 1 is preempted just
before calling lets_go().

3.Thread 2 (Joker) calls
robin.sock_bam(). Joker now
has the lock on robin.

4.Robin tries to report() to
batman (on thread 2), but
can't because Alfred has the
lock. Joker is blocked.

5.Thread 1 wakes up, tries to
call lets_go(), but can't
because Joker
has the lock.

preempt

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>86Middle

Nested-monitor lockout

• Can happen any time you call a method that can block
from any synchronized method.

• Consider the following (I've removed exception handling):

class Black_hole
{ private InputStream input =

new Socket("www.holub.com",80)
.getInputStream();

public synchronized int read()
{ return input.read();
}
public synchronized void close()
{ input.close();
}

} How do you close the socket?

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>87Middle

Nested-monitor lockout: another
example

• The notifying queue blocks if you try to dequeue from an
empty queue

class Black_hole2
{ Notifying_queue queue =

new Notifying_queue();

public synchronized void put(Object thing)
{ queue.enqueue(thing);
}

public synchronized Object get()
{ return queue.dequeue();
}

}

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>88Middle

Why was stop()deprecated?

• NT leaves DLLs (including some system
DLLs) in an unstable state when threads
are stopped externally.

• stop() causes all monitors held by that
thread to be released,
– but thread may be stopped half way

through modifying an object, and
– other threads can access the partially

modified (now unlocked) object

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>89Middle

Why was stop() deprecated (2)?

• The only way to safely terminate a thread is
for run() to return normally.

• Code written to depend on an external
stop() will have to be rewritten to use
interrupted()or isInterrupted().

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>90Middle

class Wrong
{ private Thread t =

new Thread()
{ public void run()
{ while(true)
{ //...
blocking_call();

}
}

};
public stop()
{ t.stop();
}

}

interrupt(), don’t stop()

class Right
{ private Thread t =
new Thread()
{ public void run()

{ try
{ while(!isInterrupted())

{ //...
blocking_call();

}
}catch(InterruptedException e)
{/*ignore, stop request*/}

}
};
public stop()
{t.interrupt();}

}

• But there’s no safe way to stop a thread
that doesn’t check the “interrupted” flag.

03/06/2003

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com> 16

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>91Middle

interrupt() gotchas

• interrupt()works well only with the methods of
the Thread and Object classes
– wait(), sleep(), join(), etc.
– It throws an InterruptedException

• Everywhere else interrupt() just sets a flag.
– You have to test the flag manually all over the place.
– Calling interrupted() clears the flag.
– Calling isInterrupted() doesn't clear the flag!

• It is not possible to interrupt out of a blocking I/O
operation like read().
– Would leave the stream in an undefined state.
– Use the classes in java. nio whenever possible.

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>92Middle

class Wrong
{ public synchronized
void take_a_nap()
{ suspend();
}
public synchronized
void wake_up()
{ resume();
}

}

Why were suspend() and resume()
deprecated?

• The suspend() method does not release the lock
class Right
{ public synchronized

void take_a_nap()
{ try

{ wait();
}
catch(InterruptedException e)
{/*do something reasonable*/}

}
public synchronized
void wake_up()
{ notify();
}

}

Once a thread has entered
take_a_nap (), all other
threads will block on a call
to wake_up(). (Someone
has gone into the bathroom,
locked the door, and fallen
into a drug-induced coma)

The lock is released
by wait() before the
thread is suspended.

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>93Middle

The big-picture coding issues

• Design-to-coding ratio is 10:1 in threaded systems.

• Formal code inspection or pair programming is essential.

• Debugging multithreaded code takes longer.
– Bugs are usually timing related.

• It's not possible to fully debug multithreaded
code in a visual debugger.
– Instrumented JVMs cannot find all the problems

because they change timing.
– Classic Heisenberg uncertainty: observing the process

impacts the process.

• Complexity can be reduced with architectural solutions
(e.g. Active Objects).

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>94Middle

Given that the best solution isn’t
finding a new profession…

• Low -level solutions (roll-your-own
semaphores)
– I’ll look at a few of the simpler classes

covered in depth in Taming Java Threads.
– My intent is to give you a feel for

multithreaded programming, not to provide
an exhaustive toolkit.

• Architectural solutions (active objects, etc).

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>95Middle

Roll your own (A Catalog)

• Exclusion Semaphore (mutex)
– Only one thread can own at one time.
– Roll-your-own version can contain a timeout.

• Condition Variable
– Wait while condition false.
– Roll-your-own version can have state.

• Counting Semaphore
– Control pool of resources.
– Blocks if resource is unavailable.

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>96Middle

Roll your own (2)

• Message Queues (interthread communication)
– Thread blocks (with wait/notify) until a message is

enqueued.
– Typically, only thread per queue.

• Thread Pools
– A group of dormant threads wait for something to do.
– A thread activates to perform an arbitrary task.

• Timers
– Allow operation to be performed at regular intervals

• Block until a predetermined time interval has elapsed
• Block until a predetermined time arrives.

03/06/2003

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com> 17

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>97Middle

Roll your own (3)

• Reader/Writer Locks
– Allow thread-safe access to global resources

such as files:
• Must acquire the lock to access a resource
• Writing threads are blocked while a read or

write operation is in progress
• Reading threads are blocked only while a

write operation is in progress. Simultaneous
reads are okay

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>98Middle

Threads from an OO perspective

• Think messages, not functions

• Synchronous messages—handler doesn't return
until it's done doing whatever sender requests

• Asynchronous messages—handler returns
immediately. Meanwhile request is processed in
the background.
Toolkit.getDefaultToolkit().getImage(some_URL);

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>99Middle

The Java™-language threading
model is not OO

• No language-level support for asynchronous
messaging.

• Threading system is based entirely on
procedural notions of control flow.

• Deriving from Thread is misleading
– Novice programmers think that all methods of

a class that extends Thread run on that
thread, when in reality, the only methods that
run on a thread are methods that are called
either directly or indirectly by run().

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>100Middle

Implementing asynchronous methods —one
thread per method

class Receiver
{ //. . .

public asynch_method()
{ new Thread()
{ public void run()

{ synchronized(Receiver.this)
{ // Make local copies of

// outer-class fields here.
}
// Code here doesn't access outer
// class (or uses only constants).

}
}.start();

}
}

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>101Middle

A more realistic one-thread-per-
method example

// This class demonstrates an asynchronous flush of a
// buffer to an arbitrary output stream

class Flush_example
{ public interface Error_handler

{ void error(IOException e);
}
private final OutputStream out;
private final Reader_writer lock =

new Reader_writer();
private byte[] buffer;
private int length;

public Flush_example(OutputStream out)
{ this.out = out;
}

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>102Middle

A more realistic one-thread-per-
method example

synchronized void flush(final Error_handler handler)
{ new Thread() // Outer object is locked

{ byte[] copy; // while initializer runs.
{ copy = new byte[Flush_example.this.length];

System.arraycopy(Flush_example.this.buffer,
0, copy, 0, Flush_example.this.length]);

Flush_example.this.length = 0;
}
public void run() // Lock is released
{ try // when run executes

{ lock.request_write();
out.write(copy, 0, copy.length);

}
catch(IOException e){ handler.error(e); }
finally{ lock.write_accomplished(); }

}
}.start();

}
}

03/06/2003

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com> 18

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>103Middle

Problems with one-thread-per-
method strategy

• It is a worse-case synchronization scenario.
– Many threads all access the same outer-class

object simultaneously
– Since synchronization is required, all but one of

the threads are typically blocked, waiting to
access the object.

• Thread-creation overhead can be stiff:

.8021 ms. (NT 4.0, 600MHz)=Create & start Thread

.0491 ms.=Create Thread

.0040 ms.=Create String

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>104Middle

Use Thread Pools

• The real version:
– Grows from the initial size to a specified maximum if

necessary.
– Shrinks back down to original size when extra threads

aren’t needed
– Supports a “lazy” close.

public final class Simplified_Thread_pool
{ private Object startup_lock = new Object();

private final Blocking_queue pool
= new Blocking_queue();

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>105Middle

Implementing a simple thread pool

public Simplified_Thread_pool(int pool_size)
{ synchronized(startup_lock)

{ while(--pool_size >= 0)
new Pooled_thread().start();

}
}

public synchronized void execute(Runnable action)
{ pool.enqueue(action);
}

public synchronized void close()
{ pool.close();
}

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>106Middle

Implementing a simple thread pool

private final class Pooled_thread extends Thread
{ public void run()

{ synchronized(startup_lock)
{}
try
{ while(!isInterrupted())

((Runnable)pool.dequeue()).run();
}
catch(InterruptedException e){/* ignore */}
catch(Blocking_queue.Closed e){/* ignore */}
catch(Throwable e)
{ // handle unexpected error gracefully...

e.printStackTrace();
}

}
}

}

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>107Middle

The Active Object design pattern

• An architectural solution to threading
synchronization.

• Asynchronous requests are executed serially
on a thread created for that purpose.

• Think Tasks
– An I/O task, for example, accepts asynchronous

read requests to a single file and executes them
serially.

– Message-oriented Middleware (MQS, Tibco …)
– Ada and Intel RMX (circa 1979)

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>108Middle

A generalized active object

• The solution can be generalized in the Java
programming language like this:

dequeue() blocks
(using wait/notify)
until there’s
something to get.

03/06/2003

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com> 19

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>109Middle

The javax.swing.* thread is an active object

• Swing/AWT uses it's own thread to handle the incoming
OS-level messages and to dispatch appropriate
notifications to listeners.

• Swing is not thread safe.

• The Swing subsystem is effectively a “UI task” to which
you enqueue requests:

SwingUtilities.invokeLater // enqueue a request
(new Runnable()

{ public void run()
{ some_window.setSize(200,100); }

}
);

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>110Middle

Implementing Active Object

public class Active_object extends Thread
{ private Notifying_queue requests

= new Notifying_queue();
public Active_object(){ setDaemon(true); }
public void run()
{ try

{ Runnable to_do;
while((to_do=(Runnable)(

requests.dequeue()))!= null)
{ to_do.run();

to_do = null; yield();
}

}catch(InterruptedException e){}
}
public final void dispatch(Runnable operation)
{ requests.enqueue(operation);
}

}

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>111Middle

Using an active object (detangling UNIX™
console output)

class Console
{ private static Active_object dispatcher

= new Active_object();
static{ dispatcher.start(); }
private Console(){}

public static void println(final String s)
{ dispatcher.dispatch

(new Runnable()
{ public void run()

{ System.out.println(s);
}

}
);

}
}

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>112Middle

Summing up

• Java™-language threads are not platform
independent—they can't be.

• You have to worry about threads, like it or not
– GUI code is multithreaded
– No telling where your code will be used in the future

• Programming threads is neither easy nor intuitive.
• synchronized is your friend. Grit your teeth and

use it.
• Supplement language-level primitives to do real work.

• The threading system isn’t object oriented.
• Use good architecture, not semaphores.

End

Taming Java Threads, (c) 2002 Allen I Holub <www.holub.com>113Middle

In-depth coverage and code

End

For source code, these slides, etc., go to
my web page

www.holub.com

These notes © 2003, Allen I. Holub. All rights reserved.
These notes may not be redistributed.

These notes may not be reproduced by any means without the written
permission of the author, except that you may print them for your personal use.

For in-depth coverage, see Taming
Java™ Threads (www.apress.com)

