03/06/2003

Taming Java Threads

Allen |. Holub

Holub Associates
www.holub.com
allen@holub.com

What We’ll Do Today

*Programming threads in Java is
fraught with peril, but is mandatory in
a realistic program.

This talk discusses traps and
pitfalls, along with some solutions

*This talk focuses on material not
covered in most books

Who is the Guy?

Talk based on my JavaWorld™ “Java Toolbox” column,
now a book:

— Taming Java™ Threads, (Berkeley: APress, 2000;
http://www. apress.com).

Source code, etc., found at http://www.holub.com.

My Prejudices and Bias
— I do not work for Sun
— | have opinions and plan to express them. The appearance of
impartiality is always just appearance

— Java is the best thing since sliced bread (but bakery bread is
better than sliced).

I'm assuming that...

® |I'm assuming you know:
— the language, including inner classes.

— how to create threads using Thr ead and
Runnabl e

—synchroni zed,wai t (), notify()
— the methods of the Thr ead class.
* You may still get something out of the talk if you

don't have the background, but you'll have to
stretch

We’'ll look at

» Thread creation/destruction problems
Platformdependence issues

* Synchronization & Semaphores
(synchroni zed,wai t, noti fy, etc.)

* Memory Barriers and SMP problems
Lots of other traps and pitfalls

A catalog of class-based solutions

* An OO-based architectural solution

Books, etc.

® Allen Holub, Taming Java™ Threads. Berkeley, APress,
2000.

® Doug Lea. Concurrent Programming in Java™: Design
Principles and Patterns, 29 Ed... Reading: Addison
Wesley, 2000.

® Scott Oaks and Henry Wong. Java™ Threads.
Sebastopol, Calif.: O'Reilly, 1997.

® Bill Lewis and Daniel J. Berg. Threads Primer: A Guide
to Multithreaded Programming. Englewood Cliffs:
Prentice Hall/SunSoft Press, 1996.

® http://developer.java.sun.com/developer/

technicalArticles /Threads/

Tamina Java Threads. (c) 2002 Allen | Holub <www.holub.com>

Words to live by

All nontrivial applications
for the Java" platform are
multithreaded, whether
you like it or not.

It's not okay to have an unresponsive Ul.
It's not okay for a server to reject requests.

03/06/2003

Threads vs. processes

e A Process is an address space.

e A Thread is a flow of control through that
address space.
— Threads share the process’s memory

— Thread context swaps are much lower
overhead than process context swaps

Threads vs. processes in Java

® A process is a JVM instance.

— The Process contains the heap (everything that comes
from new)

— The heap holds all static memory
® Athread is a runtime (JVM) state
— The "Java Stack” (runtime stack)
— Stored registers
— Local variables
— Instruction pointer
® Thread-safe code can run in a multithreaded environment

— Must synchronize access to resources (eg. memory)
shared with other threads or be reentrant.

— Most code in books isn't thread safe

Thread behavior is platform
dependent!

* You need to use the OS threading system to get
parallelism (vs. concurrency)

concurency Paratietsm
Tine Time
o] | e
(L]
5 T
e
%

« Different operating systems use different threading
models (more in a moment).

* Behavior often based on timing.

» Multithreaded apps can be slower than single-threaded
apps (but be better organized)

Priorities

The Java™ programming language has 10 levels

— but they're worthless---there are no guarantees that the
OS will pay any attention to them.

The Solaris™ OS has 2% levels
NT™ offers 5 (sliding) levels within 5 "priority classes."

12 3 4 5 6 7 ® 3 18111213 1415 16 22 22 24 25 26 31

[m] [
a O
(] —r—
NT* Priority Classes [Reattime T

NT priorities change by magic.
— After certain (unspecified) I/0O operations priority is boosted
(by an indeterminate amount) for some (unspecified) time.

— Stickto Thread. MAX PRIORI T
Thr ead. NORM_PRI ORI TY, Thr ead M N_PRI ORI TY)

Threading models

e Cooperative (Windows 3.1)
— A Thread must voluntarily relinquish control of the CPU.

— Fast context swap, but hard to program and can't leverage
multiple processors.

* Preemptive (NT)

— Control is taken away from the thread at effectively random
times.

— Slower context swap, but easier to program and multiple
threads can run on multiple processors.

e Hybrid (Solaris™ OS, Posix, HPUX, Etc.)

— Simultaneous cooperative and preemptive models are
supported.

Tamina Java Threads. (c) 2002 Allen | Holub <www.holub.com>

03/06/2003

NT™ threading model Solaris™ OS threading model

- 'l
q‘\ 1 Lre)
Thesad J_f'_'.':’__ Fracszser

(Win32 "fibers" are so poorly documented, and so
buggy, they are not a real option.)

Do not assume a particular n
; Thr reation
environment ead creatio
* Assume both of these rules, all the time: » Java’'s Thr ead class isn't (a thread).
1.A thread can prevent other threads from running — It's a thread controller
if it doesn't occasionally yiel
—by-calling yi el d(), performing a blocking I/O class Operation inplenments Runnabl e
operation, etc. { public void run()
; /1 This method (and the nethods it calls) are
Z.QJEtrﬁgdtﬁ%rgge preempted at any time by i 71 the onl'y oneé hat run on the thread.)
—even by one that appears to be lower priority than }

the current one.
Thread thread_control | er=new Thread(new Operation());

thread_controller.start();

Java™ threads aren’t object Java™ threads aren’t object
oriented (1) oriented (2)

» Simply putting a method in a Thr ead
derivative does not cause that method to run
on the thread.

— A method runs on a thread only if it is called =
from run() (directly or indirectly).

'_J ® Objects do not run on
threads, methods do.

¢ Several threads can send
messages to the same object
simultaneously.

—They execute the same
code with the same t hi s

class Fred extends Thread
{ public void run()
{ /I This nethod (and the nethods it calls) are
/1 the only ones that run on the thread.

L
public foo())) reference, so share the
{ /1 This nethod will not run on the thread since -1 object’s state

/1 it isn't called by run() ' 1l) '

}
}

Tamina Java Threads. (c) 2002 Allen | Holub <www.holub.com> 3

Basic concepts: atomic operations
(atomicity).

® Atomic operations can't be interrupted (divided)
® Assignment to double or long is not atomic

long x; 64-bit assignment is
thread 1: effectively implemented
X = 0x0123456789abcdef |[as:
thread 2: .
X = O x.high = 0x01234567
- Ix.low =0x89abcdef;
possible results:
0x0123456789abcdef ; [You can be preempted
0x0123456700000000; between the assignment
0x0000000089abcdef ; operations.
0x0000000000000000;

03/06/2003

Basic concepts: synchronization

® Mechanisms to assure that multiple threads:

— Start execution at the same time and run
concurrently ("condition variables" or "events").

—Do not run simultaneously when accessing the
same object (‘monitors” implemented with
A"mutex").

—Do not run simultaneously when accessing the
same code_ ("critical sections”).

® The synchroni zed keyword is essential in
implementing synchronization, but is poorly
designed.

—e.g. No timeout, so deadlock detection is
impossible.

Basic concepts: semaphores

® A semaphore is any object that two
threads can use to synchronize
with one another.

—Don't be confused by Microsoft™
documentation that (incorrectly)
applies the word "semaphore” only
to a Dijkstra counting semaphore.

® Resist the temptation to use a Java
native interface (JNI) call to access
the underlying OS synchronization
mechanisms

The mutex (mutual-exclusion
semaphore)

* The mutex is the key to alock
— Though it is sometimes called a “lock.”
« Ownership is the critical concept

— To cross a synchroni zed statement, a thread must
have the key, otherwise it blocks (is suspended).
— Only one thread can have the key (own the mutex) at
a time.
» Every Obj ect contains an internal mutex:
Cbj ect nmutex = new Qbject();
synchroni zed(nutex)
{ /1 guarded code is here.

— Arrays are also objects, as is the d ass object.

Monitors and airplane bathrooms

* A monitoris a body of code (not necessarily
contiguous), access to which is guarded by a single
mutex.

— Every object has its own monitor (and its own mutex).

* Think “airplane bathroom”
— Only one person (thread) can be in it at a time (we
hope).
— Locking the door acquires the associated mutex. You
can't leave without unlocking the door.

— Other people must line up outside the door if
somebody's in there.

— Acquisition is not necessarily FIFO order.

Synchronization with individual
locks

* Monitors create atomicity by using mutual -
exclusion semaphores.

« Enter the monitor by passing over the
synchr oni zed keyword (acquire the mutex).

« Entering the monitor does not restrict access to
objects used inside the monitor—it just prevents
other threads from entering the monitor.

long field;
Obj ect lock = new Object();

synchroni zed(| ock)
{ field = new_val ue

}

Tamina Java Threads. (c) 2002 Allen | Holub <www.holub.com>

Method-level synchronization

class Queue
{ public synchronized void enqueue(Cbject 0)

ERY]

public synchroni zed Obj ect dequeue()
{1*.51}
}
. Thg monitor is associated with the object, not the
code.

— Two threads can happily access the same
synchronized code at the same time, provided that
different objects receive the request.

— E.g. Two threads can enqueue to different queues
at the same time, but they cannot simultaneously
access the same queue:

— Same as synchroni zed(t hi s)

03/06/2003

He came in the Bathroom Window.

« The Bathroom can have several doors

« Acquiring a lock on an object
does not prevent other threads o
from modifying that object. .
cl ass Bat hroom wi ndow L "
{ private double guard_this;

public synchroni zed void ringo(doubl e sone_val ue)
{ guard_this = sonme_val ue;

public double george() // WRONG Needs
{ return guard_this; // synchronization

Constructors can’t besynchroni zed, so
always have back doors.

class Unpredictable
{ wprivate final int x;
private final int y;

public Unpredictable(int init_x, int init_y)
{ new Thread()
{ public void run()
{ Systemout.println(“x=" + x + “ y=" +y);

}.start();
X = init_x;
y = init_y;

}
}
« Putting the thread-creation code at the bottom doesn't
help (the optimizer might move it).

Locking the constructor’s back door.

class Predictable
{ pject lock = new Object();
public Predictable(int init_x, int init_y)
{ synchronized(|ock)
{ new Thread()
{ public void run()
{ synchronized(|ock)
{ /1 Use shared var
}
}
}.start();
) /linitialize shared var.
}
}
e synchroni zed(t hi s) does not workin a

constructor. (It's a silent no-op.)

Be careful to lock the correct object

. én inner-class event handler is also a back
oor

class Quter
{ private double d;

private JButton b = new JButton();

public Quter()

{ b.addActionListener

(new ActionListener()
{ public void actionPerfornmed(Acti onEvent
{ d=0.0; // race condition!

}
}
!)
public void race_condition(doubl e new val ue)
{ d = new_val ue;
}
}

e)

Synchronizing the inner-class method doesn't
work

synchroni zed // grabs the wong | ock!
public void actionPerfornmed(ActionEvent e)

{ d=o0.0;
}

Tamina Java Threads. (c) 2002 Allen | Holub <www.holub.com>

Explicitly synchronize on the object that holds
the contested fields.

public void actionPerfornmed(Acti onEvent e)
{ synchronized(Quter.this)

{ d=0.0;

}
}

synchroni zed

03/06/2003

Synchronization isn’t cheap

class Synch

{ synchroni zed int |ocking (int a, int b)
{ return a + b;}

int not_locking (int a, int b)

{ return a + b;}

static public void main(String[] argunents)
{ double start = new Date().get Time();

for(long i = 1000000; --i >=0 ;)
tester. | ocking(0,0);

doubl e end = new Date().getTine();

doubl e locking_time = end - start;
/1 repeat for not_| ocking
}
}

Synchronization isn’t cheap

% j ava -verbose: gc Synch

Pass 0: Tine |ost: 234 ns. 121.39% i ncrease
Pass 1: Tine |ost: 139 ms. 149.29% i ncr ease
Pass 2: Tine |ost: 156 ms. 155.52% i ncr ease
Pass 3: Tine |ost: 157 ms. 155.87% i ncr ease
Pass 4: Tine |ost: 157 ms. 155.87% i ncr ease
Pass 5: Tine |ost: 155 ms. 154.96% i ncr ease
Pass 6: Tine |ost: 156 155. 52% i ncr ease
Pass 7: Tine lost: 3, 891 nE. 1,484.70% i ncrease
Pass 8: Tine lost: 4,407 nms. 1,668.33%increase

200MHz Pentium, NT4/SP3, JDK 1.2.1, HotSpot 1.0fcs, E

< Contention in last two passes (Java Hotspot can't use
atomic-bit-test-and-set).

Synchronization isn’t cheap

BUT

* The cost of stupidity is always higher than the cost
of synchronization. @iieugn

— Pick a fast algorithm.
* Overhead can be insignificant when the

synchronized method is doing a time-consuming
operation.

— But in OO systems, small synchronized methods
often chain to small synchronized methods.

Reentrant Code

¢ Reentrant code doesn't need to be
synchronized.

— Code that uses onl){ local variables and arguments
(no st at i c variables, no fields in the class).

= Consider having a synchronized non-reentrant
publ i ¢ method call a reentrant pri vat e
method.
— used values are stale, though.
Obj ect some_field = new Sonme_cl ass();
public synchronized void accessor()
§ wor khorse(sone_field.clone());

private void workhorse(|ong some_field)
{ /1 no fields of class are used in here.

}

Volatile

« Atomic operations on vol at i | e primitive types
often do not need to be synchronized.
—vol ati | e might not work in all JVMs (HotSpotis
okay.)
— Assignment to all non-64-bit things, including
bool eansand references are usually safe.

— Assignment to vol ati | e doubl esand f | oat s
should be atomic (but most JVMsdon't do it).

— Code may be reordered, so assignment to several
atomic variables must be synchronized.

Tamina Java Threads. (c) 2002 Allen | Holub <www.holub.com>

Using Volatile Safely

« One-writer, many-reader strategies are best.
— But a change of state might not be immediately visible
to other threads.
* Assignment to non-Boolean is risky.

— Works if a single writer is simply incrementing (but the
change might not be immediately visible).

— Will not work if multiple threads perform updates.
« Do not depend on the "current" value of a volatile.
— The value might change at surprising times.

03/06/2003

Synchronization Rules of Thumb

» Don't synchronize on read-only access.
» Synchronize the smallest block possible to
minimize the odds of contention.
— Method-level synchronization should be
avoided in very-high-performance systems.
» Don’t synchronize the methods of classes that
are called only from one thread.

— Use Collection-style synchronization decorators
when you need synchronized behavior.

Col l ection ¢ = new Arraylist ();
c = Col | ections. synchroni zedCol | ection(c);

Don't Nest Synchronization

» Don't access synchr oni zed methods from
synchronized methods.

— Synchronize publ i ¢ methods. Don’t synchronize
privat e ones.

. gi Avoid Vect or and Hasht abl e in favor of
Col | ecti on and Map derivatives.

— Vect or and Hasht abl e access is synchronized,
but Vect or and Hasht abl e objects are usually
used from within synchronized methods.

— Collections and Maps accessors are not
synchronized.

Collection ¢ =))
Col | ecti ons. synchroni zedCol | ection(c);

Don't use Buffered Streams

» Avoid heav&use of Buf f er edl nput Stream

Buf f er edQut put St r eam)

Buf f eredReader , or Buf f eredWi t er

— Single-byte access is synchronized!
* How often do multiple threads simultaneously

access the same stream at the byte level?

— You mightuse wri te(byte[]),

read(byte[]), etc.

 Best to roll your own version of
Buf f er edQut put St r eamthat’s not
synchronized.
— You can copy the source and rename the class

Avoid St ri ng Concatentation and
St ri ngBuf f er Objects.

e The St ri ngBuf f er class's append() method
is synchronized!

« String concatenation uses a StringBuffer:
sl = s2 + s3;
is really
Stringbuffer t0O = new StringBuffer(s2);
t 0. append(s3);
sl =t0.toString();

e The only solution is not to use string operations
or StringBuffers!

Don't use protected

» No guarantee that derived classes correctly
synchronize access to protected fields.

» synchroni zed is not part of the signature
— This is a problem with publ i ¢ methods, too.

— No guarantee that derived class overrides
synchronize properly:

public class Foo
{ protected synchronized void f(){/*...*/}

}

cl ass Bar extends Foo
{ protected void f() {/*...*/} /] AAGH
}

Tamina Java Threads. (c) 2002 Allen | Holub <www.holub.com>

03/06/2003

Don't Use Finalizers Do use Immutable objects
* Synchronization not required (all access read-only).
* They slow down the garbage collector. « All fields of the object are final (e.g. String)
i . — Blank finals are f i nal fields without initializers.
¢ May run while objects referenced by — Blank finals must be initialized in all constructors.
fields are still in use! class |_amjmutabl e
) i .) { wprivate final int sone_field;
» Two different objects may be finalized public | _amimmutable(int initial _value)

simultaneously. { some_field = initial_value;
— Could be disastrous if they share Mighi not e with | (there's al ndi
- Ight not compile inner classes ere's a long-standing
references. compiler bug)
« Immutable * constant (but it must be constant to be thread safe)

— Afinal reference is constant, but the referenced object
can change state.

— Language has no notion of “constant”, so you must
guarantee it by hand

Critical sections can also synchronize on

Critical sections the class object

= A critical section is a body of code that only one)
thread can enter at a time. class Flintstone
{ public void fred()

* Do not confuse a critical section with a monitor. . .
. : A . { synchroni zed(Flintstone.class)

— The monitor is associated with an object {7/ only one thread at a tine

— A critical section guards code /1 can execute this code
* The easiest way to create a critical section is by }

synchronizing on astati c field: 1
static final Object critical _section = new Object(); public static synchronized void wlna()
synchroni zed(critical _section) { /1 synchroni zes on the same object
{ // only one thread at a tine /] as fred().

/1 can execute this code

Class vs. instance variables But remember the bathroom with multiple
doors
« All synchroni zed static methods synchronize (Cl a:lsa[':iof long x = 0;
on the same monitor. synchroni zed static void set_x(long x)
« Think class variables vs. instance variables: § Foo.x = x;
— The class (st ati ¢) variables and methods are ; n [
effectively$nember)s of the O ass object. {SVF”SPL?E')Z(,Ed /* not static */ double get_x()
— The class (st at i c) variables store the state of the } '
class as a whole. }
— The class (st at i c) methods handle messages sent to
the class as a whole. Thread 1: Thread 2:
— The instance (non-st at i c) variables store the state of Foo ol = new Foo(); Foo. set _x(-1);
the individual objects. long x = ol.get_x(); -
— The instance (non-st at i ¢) methods handle -
messages sent to the individual objects. Results are undefined. (There are two locks here,
one on the class object and one on the instance.)

Tamina Java Threads. (c) 2002 Allen | Holub <www.holub.com> 8

Lock the extra doors

1. Synchronize explicitly on the class object
when accessing a st at i ¢ field from an
instance method.

class Ckay
{ private static |ong unsafe;
public void foo(long x)
{11...
synchroni zed(Ckay.class)
{ unsafe = x;

}

03/06/2003

Lock the extra doors

2. Access all st at i ¢ fields through
synchroni zed st at i ¢ methods, even if
the accessor is a method of the class that
contains the field.

cl ass Ckay

{ private static | ong unsafe;
private static synchronized get()
{return unsafe;}
private static synchroni zed set(long x)
{unsafe = x;}

public /*not static*/ void foo(long x)
{ 1I...
set (x);

Lock the extra doors

3. Encapsulate all st at i c fields in an inner

class and provide exclusive access through

synchroni zed methods of the inner class.
cl ass” Ckay

{ wprivate static class Class_Variables
{ private long unsafe;
public synchroni zed void do_sonet hi ng(l ong x)
{ wunsafe = x; //.
}
}

static Class_Variables statics =

new Cl ass_Vari abl es();

public foo(long x)
{ statics.do_sonething(x);
}

}

Singletons (one-of-a-kind objects)

« Singletons often use critical sections for

initialization.
public final class Singleton
{ static
{ new JDK_11_unl oadi ng_bug_fi x(Si ngl et on. cl ass)

private static Singleton instance;
private Singleton(){} // prevent creation by new

public synchronized static Singleton instance()
{ if(instance == null)
instance = new Singleton();
return instance;

}

Singleton s = Singleton.instance()

Avoiding sychronization in a singleton by
using static

* A degraded case, avoids synchronization.

public final class Singleton

{ static
{ new JDK_11_unl oadi ng_bug_fi x(Si ngl eton. cl ass);
private Singleton(){}

private static final Singleton instance

= new Singleton();

public
/*unsynchroni zed*/ static Singleton instance()
{ return instance;
}
}

Or alternatively...

* Thread safe because VM loads only one class at a
time and method can’t be called until class is fully
loaded and initialized.

+ No way to control constructor arguments at run time.

public final class Singleton
{ private static Singleton instance;
private Singleton(){}

static{ instance = new Singleton(); }

public static Singleton instance()
{ return instance;

}
}

Tamina Java Threads. (c) 2002 Allen | Holub <www.holub.com> 9

While we're on the subject...

public class JDK_11_unl oadi ng_bug_fix
{ public JDK 11_unl oadi ng_bug_fix(final C ass keep)
{ if (SystemgetProperty("java.version")
.startsWth("1.1"))
{ Thread t = new Thread()
{ public void run()
{ dass singleton_class = keep;
synchroni zed(t hi s)
{ try{ wait():} ,
catch(InterruptedException e){}
} In the 1.1 JDK™ All
H objects not accessible
t.setDaemon(true); viaalocal-variable or
t.start(); argument were subject to
} garbage collection

-

03/06/2003

Condition variables

« All objects have a "condition variable" in
addition to a mutex.

— A thread blocks on a condition variable until
the condition becomes true.

— In the Java™ environment, conditions are
"pulsed" — condition reverts to false
immediately after waiting threads are
released.

e wait() andnoti fy() use this condition
variable.

wai t and noti fy have problems.

Implicit condition variables don't stay set!

— A thread that comes along after the noti fy() has
been issued blocks until the next noti fy().

e wait(tinmeout) does not tell you if it returned
because of a timeout or because the wait was
satisfied (hard to solve).

* There's no way to test state before waiting.

e wai t () releases only one monitor, not all
monitors that were acquired along the way
(nested monitor lockout).

Not i f yi ng_queue():
wai t (),notify(), and spin locks

class Notifying_queue
{ private static final queue_size = 10;

private Qbject[] queue = new (bj ect [queue_si ze];
private int head = 0;
private int tail =0

public void synchroni zed enqueue(bject item)
{ queue[++head % queue_size] = item
) this.notify();
Fubl ic oject synchroni zed dequeue()
try

{ while(head == tail) //<-- MJUST BE A WH LE
this.wait(); 11 (NOT AN | F)

}
catch(InterruptedException e)
{ return null; // wait abandoned

return queue[++tail % queue_size |;

}
Condition variables. wait is not Condition variables. wait is not
atomic (1) atomic (2)

Tt Ti
synchronized enoguedse], . .| this, i e, acquing] 1; synchronized enoguessed, . .|} this, e, acauing); T3
{ el i =

this,noityl; thits. condition ser_re) this,noxityll; ... Ehis comdition.sen_imge) _l_
Eo i i _ this.mutex.roleas| |; _ this.mutex.rolesse||;
aynchronized degquesiey, , .| ._. this, mules sacguine])] aymchronizad daguesied, . .| . this,mules acsguine]);

i
whyiba| hadd =8 ajl | wltilif Praacleegail) whibe| g == tail | vl Iyaaclssgail)
Ehiswait{); i, = ehEswait{l; & FnLl=y, Feleasai)
true| s.oondeion.wait_for_true)
rurel)
| a. e TFUE PO Pt iz] | SO L Lo L TLE L

Tamina Java Threads. (c) 2002 Allen | Holub <www.holub.com>

10

Condition variables. wait is not
atomic (3)

T

synchronized anguews], . .} __ ihis.mulex acquine); T2

e ——

this.mutex.roleaso| |

aymchronized doguetied, . .| ._. this, mulex seguine]);
whiile] Foaded =n il | wattilind bl mmyal)
i) . (RS LS R, PRl R
this.oondei

Hhis. rmusbe.

b imsian s TS UL rel e |

03/06/2003

Condition variables. wait is not
atomic (4)

synchronized enguewsd, . |} _ ihis.mi

this.notifyll
this.mutex.releaso|f;
symchronizad daguesie], . .| ._ this, e acsgiine]);
whibs] hadad = Lail | e I —
e wmit); . S TS, Pl g ai)
this.condgio t for_true(]
i s.mube. 3| 4
| S L L L L L

Condition variables. wait is not
atomic (5)

synchironized enoueine], | s, muiex. acquine] 1 ™

{
ihils, oyl ehis comndition s er_inged)
. i i

aynichronized degquesiey, . .| .. this, mule acguine]);

{
whibe] Friseed = Ll |
L

Summarizing wai t () behavior

e wai t () doesn't return until the notifying
thread gives up the lock.

« A condition tested before entering awai t ()
may not be true after the wai t is satisfied.

» There is no way to distinguish a timeout
fromanotify().

Visibility

» Changes made by a CPU are not
transferred from cache to the main memory
store immediately.

It may take time for a change made by one
thread to become visible to another thread
— Threads are running on different processors.

e The order in which changes become visible

are not always the order in which the
changes are made.

Beware of symmetric multi-processing
(SMP) environments

e The CPU does not access memory directly.

* CPU read/write requests are given to a “memory
unit,” which actually controls the movement (at the
hardware level) of data between the CPU and main
memory store.

Tamina Java Threads. (c) 2002 Allen | Holub <www.holub.com>

11

03/06/2003

Some common memory operations are
inefficient

* Processors supporting a “relaxed memory model”
can transfer blocks of memory between cache and
the main memory store in undefined order!

* Consider:
int a[] = newint[10];
int b[] = new int[10];
for(int i =0; i < a.length; ++)
b[i] = a[i];

|CPU1 I—i‘lVVb[n]Fa[n] Mb[l]lRall] Mb[o] Pa[Ol I—"l MUL |—
memory

Presto Chango!

* The memory unit notices the inefficiency and rearranges
the requests!

|CPU1 |_+Nb[n]l‘Nh[1]Mb[OiRa{n] |Ra[1] |Ra[0] I_"'I MUl

e Toproduce:

|CPU1|—1-| Wb[0..n] | Ral[0..n] |—1-|MU1

« This change is good—it speeds memory access.

BUT...

e The order in which changes are
made in the source code may not be
preserved at run time!

e The order in which changes are
made may not be the order in which
those changes are reflected in main
memory.

Don’t Panic

* Reordering doesn’t matter in single-threaded
systems.

« Reordering not permitted across “memory barriers”
(effectively inserted around synchr oni zed

access).

W rwlwlr
wiwrrjwlr

Memory barriers are created indirectly by
synchronization

e synchroni zed is implemented using a memory
barrier
— so madifications made within a synchr oni zed
block will not move outside that block.

Write a zero value to
release the mutex

Atomic test/set to acquire
mutex. (Loop, testing
value, set if nonzero.)

Avoiding synchronization
(revisited)

¢ You cannot use vol ati | e fields (e.g. bool ean)
to guard other code.

class | _wont_work
{ private volatile boolean okay = false;

private |ong field= -1;

...
public /*not synchronized*/ voig wont_work()
{ if(okay)
{ do sonething(field); Might be —1.
}

E)ubl ic /*not synchronized*/ void enabl e()
{ okay = false;

field = 0;

okay = true;

Tamina Java Threads. (c) 2002 Allen | Holub <www.holub.com>

12

Even worse

* Memory modifications made in the
constructor may not be visible, even though
the object is accessible!

class Surprise Modification ofs might

{ public long field; become visible before
... modification off i el d if
public Surprise() memory unit rearranges
{ field = -1; operations.

}
} Holds even iffi el dis
i 1
Thread 1: final!

Surprise s = new Surprise();

Thread 2:
Systemout.println(s.field);

03/06/2003

Synchronization can fix things

e This works
Obj ect lock = new oject();

Thread 1:
synchroni zed(|ock)
{ Surprised s = new Surprised();

Thread 2:
synchroni zed(|ock)
{ Systemout.println(s.get_field());
}

The Memory Unit doesn’t know the
word “subroutine.”

« All code between read/write requests are
subject to reordering, whether or not they
are called from a subroutine.

Double-checked locking doesn’t work!

* Is unreliable even in single-CPU machine.

public final class Singleton
static{ new JDK_ 11 unl oadi ng_bug_fix(Std.class); }

private static Singleton instance;
private Singleton(){} /1 prevent creation by new

public static Singleton instance()
{ if(instance == null)
{ synchronized(Singleton.class)
{ if(instance == null)
instance = new Singleton();

}

return instance;

This doesn’t work

cl ass Broken_singleton

public static Singleton instance()

{ if(instance == null)
{ synchronized(Singleton.class)
{ if(instance == null)
Singleton tnp = new Singleton();
instance = tnp;
}
}
return instance;
}

}

This doesn’t work either

class Still_broken_singleton

public static Singleton instance()
{ if(instance == null)
{ synchronized(Singleton.class)
{ if(instance == null)
% instance = factory();

return instance;

/}/ Synchroni zing the follow ng subroutine does
// not affect the incorrect behavior.
private void Singleton factory()
{ return new Singleton();
}
}

Tamina Java Threads. (c) 2002 Allen | Holub <www.holub.com>

13

03/06/2003

“Rules to live by” in an SMP environment “Rules to live by” in an SMP environment
(gotchas) (things that work)
* To assure that shared memory is visible to two « Modifications made by a thread before it issues a
threads: the writing thread must give up a lock noti fy() will be visible to the thread that's
mat IZ subsequently acquired by the reading released from the associated wai t () .
read.

Modifications made by a thread that terminates

* Modifications made while sleeping may not be are visible to a thread that joins the terminated
visible after sl eep() returns. thread. [must callj oi n()]

* Operations are not necessarily executed in
source-code order (not relevant
if code is synchronized.)

Memory initialized in a st at i ¢ initializer is

safely accessible by all threads, including

the one that caused the class-ile load.

e ?7?7? Modifications to memory made after a thread
is created, but before it is started, may not be
visible to the new thread.

A few articles on SMP Problems (D:Sadka' The simplest scenario
* Paul Jakubik (ObjectSpace): » Two or more threads, all waiting for each
www.primenet.com/~jakubik/mpsafe/ other.
MultiprocessorSafepdf
« Bill Pugh (Univ. of Maryland) mailing list: * Threads trying to acquire multiple locks, but
www.cs.umd. edu/~pugh/java/memoryModel/ in different order.
* Allen Holub:
www javaworld.com/javaworld/jw-02- 2001/
jw-0209-toolbox.html
* Brian Goetz:
www.javaworld.com/javaworld/jw02- 2001/
jw-0209-double.html
Deadlock: The simplest scenario Deadlock: The simplest scenario

(2) (3)

double fEaldl; dbject Bookl = nae Objeciil: 79 daibln Finldl: Obdect ookl naw DRjacti): T ¥R
doubls TEmldE ;- Ohy ookl = pew Objecidl: doubla Tinldl: Chisct lock? = g Obfact ()

pablic wadd pasbilead) pablic wold pebbias)

] mynchronizsd {iock1} | Cialdl a: |] wymohroninedi ookl Flakdl B

]]

pahlic weld baskami) pablio wold haabasd)

[} Eynchronized{ lockl || fialds a: g [Eyncircnizedi ook Flakdd B

A 1p

" hrcn dzed [1ok 1)
i Fleld o= Tieldl

Tamina Java Threads. (c) 2002 Allen | Holub <www.holub.com> 14

03/06/2003

Deadlock: A more-realistic scenario

class Boss 1.Thread 1 (Alfred) calls

{ private Sidekick robin batman.to_the_bat_cave();
Alfred now has the lock on
batman.

synchroni zed void to_the_bat_cave() 2 Thread 1 is preempted just
{ e preempt before calling lets_go().
robin.lets_go()

} 3.Thread 2 (Joker) calls
report robin.sock_bam(). Joker now
has the lock on robin.

}

class Sidekick) 4.Robin tries to report() to

{ private Boss batman; batman (on thread 2), but

Tets. go can't because Alfred has the

synchroni zed void suck:han() lock. Joker is blocked.
{ batman.report("Ouch!"); 5.Thread 1 wakes up, tries to
} call lets_go(), but can't

Boss batman = new Boss(); because Joker

Sidekick robin = new Sidekick(batman); has thelock.

bat man. set _si de_kick(robin);

Nested-monitor lockout

« Can happen any time you call a method that can block

from any synchronized method.

» Consider the following (I've removed exception handling):

cl ass Bl ack_hol e
{ private InputStreaminput =
new Socket (" ww. hol ub. cont', 80)
.getlnputStreant);
public synchronized int read()
{ return input.read();

public synchroni zed void close()
{ input.close();

}
! How do you close the socket?

Nested-monitor lockout: another
example

« The notifying queue blocks if you try to dequeue from an
empty queue

class Bl ack_hol e2
{ Notifying_queue queue =
new Noti fying_queue();

public synchronized void put(Object thing)
{ queue. enqueue(thing);

public synchroni zed Object get()
{ return queue. dequeue();

}

Why was st op() deprecated?

¢ NT leaves DLLs (including some system
DLLs) in an unstable state when threads
are stopped externally.

e st op() causes all monitors held by that
thread to be released,

— but thread may be stopped half way
through modifying an object, and

— other threads can access the partially
modified (now unlocked) object

Why was stop() deprecated (2)?

» The only way to safely terminate a thread is
forrun() to return normally.

» Code written to depend on an external
st op() will have to be rewritten to use
interrupted()orislinterrupted().

interrupt(),don’tstop()

class Wong q ass Right
{ private Thread t = {| private Thread t =
new Thread() new Thread()
{ public void run() { PUEHC void run()
: Ty
((M;ﬂ/lll'e‘(true) { while(!islnterrupted())
bl ocki ng_cal I (); {1

bl ot‘:l‘<i‘ ng_cal | ();
}

}catch(InterruptedException e)

pgl;ﬂic stop() {/*ignore, stop request*/}
{ t.stop(); }_)
} } phblic stop()

{t.interrupt();}

}

« But there’s no safe way to stop a thread
that doesn’t check the “interrupted” flag.

Tamina Java Threads. (c) 2002 Allen | Holub <www.holub.com>

15

nt errupt () gotchas

i nt errupt () works well only with the methods of
the Thr ead and Qbj ect classes

—wait(), sleep(),join(), etc.
— Itthrows an | nt err upt edExcepti on
« Everywhere else i nt er rupt () just sets a flag.

— You have to test the flag manually all over the place.
— Calling i nterrupted() clearsthe flag.

— Calling i sl nterrupted() doesn'tclear the flag!

« lItis not possible to interrupt out of a blocking 1/0
operation like read() .

— Would leave the stream in an undefined state.
— Use the classes in java. nio whenever possible.

03/06/2003

Why were suspend() and resune()

deprecated?

* The suspend() method does not release the lock

class Wong

{ public synchronized
voi d take_a_nap()
{ suspend();

public synchroni zed
void wake_up()
{ resume();

Once a thread has entered
take_a_nap(), all other
threads will block on a call
towake_up(). (Someone
has gone into the bathroom,
locked the door, and fallen
into a drug-induced coma)

d ass Ri ght
{ public synchroni zed
voi d take_a_nap()
{ try
{ wai t () ;
}

catch(InterruptedException e)
{/*do sonet hing reasonabl e*/}
}
public synchroni zed
voi d wake_up()
{ notify();
}

}
The lock is released

by wai t () before the
hread is suspended.

The big-picture coding issues

Design-to-coding ratio is 10:1 in threaded systems.
Formal code inspection or pair programming is essential.
Debugging multithreaded code takes longer.

— Bugs are usually timing related.

It's not possible to fully debug multithreaded

code in a visual debugger.

— Instrumented JVMs cannot find all the problems
because they change timing.

— Classic Heisenberg uncertainty: observing the process
impacts the process.

Complexity can be reduced with architectural solutions
(e.g. Active Objects).

Given that the best solution isn’t
finding a new profession...

* Low-level solutions (rollyour-own
semaphores)

— I'll look at a few of the simpler classes
covered in depth in Taming Java Threads.

— My intent is to give you a feel for
multithreaded programming, not to provide
an exhaustive toolkit.

< Architectural solutions (active objects, etc).

Roll your own (A Catalog)

e Exclusion Semaphore (mutex)

— Only one thread can own at one time.

— Roll-your-own version can contain a timeout.
» Condition Variable

— Wait while condition false.

— Roll-your-own version can have state.
e Counting Semaphore

— Control pool of resources.

— Blocks if resource is unavailable.

Roll your own (2)

¢ Message Queues (interthread communication)

— Thread blocks (with wait/notify) until a message is
enqueued.

— Typically, only thread per queue.
e Thread Pools
— A group of dormant threads wait for something to do.
— A thread activates to perform an arbitrary task.
e Timers
— Allow operation to be performed at regular intervals
« Block until a predetermined time interval has elapsed
* Block until a predetermined time arrives.

Tamina Java Threads. (c) 2002 Allen | Holub <www.holub.com>

16

03/06/2003

Roll your own (3)

* Reader/Writer Locks
— Allow thread-safe access to global resources
such as files:
» Must acquire the lock to access a resource
« Writing threads are blocked while a read or
write operation is in progress

« Reading threads are blocked only while a
write operation is in progress. Simultaneous
reads are okay

Threads from an OO perspective

* Think messages, not functions

 Synchronous messages—handler doesn't return
until it's done doing whatever sender requests

» Asynchronous messages—handler returns
immediately. Meanwhile request is processed in
the background.

Tool ki t . get Defaul t Tool kit (). getlmage(some_URL) ;

The Java™-language threading
model is not OO

« No language-level support for asynchronous
messaging.

e Threading system is based entirely on
procedural notions of control flow.

« Deriving from Thr ead is misleading

— Novice programmers think that all methods of
a class that extends Thr ead run on that
thread, when in reality, the only methods that
run on a thread are methods that are called
either directly or indirectly by run() .

Implementing asynchronous methods —one
thread per method

cl ass Recei ver
{
publi c asynch_net hod()
{ new Thread()
{ public void run()
{ synchroni zed(Receiver.this)
{ // Make local copies of
/| outer-class fields here.

/1 Code here doesn't access outer
/'l class (or uses only constants).

}
}.start();

A more realistic one-thread-per-
method example

/1 This class denpnstrates an asynchronous flush of a
/1 buffer to an arbitrary output stream

class Flush_exanpl e
{ public interface Error_handl er
{ void error(|COException e);
}
private final QutputStream out;
private final Reader_witer |ock =
new Reader_writer();
private byte[] buffer;
private int | engt h;

public Flush_exanpl e(QutputStream out)
{ this.out = out;

}

A more realistic one-thread-per-
method example

synchroni zed void flush(final Error_handler handler)
{ new Thread() /1 CQuter object is |ocked
{ byte[] copy; /1 while initializer runs.
{ copy = new byte[Flush_exanple.this.length];
System arraycopy(Fl ush_exanple.this.buffer,
0, copy, O, Flush_exanple.this.length]);
Fl ush_exanple.this.length = 0;

public void run() /1 Lock is released
{ try /1 when run executes
{ | ock. request _write();
out.wite(copy, 0, copy.length);

}
catch(| OException e){ handler.error(e); }
finally{ lock.wite_acconplished(); }

}.start();
}
}

Tamina Java Threads. (c) 2002 Allen | Holub <www.holub.com>

17

Problems with one-thread-per-
method strategy

It is a worse-case synchronization scenario.

— Many threads all access the same outer-class
object simultaneously

— Since synchronization is required, all but one of
the threads are typically blocked, waiting to
access the object.

» Thread-creation overhead can be stiff:
Create String = .0040 ms.
Create Thread .0491 ms.
Create & start Thread .8021 ms. (NT 4.0, 600MHz)

03/06/2003

Use Thread Pools

e The real version:
— Grows from the initial size to a specified maximum if
necessary.
— Shrinks back down to original size when extra threads
aren’t needed
— Supports a “lazy” close.

public final class Sinplified_Thread_pool
{ oprivate Object startup_lock = new Object();
private final Bl ocking_queue pool
= new Bl ocki ng_queue();

Implementing a simple thread pool

public Sinplified_Thread_pool (int pool _size)
{ synchronized(startup_|ock)
{ while(--pool_size >= 0)
new Pool ed_thread().start();
}

}

public synchronized void execute(Runnabl e action)
{ pool.enqueue(action);

}

public synchronized void close()
{ pool.close();

}

Implementing a simple thread pool

private final class Pooled_thread extends Thread
{ public void run()

synchroni zed(startup_| ock)

{}

try

{ while(!islnterrupted())

((Runnabl e) pool . dequeue()).run();
}

catch(lnterruptedException e){/* ignore */}

cat ch(Bl ocki ng_queue. Cl osed e){/* ignore */}

cat ch(Throwabl e e)

{ /1 handl e unexpected error gracefully...
e.printStackTrace();

}

The Active Object design pattern

» An architectural solution to threading
synchronization.

» Asynchronous requests are executed serially
on a thread created for that purpose.
* Think Tasks

— An I/O task, for example, accepts asynchronous
read requests to a single file and executes them
serially.

— Message-oriented Middleware (MQS, Tibco ...)
— Ada and Intel RMX (circa 1979)

A generalized active object

« The solution can be generalized in the Java
programming language like this:
dequeue() blocks
BARD (using wait/notify)
until there’s
_ something to get.
1 oy guew | v

woid mewwagm |
| queue eroenes
i e porraaledi
| puilic weid raadi
177 da mck becw

Tamina Java Threads. (c) 2002 Allen | Holub <www.holub.com>

18

03/06/2003

The j avax. swi ng. * thread is an active object Implementing Active Object
i . i i public class Active_object extends Thread

* Swing/AWT uses it's own thread to handle the incoming { private Notifying queue requests

OSAevel messages and to dispatch appropriate = new Notifyi ng_queue();

notifications to listeners. public Active_object(){ setDaenon(true); }
« Swing is not thread safe. ?”bt' :; void run()
* The Swing subsystem is effectively a “Ul task” to which { Runnabl e to_do;

you enqueue requests: whi | e((to_do=(Runnabl e) (

requests. dequeue()))!= null)
. o . { to_do.run();
Swi ngUtilities.invokeLater // enqueue a request to_do = null; vyield();
(new Runnabl e()
{ public void run()

}
! . }catch(InterruptedException e){}
{ sone_w ndow. set Si ze(200, 100); }

} public final void dispatch(Runnabl e operation)
) { requests.enqueue(operation);
}

35

Using an active object (detangling UNIX™ ;
console output) Summing up
class Console
{ private static Active_object dispatcher
= new Active_object();
static{ dispatcher.start(); }
private Console(){}

« Java™danguage threads are not platform
independent—they can't be.

* You have to worry about threads, like it or not

— GUI code is multithreaded
. — No telling where your code will be used in the future
public static void printin(final String s)
{ dispatcher.dispatch

(new Runnabl e()

{ public void run()
{ System out.println(s);

}

* Programming threads is neither easy nor intuitive.

* synchroni zed is your friend. Grit your teeth and
useit.

* Supplement language-level primitives to do real work.
* The threading system isn’t object oriented.
« Use good architecture, not semaphores.

In-depth coverage and code

For in-depth coverage, see Taming
Java™ Threads (www.apress.com)

For source code, these slides, etc., go to
my web page
www.holub.com

These notes © 2003, Allen I. Holub. All rights reserved.
These notes may not be redistributed.
These nates may nathe by any means withaut the written

permission of the author, except that you may print them for your personal use.

Tamina Java Threads. (c) 2002 Allen | Holub <www.holub.com> 19

