

www.holub.com

© 2010, Allen I. Holub. All Rights Reserved. 1

©2010, Allen I. Holub

www.holub.com

1

Allen I. Holub
Holub Associates

www.holub.com
allen@holub.com

Implementing
Secure Login

in AJAX

©2010, Allen I. Holub

www.holub.com

2

The Basic Principle

•  Never send
(or store) a
password in
the clear.
– And that means

never.
– No exceptions.
– Ever.
– Period.
–  I mean it!

©2010, Allen I. Holub

www.holub.com

3

The Laws of Physics (1)

I.  Same-Origin Policy (SOP)
A.  JavaScript code may access only that code (or

data) that was loaded from the same domain.
(“Same-origin policy”).

1.  Protocol (http/https) and domain name must match.
2.  Subdomains are not in the same domain as parent.

B.  Code from the same domain may access all
code from that domain, even if it’s in another
window (iFrame or top-level window).

www.holub.com

© 2010, Allen I. Holub. All Rights Reserved. 2

©2010, Allen I. Holub

www.holub.com

4

The Laws of Physics (2)

II.  HTTPS (HTTP over SSL) follows SOP
A.  Since https: and http: are different protocols, code

loaded with one protocol cannot access code loaded with
the other.

1.  Even if they come from the same domain.
B.  Pages loaded using https cannot include content loaded

via http, and vice versa.
1.  Use relative links. Pages served via https shouldn‘t contain

2.  A page served via http: cannot make an https: AJAX

request (to protect a password during login, for example)
3.  Some browsers (Firefox) don’t enforce this rule, but they all

should.
4.  Some browsers (IE) enforce this rule too strictly.

•  IE won’t let you use a different protocol to access an
image that’s in a different domain, even though that’s
harmless.

©2010, Allen I. Holub

www.holub.com

5

HTTPS Caching

•  HTTPS CONTENT MAY NOT BE CACHED!
–  by Firefox, Opera, or Chrome.
–  Is cached by IE.

•  In HTTP response header
HTTP/1.1 200 OK!
...
Cache-Control: max-age=3600, must-revalidate  
Expires: Fri, 30 Oct 1998 14:19:41 GMT  
Last-Modified: Mon, 29 Jun 1998 02:28:12 GMT  
...

–  public always cache
–  must-revalidate pay attention to my rules
–  no-cache server must revalidate before releasing cached version
–  no-store never cache

•  Pragma: no-cache not reliable!

•  Caching Tutorial at: http://www.mnot.net/cache_docs/

©2010, Allen I. Holub

www.holub.com

6

Cookies

•  Cookies are client-side data associated with a domain.
–  Subdomains are considered to be different domains than parent
–  Protocol doesn‘t matter.

•  This is bad (see Laws of Physics II.B): A session ID sent during
login under https should not be sent with an image request (under
http) to the same domain.

•  Browser sends all of the domains’ cookies to server
with every request for content from that domain.
–  You can’t suppress this behavior.

•  A page can access only those cookies that are
associated with that page’s origin domain.
–  You can tell the browser to make main-domain cookies

available to subdomains, (using a “domain” attribute) but you
shouldn’t.

www.holub.com

© 2010, Allen I. Holub. All Rights Reserved. 3

©2010, Allen I. Holub

www.holub.com

7

Cookies and Passwords

•  Never store an unencrypted password in a
cookie…
– Cookies are passed with all HTTP requests,

including <img…>.

•  … unless the cookie is attached to a domain
(or subdomain) that is always accessed
using SSL.
– Your server must reject all http (no ‘s’)

requests that access the secure (sub)domain…
– … or redirect all insecure access using http

©2010, Allen I. Holub

www.holub.com

8

Passwords on the Server

•  Never store an unencrypted password on
the server.
– You don’t want a hacker who manages to get

into your database to get your user’s password.
– Users might use the same password for their

bank as they do for your site.
•  You’re probably legally liable if a hacker steals a

password from your site and then uses it to drain your
customer’s bank account.

©2010, Allen I. Holub

www.holub.com

9

Not Your Dad’s Hash Algorithm

•  A “cryptographically secure one-way hash”
is central to password management.
– Distills arbitrary input into a largish number

(e.g. 128 bits).
– Think of it as a “fingerprint.”
– Unique for a given input.
– Cannot be converted back to original input.
– Can be recreated, given original input.
– MD-4, MD-5, SHA-1, BCrypt, etc.

•  Store hashes, not passwords.

www.holub.com

© 2010, Allen I. Holub. All Rights Reserved. 4

©2010, Allen I. Holub

www.holub.com

10

Salt

•  Passwords should be “salted” before hashing.
–  Salt == a random number mixed into the hash.

•  Without salt, two identical passwords will hash to
the same value.

•  Protects against “Dictionary” and “Rainbow Table”
attacks.
–  Create a list of common (dictionary) or all possible

(Rainbow) passwords.
–  Hash them, and put the plain-text/hashed-text pairs in a

table.
–  To attack, get a hashed value from the database and look

it up in your table.
–  Attack won’t work if passwords are randomized using salt.

©2010, Allen I. Holub

www.holub.com

11

Hashing with Java APIs

•  Over Complicated

byte[] salt = new byte[]{ (byte)0x3a, (byte)0x44,

 ... , (byte)0x31 };

int iterations = 1000; // should be >= 1000

char[] password = getPasswordFromUser();
PBEKeySpec spec = new PBEKeySpec(

 password, salt, iterations);
SecretKeyFactor factory =
 SecretKeyFactory.getInstance(“PBEWithMD5AndDES”);

SecretKey key = factory.generateSecret(spec);
Cipher c = Cipher.getInstance(“PBEWithMD5AndDES”);
byte[] hashedValue = c.doFinal(plaintext);

©2010, Allen I. Holub

www.holub.com

12

BCrypt

•  “Blowfish” based password encryption.
•  http://www.mindrot.org/projects/jBCrypt/
!
String hashed = BCrypt.hashpw( 

! ! ! !password, BCrypt.gensalt());!
!//...!

if(BCrypt.checkpw(candidate, hashed))  
!// candidate matches  

!
public static boolean checkpw( 

! !String plaintext, String hashed)  
{ !return hashed.compareTo( 

! !hashpw(plaintext, hashed)) == 0;!
! !!
! !// note: salt is stored in the hashed value!
! !// produced by earlier hashpw() call.  
}!

www.holub.com

© 2010, Allen I. Holub. All Rights Reserved. 5

©2010, Allen I. Holub

www.holub.com

13

Digression: Java Security Note

•  Storing a password in a String is
dangerous.
– The String remains in memory until it’s garbage

collected.
– The String might remain in the virtual-memory

swap file for months.

•  It’s better to use a byte[], and then
explicitly load the array with zeros when
you’re done with it.

•  Doesn’t solve the problem entirely.

©2010, Allen I. Holub

www.holub.com

14

Create A Password

•  Store the hashed
password in the
database, indexed
by username.

©2010, Allen I. Holub

www.holub.com

15

Verify With The Hashed Password

•  Hash the password
you get from the
browser.

•  Compare the
hashed password
from the browser
with the hashed
password in the
database.

www.holub.com

© 2010, Allen I. Holub. All Rights Reserved. 6

©2010, Allen I. Holub

www.holub.com

16

Page Structure:

•  Insecure page holds a secure iframe.
–  Iframe has a different cookie namespace than the

main page

 <html> <!-- http://www.holub.com/index.html -->
 …
 <body>
 <iframe src=‘https://secure.holub.com/loginPanel.html’>
 </iframe> …
 Unprotected content goes here.
 </body>

©2010, Allen I. Holub

www.holub.com

17

Full Login Sequence

©2010, Allen I. Holub

www.holub.com

18

Remain Logged In

www.holub.com

© 2010, Allen I. Holub. All Rights Reserved. 7

©2010, Allen I. Holub

www.holub.com

19

Passing the Token

•  Beware “Cross site request forgery:”
–  If all your AJAX requests are encoded in the URL,
– Bad guy sends you email containing:
<img src=“http://me.com/ajax?doSomething” 
! !width="1" height="1" border="0">

–  If that person has logged into your system, and
has a login token in a cookie, that cookie is sent
with the AJAX request.

•  Put the login tokens into the body of a POST
– Simply using a POST, without token in message

body, doesn’t fix the problem.

©2010, Allen I. Holub

www.holub.com

20

Other Issues

•  The token should be both long enough and random
enough to repel a brute-force attack.

•  The login token can be used as a session key (or
not).
–  Don’t use the hashed password as the token.

•  A hacker who had compromised the database would
effectively have your password, in that case.

•  Replacing the token with each login is probably
unnecessary, but it makes the page safer.

•  Destroy the token on both the client and server
when you log off.

•  Never store the token in a cookie in the insecure
domain.

©2010, Allen I. Holub

www.holub.com

21

Inter-frame Communication

www.holub.com

© 2010, Allen I. Holub. All Rights Reserved. 8

©2010, Allen I. Holub

www.holub.com

22

The Problem

•  According to the Laws Of Physics:
– Code in a frame that comes from one domain

(e.g. the login panel loaded from the secure
domain)

– Cannot talk to to code that is loaded from a
different domain (e.g. the main page that holds
the login panel).

©2010, Allen I. Holub

www.holub.com

23

What Doesn’t Work

•  postMessage()
–  Okay in Firefox.
–  Goes only from parent to child in Safari.
–  Doesn’t work at all in IE, which has nonstandard call.

•  One frame modifies the “hash” in the URL, and the
other frame polls to see when the hash changes.
–  Modifying the hash doesn’t cause a reload, but
–  Polling is very inefficient, and
–  Doesn’t work with AJAX systems that use the hash to

manage the back button (e.g. GWT).

©2010, Allen I. Holub

www.holub.com

24

What Does Work

•  Pages can only
talk to other
pages from the
same domain,

•  But all pages
from a given
domain can talk
to each other,

•  And pages can
create iframes
that load from
any domain.

www.holub.com

© 2010, Allen I. Holub. All Rights Reserved. 9

©2010, Allen I. Holub

www.holub.com

25

The Direct Login Pattern

©2010, Allen I. Holub

www.holub.com

26

History

•  Written up in Michael Mahemoff’s Ajax
Design Patterns (O’Reilly, 2006).
– http://ajaxpatterns.org/Direct_Login

•  The “pattern” was “invented” by James Dam
– Example at:

 http://www.jamesdam.com/ajax_login/login.html

•  Direct Login is just the very first step of the
Kerberos Protocol.

©2010, Allen I. Holub

www.holub.com

27

When (Not) To Use It

•  The pattern does nothing but get the password
across the network in a way that it can’t be seen.

•  Good for personalization, etc. E.g.

–  page layout preferences,

–  search preferences,

–  the last issue of a newletter/blog that you read,

–  etc.

•  Do not use if any sensitive information is on the
web page that you serve after login completes!

www.holub.com

© 2010, Allen I. Holub. All Rights Reserved. 10

©2010, Allen I. Holub

www.holub.com

28

Pluses and Minuses

✔ Does not require https/ssl
✔ Fast
✔ Convenient
✖ Protects password, but nothing else.

– Susceptible to man-in-the-middle for page access
(but password is not revealed)

✖ Susceptible to brute-force attacks.
– Add delay after N login attempts.
– Email admin when too many logins attempted.
– Use a long and random seed.

©2010, Allen I. Holub

www.holub.com

29

Requires Secure “Hash” on Client

•  SHA-1 and MD-5 are vulnerable!

•  Use SHA-2 (SHA-256).
•  Many JavaScript versions:

•  http://jssha.sourceforge.net/
•  http://www.movable-type.co.uk/scripts/sha256.html
•  http://code.google.com/p/crypto-js/
•  Etc.

•  SHA-384, SHA-512, more secure than needed.
•  Java versions easy come by

©2010, Allen I. Holub

www.holub.com

30

Direct Login Protocol

www.holub.com

© 2010, Allen I. Holub. All Rights Reserved. 11

©2010, Allen I. Holub

www.holub.com

31

Issues

•  Seeds (S) must be used only once!
•  Verify any seeds that are sent by the

browser to the server.
•  Seed must be reasonably unique.
•  Seed could be stored in the server-side

session rather than being passed back.
– But it’s not worth the trouble: it’s already been

passed in plain text.

©2010, Allen I. Holub

www.holub.com

32

Vulnerabilities

•  Eve has:
–  The seed
–  The double-hashed password

•  Eve can’t:
–  Figure out the password
–  Look up the hashed password if the database is compromised

•  Eve can:
–  Stage a man-in-the-middle attack and log in as you exactly

once.
•  Threat is minimized if seed has a short lifetime (issued by

AJAX request as part of login process)
•  Can’t do much damage: you should only be using Direct

Login to remember page layout, etc.

©2010, Allen I. Holub

www.holub.com

33

Example

•  For an example, see:
 http://www.jamesdam.com/ajax_login/login.html

•  Example uses MySQL and PHP
•  He doesn’t seed the password hash stored in the

database.
–  So his code is vulnerable to dictionary/rainbow attack.
!

www.holub.com

© 2010, Allen I. Holub. All Rights Reserved. 12

©2010, Allen I. Holub

www.holub.com

34

Q&A

Allen Holub
www.holub.com

