
Holub
Holub

onPatterns
Learning Design Patterns
by Looking at Code

CYAN
MAGENTA

YELLOW
BLACK
PANTONE 123 CV

this print for content only—size & color not accurate 7" x 9-1/4" / CASEBOUND / MALLOY
(0.8125 INCH BULK -- 432 pages -- 60# Thor)

THE EXPERT’S VOICE® IN SOFTWARE ENGINEERING

Allen Holub

Holub on
Patterns
Learning Design Patterns by Looking at Code

Learn design patterns by seeing them used in real programs.

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Holub on Patterns:
Learning Design Patterns by Looking at Code
Dear Reader,

To be a good object-oriented designer, you have to know the design patterns
cold, not just what they are but how to apply them to solve real problems. Most
books on the subject leave you in the lurch in the how-to-apply-patterns
department, however. They catalog the patterns for you but provide trivial
examples that give you no real understanding of how the patterns work in the
real world. Their examples don’t show you the complex interactions between
patterns or the myriad ways that a pattern can be realized. Too many of the pat-
tern books are filled with impenetrable academic prose that doesn’t make the
subject any easier.

I wrote this book to fix these problems. I’m a programmer, and I’ve written
the book for programmers to read, centering the discussion around two non-
trivial examples: a Game of Life implementation and a small embedded SQL
interpreter. Taken together, these programs show you all the “Gang of Four”
design patterns in context. You can see how the patterns work and how they
interact. You can see how they’re actually used in nontrivial applications. I also
discuss object-oriented-programming principles and how they apply to the
patterns so that you can understand why the patterns do what they do. The
book also includes a design-patterns quick reference that you can use to refresh
you memory as you learn the patterns.

You don’t need to know anything about design patterns to read this book
(though you do need to know Java). When you’re done, you should understand
the patterns thoroughly and be able to apply them to your own work with ease.

—Allen Holub

Author of

Taming Java Threads

Compiler Design in C

Shelve in
Software Engineering
(Design Patterns)/Java

User level:
Intermediate–Advanced

www.apress.com

ISBN 1-59059-388-X

9 781590 5938826 89253 15880 7

RELATED TITLES

Fast Track UML 2.0
1-59059-320-0

User Interface Design
For Programmers

1-893115-94-1

Joel on Software
1-59059-389-8

www.holub.com/goodies/patterns

SOURCE CODE ONLINE
forums.apress.com
FOR PROFESSIONALS BY PROFESSIONALS™

Join online discussions:

Holub on Patterns:
Learning Design Patterns

by Looking at Code
ALLEN HOLUB

388x_Ch00_FINAL.qxd 8/25/04 2:58 PM Page i

Holub on Patterns: Learning Design Patterns by Looking at Code

Copyright © 2004 by Allen Holub

Lead Editor: Gary Cornell
Technical Reviewer: Ken Arnold
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis,

Jason Gilmore, Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser
Project Manager: Tracy Brown Collins
Copy Edit Manager: Nicole LeClerc
Copy Editor: Kim Wimpsett
Production Manager: Kari Brooks
Production Editor: Janet Vail
Proofreader: Nancy Sixsmith
Compositor and Artist: Diana Van Winkle, Van Winkle Design Group
Indexer: Ann Rogers
Artist: Diana Van Winkle, Van Winkle Design Group
Interior Designer: Diana Van Winkle, Van Winkle Design Group
Cover Designer: Kurt Krames
Manufacturing Manager: Tom Debolski

Library of Congress Cataloging-in-Publication Data:
Holub, Allen I.

Holub on patterns : learning design patterns by looking at code /
Allen Holub.
p. cm.
Includes index.
ISBN 1-59059-388-X (alk. paper)
1. Software patterns. 2. Object-oriented programming (Computer science) I. Title.

QA76.76.P37H65 2004
005.1—dc22

2004019635

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

Printed and bound in the United States of America 9 8 7 6 5 4 3 2

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Distributed to the book trade in the United States by Springer-Verlag New York, Inc. 233 Spring Street,
6th Floor, New York, New York 10013 and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER (1-800-777-4643), fax 201-348-4505,
e-mail orders@springer-ny.com, or visit http://www.springer-ny.com. Outside the United States:
fax +49 6221 345229, e-mail orders@springer.de, or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.holub.com/goodies/patterns.

388x_Ch00_FINAL.qxd 1/12/05 3:20 PM Page ii

mailto:orders@springer-ny.com
http://www.springer-ny.com
mailto:orders@springer.de
http://www.springer.de
mailto:info@apress.com
http://www.apress.com
http://www.holub.com/goodies/patterns

For Deirdre, Philip, and Amanda

388x_Ch00_FINAL.qxd 8/25/04 2:58 PM Page iii

388x_Ch00_FINAL.qxd 8/25/04 2:58 PM Page iv

Contents

About the Author . xi

About the Technical Reviewer . xiii

Acknowledgments . xv

Preface . xvii

■CHAPTER 1 Preliminaries: OO and Design Patterns 101 1

Patterns vs. Idioms . 1

So What Is a Design Pattern, Anyway? . 2

So, What’s It All Good For? . 5

The Role of Patterns in Design . 6

The Tension Between Patterns and Simplicity 6

Classifying Patterns. 7

On Design, Generally . 9

Programming FORTRAN in Java . 10

Programming with Your Eyes Open. 12

What Is an Object? . 12

Balderdash!. 13

An Object Is a Bundle of Capabilities . 13

How Do You Do It Wrong?. 15

So How Do You Do It “Right?” . 17

Cellular Automata . 20

Getters and Setters Are Evil . 24

Render Thyself . 27

JavaBeans and Struts . 28

Refactoring . 29

Life Without Get/Set. 30

When Are Accessors and Mutators Okay?. 32

Summing Up the Getter/Setter Issues . 34

v

388x_Ch00_FINAL.qxd 8/25/04 2:58 PM Page v

■CHAPTER 2 Programming with Interfaces,
and a Few Creational Patterns . 37

Why extends Is Evil . 37

Interfaces vs. Classes . 38

Losing Flexibility. 39

Coupling. 40

The Fragile-Base-Class Problem. 41

Multiple Inheritance. 47

Frameworks and the Template-Method and
Factory-Method Patterns. 48

Summing Up Fragile Base Classes . 55

When extends Is Appropriate. 56

Getting Rid of extends . 58

Factories and Singletons . 59

Singleton . 61

Threading Issues in Singleton . 62

Double-Checked Locking (Don’t Do It) . 64

Killing a Singleton . 65

Abstract Factory . 67

Pattern Stew . 70

Dynamic Creation in a Factory. 73

Command and Strategy . 75

Summing Up. 80

■CHAPTER 3 The Game of Life . 81

Get a Life. 82

Charting the Structure of Life . 83

The Clock Subsystem: Observer . 86

Implementing Observer: The Publisher Class 93

The Clock Subsystem: The Visitor Pattern. 104

The Menuing Subsystem: Composite. 108

The Menuing Subsystem: Facade and Bridge . 116

The MenuSite . 117

The Core Classes. 139

The Universe Class . 139

The Cell Interface. 145

The Resident Class . 148

The Neighborhood Class. 151

■CONTENTSvi

388x_Ch00_FINAL.qxd 8/25/04 2:58 PM Page vi

Mediator . 161

Composite Revisited . 163

Prototype . 166

Composite Redux . 168

Flyweight. 172

Flyweight Pools . 176

Memento. 178

Loose Ends . 180

Summing Up. 185

■CHAPTER 4 Implementing Embedded SQL . 187

The Requirements . 187

The Architecture . 188

The Data-Storage Layer . 189

The Table Interface . 192

The Bridge Pattern. 197

Creating a Table, Abstract Factory. 198

Creating and Saving a Table: Passive Iterators and Builder 202

Populating the Table . 213

Examining a Table: The Iterator Pattern . 216

Implementing Transactions (Undo) with the Command Pattern. . . 226

Modifying a Table: The Strategy Pattern. 231

Selection and Joins . 235

Miscellany . 241

Variants on the Table: The Decorator Pattern 250

Adding SQL to the Mix . 259

SQL-Engine Structure . 260

Input Tokenization, Flyweight Revisited,
and Chain of Responsibility . 262

The Scanner: Chain of Responsibility . 269

The ParseFailure Class . 277

The Database Class . 279

Using the Database . 280

The Proxy Pattern. 283

The Token Set and Other Constants . 287

The Interpreter Pattern . 295

Supported SQL . 295

Watching the Interpreter in Action . 318

The JDBC Layer . 325

■CONTENTS vii

388x_Ch00_FINAL.qxd 8/25/04 2:58 PM Page vii

The State Pattern and JDBCConnection . 332

Statements . 338

The Adapter Pattern (Result Sets) . 339

Finishing Up the Code . 344

When Bridges Fail . 344

Whew! . 345

■APPENDIX A Design-Pattern Quick Reference . 347

Creational Patterns . 349

Abstract Factory . 350

Builder . 352

Factory Method . 354

Prototype . 356

Singleton . 358

Structural Patterns . 361

Adapter . 362

Bridge. 364

Composite . 366

Decorator. 368

Facade . 370

Flyweight . 372

Proxy . 374

Behavioral Patterns . 377

Chain of Responsibility . 378

Command . 380

Interpreter . 382

Iterator . 384

Mediator . 386

Memento . 388

Observer (Publish/Subscribe). 390

State. 392

Strategy . 394

Template Method . 396

Visitor . 398

■INDEX . 401

■CONTENTSviii

388x_Ch00_FINAL.qxd 8/25/04 2:58 PM Page viii

About the Author

■ALLEN HOLUB has worked in the computer
industry since 1979. He now works as a consult-
ant, helping companies not squander money
unnecessarily on software. He provides training in
OO Design and Java and also provides design-
process-mentoring and design-review services,
provides technical due diligence, and even writes
programs on occasion.

Allen’s programming experience covers the
gamut from operating systems to compilers and
from application programs to web services. He

was an early adopter of Java, programming in it since its release in 1995. He worked in C++ for
eight years before that and has also worked in C, Perl, Pascal, PL/M, FORTRAN, SQL, and
various assembly languages. He learned design the hard way, by beating his head against
programs that he’d rather not admit that he’d written, and is now a recognized expert in OO
Design, UML, and process. He served as a chief technology officer at NetReliance, Inc., and
sits on the board of advisors for Ascenium Corp. and Ontometrics. He is the security-track
chair for the Software Development Conference.

Allen wrote for JavaWorld from 1998 to 2004 and is now a contributing editor at SD Times.
He has authored nine books (including Holub on Patterns, Taming Java Threads, and
Compiler Design in C) and 100+ magazine articles (for Dr. Dobb’s Journal, Programmers
Journal, Byte, MSJ, and others). He wrote the popular “OO-Design Process” column for the
IBM developerWorks Component Zone, and he was the technical editor of CMP Media’s Java
Solutions. Allen teaches regularly for the University of California (Berkeley) Extension (OO
Design and Java).

Contact Allen at http://www.holub.com/allen.html.

ix

388x_Ch00_FINAL.qxd 9/9/04 12:47 PM Page ix

http://www.holub.com/allen.html

388x_Ch00_FINAL.qxd 8/25/04 2:58 PM Page x

Acknowledgments

This book, of course, owes an enormous amount to the Gang of Four: Gamma, Helm, Johnson,
and Vlissides. Without them, the book wouldn’t exist.

Ken Arnold did a spectacular job of reviewing this book. I’ve never experienced a tech
review as thorough and as thoughtful as Ken’s. His detailed comments improved this book
immensely, and I’m indebted to him.

A small portion of this book appeared originally in my Java Toolbox column on JavaWorld
(http://www.javaworld.com).

xi

388x_Ch00_FINAL.qxd 8/25/04 2:58 PM Page xi

http://www.javaworld.com

388x_Ch00_FINAL.qxd 8/25/04 2:58 PM Page xii

Preface

This is a book about programming in an object-oriented way and about how to use design
patterns to solve commonplace problems in object-oriented systems.

I’ve based this book on the philosophy that the best way to learn and understand the
design patterns is to see them in action, all jumbled up, just as they occur in the real world.

Consequently, this book presents design patterns to you by looking at computer programs.
My intent is to both clarify and bring down to earth Gamma, Helm, Johnson, and Vlissides’s
seminal work Design Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley,
1995). (The four authors are often called the Gang of Four [or GoF], and their book is usually
called the Gang-of-Four book.) The current volume puts the GoF book into context, presenting
and teaching design patterns as they occur in the real world. By the time you’re done, you’ll
have seen all of the Gang-of-Four patterns but in the context of real computer programs.

Don’t get me wrong—this book does not pretend to supplant the GoF book but rather
to complement it. Gamma, Helm, Johnson, and Vlissides made an enormous contribution to
the OO-design community with their work, and this book certainly wouldn’t exist without it.
The GoF approach is abstruse and dense to many programmers, however, thus the need for
the current volume.

The current book is atypical—it’s “inside out” when compared to other books on design
patterns. Rather than catalog the design patterns and present unrealistically simple examples
in each section of the catalog, this book describes two computer programs in terms of the
design patterns they use. You see how the patterns appear in real programs and how the pat-
terns interact with one another in complex ways.

The splendid isolation of a catalog-of-design-patterns approach (such as the original
Design Patterns) simply doesn’t permit this real-world understanding. The catalog is great if
you’ve already worked on code that demonstrates the pattern. If you don’t have prior experi-
ence with such code, however, the catalog approach is impenetrable. Also, catalogs can leave
you with a good intellectual understanding of the patterns but with almost no understanding
of how to actually use the patterns to produce real code.

Prerequisites
I’m assuming that you know Java and have written at least a few programs in it. In particular,
I use anonymous inner classes a lot, so you’ll have to be solid on that syntax. You also need to
be familiar with the “core” Java packages such as java.io and the basics of the user-interface
subsystems (Swing and AWT). This is all stuff you probably got when you learned the language.

I’m also assuming that you know the basics of object-oriented programming: inheritance,
interfaces, polymorphism, and so on. Later in the book I’ll talk about things such as the down-
side of extends, but to make sense of these discussions, you’ll have to know what extends
does. I assume that you already know the upside, so I won’t bore you with a treatise on what
OO-language features such as inheritance are good for. Don’t interpret a discussion of the

xiii

388x_Ch00_FINAL.qxd 8/25/04 2:58 PM Page xiii

negative side of an idiom or language feature as indicating that there is no positive side to that
idiom or feature. I’m just assuming that you don’t need to be told something you already know.

Finally, I assume a nodding familiarity with UML, the “Unified” Modeling Language—a
graphical design notation useful for showing, among other things, the static (class) structure
of a program and how the objects that comprise the program interact at runtime.

Should you need to come up to speed before you continue, I’ve listed references for all
these topics on the web page discussed in the section “Resources and References.” You can
probably muddle through the UML without much formal understanding of the subject.
Without Java, though, you’ll be completely lost.

Assumptions
I assume throughout this book that you want to know how to build solid object-oriented solu-
tions, so I don’t qualify every statement that I make with that assumption. Often, reasonable
procedural alternatives exist to OO strategies, but I don’t discuss these alternatives.

What I mean to accomplish by mentioning this obvious, I hope, point is to head off the
inevitable critics who will complain that the entire book is invalid simply because it doesn’t
explicitly discuss every alternative to every problem, including the hard-core procedural
alternatives.

Examples of topics that I know will set off the banshees include implementation encapsu-
lation (which implies that the most common use of get/set functions should be assiduously
avoided) and the overuse of implementation inheritance (which creates unnecessary coupling
relationships).

Warning! Warning! Will Robinson!
Finally, I also want to warn you about me.

If you haven’t figured it out by now, I have opinions and intend to express them, and I
don’t usually qualify my statements with apologies. If you don’t like that, buy a different book.

Everyone has opinions, and hiding those opinions under a veneer of impartiality accom-
plishes nothing but obfuscation. You’re welcome to disagree with me, but please disagree
because you have a strong argument to support your beliefs. “Nobody does it that way” is
not a strong argument. Neither is its converse: “Everybody does it.”

I’m sometimes accused of being “dogmatic.” If by “dogmatic” you mean that I defend
ideas forcefully when I find that those ideas work well in real code (and conversely disparage
ideas that fail miserably in practice), then I guess I am dogmatic. I think of my attitude as
pragmatic, though, not dogmatic. I’m hard-nosed about following OO principles, because
every time I’ve violated those principles, I’ve had to rewrite the code. I just don’t have time
to do things twice.

My practical bias is reflected in the structure of this book, building it around code rather
than an academic taxonomy. It may annoy you when, in the interest of making something
easy to understand to a programmer, I loosen up the language a bit. This is a book for pro-
grammers, though, not for theoreticians. (I find it odd that I’m also sometimes accused of
being “academic,” as if that’s a pejorative. The real academics usually don’t like my work
because it’s not sufficiently formal and relies too heavily on code rather than mathematics.)

■PREFACExiv

388x_Ch00_FINAL.qxd 1/12/05 10:46 AM Page xiv

I also allow myself occasional digressions into relevant design topics rather than staying
strictly focused on the patterns. I’m assuming that you need to know why I do things, not just
what I’m doing. I’m writing as if we are sitting around a table talking, not as if I’m standing at a
podium giving a formal lecture. If you want formality, I refer you to the Gang-of-Four Design
Patterns book. It’s an excellent book that presents this material in a highly structured fashion
that will be more to your taste.

Resources and References
Rather than augment this book with a “Resources” section that will be out-of-date before the
book hits the streets, I’ve built a Design-patterns resources web page at http://www.holub.com/
goodies/patterns/. You’ll find links to all the code in this book on that page, and you’ll also find
things such as reading lists and links to other patterns-related sites on the web.

Further!
So now that you’ve been warned, it’s time to get to work. Design patterns (and thinking in a
design-patterns way) are wonderful things. They can help you work more effectively, they can
make your code vastly easier to maintain, and they can provide you with a vocabulary that will
make communication with other programmers and designers much more effective. This book
shows you how design patterns really work and how to use them to write excellent code.

■PREFACE xv

388x_Ch00_FINAL.qxd 8/25/04 2:58 PM Page xv

http://www.holub.com

388x_Ch00_FINAL.qxd 8/25/04 2:58 PM Page xvi

Preliminaries:
OO and Design Patterns 101

Normally a book of this sort would start with a quote from Christopher Alexander, the archi-
tect (of buildings) who came up with the notion of a design pattern. I’ve found that though
Alexander is a brilliant man who writes wonderful books, his prose can be a bit opaque at
times, so I’ll skip the mandatory quote. His ideas launched the entire design-pattern move-
ment, however.

Similarly, the seminal book on design patterns in software is Gamma, Helm, Johnson, and
Vlissides’s Design Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley,
1995). (The four authors are jokingly called the Gang of Four by most working designers.) My
book wouldn’t exist if the Gang-of-Four book hadn’t been written, and I (and OO program-
mers in general) owe an enormous debt of gratitude to the authors. Nonetheless, the Gang-
of-Four book is a formal academic presentation of patterns, and most beginners find it too
dense to penetrate. At the risk of losing some academic precision, I’ll take a kinder and
gentler approach.

Patterns vs. Idioms
Let’s start exploring the notion of a pattern by discussing simple programming idioms. Many
design patterns are used so commonly that, in many programmers’ minds, they cease to be
patterns at all but are idioms of the language. That is, you don’t think of these patterns as
anything special—they’re just “how things are done.” Some people distinguish between
patterns and idioms based on usage (for example, a pattern is represented in a formal way,
and an idiom isn’t). I don’t see a distinction, however. An idiom is just a pattern, the use of
which has become commonplace.

Derivation is a great example of the evolution of pattern to idiom. Back in the early 1980s
when C was king, derivation was a design pattern. You can find several examples of an “extends”
relationship in C. For example, the standard implementation of malloc() uses a header (the base
class) that’s extended to create another struct (the derived class), which effectively inherits the
free() method from the base class.

Abstract functions were also part of the Derivation pattern. It was commonplace in C to
pass around tables of function pointers, initialized differently for different “classes.” This is
exactly how C++ implements both abstract methods and interface inheritance, but back in
the C world, we didn’t have a name for it.

1

C H A P T E R 1

■ ■ ■

388x_Ch01_CMP3 8/17/04 12:26 PM Page 1

CHAPTER 1 ■ PRELIMINARIES: OO AND DESIGN PATTERNS 1012

Derivation wasn’t built into C, and most C programmers weren’t programming in an
object-oriented way, so Derivation was not a programming idiom—it was a pattern. It was
something you saw in many programs that had to solve similar problems, but it wouldn’t
occur naturally to your average C programmer.

Nowadays, of course, derivation and interfaces are just built into the language; they’ve
become idioms.

So What Is a Design Pattern, Anyway?
Design patterns are, first and foremost, discovered, not invented. When Christopher Alexander
looked at many successful buildings, concentrating on one aspect of that building (such as what
makes a room “pleasant”), certain patterns started to emerge. Successful “pleasant” rooms tend to
solve certain classes of problems (such as lighting) in similar ways. By the same token, when you
look at several programs written by diverse programmers, and when you focus on a particular
implementation problem that those programs must solve (isolating subsystems, for example),
patterns start to emerge there as well. You find that several programmers independently develop
similar techniques to solve similar problems. Once you’re sensitive to the technique, you tend to
start seeing patterns everywhere you look. It’s not a pattern, though, unless you find it in several
independently developed programs. It’s a sure sign that authors don’t know what they’re talking
about when they say, “We’ve invented a design pattern that....” They may have come up with a
design, but it’s not a pattern unless several people invent it independently. (It’s possible, of course,
for an invented “pattern” to become a real pattern if enough people adopt it.)

A design pattern, then, is a general technique used to solve a class of related problems. It isn’t
a specific solution to the problem. Probably every architect who came up with an observably
pleasant room brought light into that room in a different way, and probably every programmer
implemented their solution differently. The pattern is the general structure of the solution—a
“metasolution” if you will—not the solution itself.

You can find a good analogy in music. You can think of the notion of “classical music” as a
compositional pattern. You can identify music that fits the “classical music” pattern because it
sounds like classical music. The individual pieces are quite different, however.

Given the broad nature of a pattern, you can’t cut-and-paste a design pattern from one
program to another (though you might be able to reuse a specific solution if the current context
is similar to the original one). This particular issue is an enormous point of confusion amongst
people new to patterns. Judging by the comments I’ve seen on the web, many programmers
seem to think that if a book doesn’t present the same examples as the Gang-of-Four book, the
author doesn’t understand patterns. This attitude simply shows that the person who wrote the
comment doesn’t understand patterns; they’ve confused the piece of code that demonstrates
the pattern with the pattern itself. For that reason, I’ll try to give several different examples for
each of the patterns I discuss so you can see how the pattern relates to disparate concrete
implementations—and I won’t use the Gang-of-Four examples unless they’re relevant to real
programming issues (many aren’t).

To make things more complicated, the actual objects and classes that participate in a
pattern almost always participate in other patterns at the same time. Focus on it one way,
and it looks like one thing; change your focus, and it looks like something else. To make things
even more confusing, many pattern implementations share identical static structures. When
you look at the UML static-structure diagrams in the Gang-of-Four book, they all look the

388x_Ch01_CMP3 8/17/04 12:26 PM Page 2

same: You’ll see an interface, a client class, and an implementation class. The difference
between patterns lies in the dynamic behavior of the system and in the intent of the
programmer, not in the classes and the way they interconnect.

I’ll try to illustrate these problems with an example from the architecture of buildings,
focusing on two domains: ventilation and lighting.

In the ventilation domain, I don’t want a room to feel “stuffy.” Looking at several rooms
that indeed are comfortable, a pattern, which I’ll call Cross Ventilation, emerges. The rooms that
participate in this pattern have an air source and an air exit directly across from one another at
window height. Air enters at the source, flows across the room, and then leaves from the exit.
Having identified (and named) the pattern, I create a capsule description—called the intent by
the Gang of Four—that summarizes the general problem and the solution addressed by the
pattern. In the case of Cross Ventilation, my intent is to “eliminate stuffiness and make a room
more comfortable by permitting air to move directly across the room horizontally, at midbody
height.” Any architectural mechanism that satisfies this intent is a legitimate reification (I’ll
explain that word in a moment) of the pattern. (The Gang of Four’s use of the word intent in this
context is pretty strange. I don’t use it much in this book, preferring words such as purpose.)

Reification is an obscure word, but I’ve found it pretty handy. It’s not commonly used in
the literature, however. Literally, to reify means “to make real.” A reification of an idea is a
concrete realization of that idea, and a given idea may have millions of possible reifications.
I use reify, rather than some more commonplace word, to emphasize what a pattern isn’t.
A pattern is not “instantiated,” for example. Every instantiation of a class is identical (at least
in structure) to every other instantiation. This isn’t so with a design pattern. Similarly, a reifica-
tion is not an “implementation” of a pattern—the reification of a pattern is a design, not code,
and a given design has many possible legitimate implementations.

So, what are some of the reifications of Cross Ventilation? You could have a window across
from a window, a window across from a door, two doors across from each other, a window
across from “negative” ventilator that sucked in air, input and output ventilators on opposite
walls, or a huge bellows operated by an orangutan jumping up and down on it across from a
gaping hole in the other wall. In fact, you don’t even need walls: A room with no walls at all on
two opposite sides would fit the pattern. A given pattern has myriad reifications.

Though there’s a lot of flexibility in reifying the pattern, you can’t pick and choose the attrib-
utes you like. For example, simply having air entrances and exits isn’t sufficient if the height and
directly-across-from requirements aren’t met. Putting the entrance and exit in the ceiling, for
example, isn’t a legitimate reification of the pattern (as any of us who occupy stuffy big-building
offices with ceiling ventilators can attest).

To summarize, the intent of Cross Ventilation is to “eliminate stuffiness and make a room
more comfortable by permitting air to move directly across the room horizontally, at midbody
height.” The participants in the pattern, be they windows, doors, or orangutans, have the roles
of air entrance and exit.

Moving to the lighting domain: After looking at many rooms I notice that the most pleasant
rooms have windows on two adjacent walls. That’s why corner offices are so desirable: The multi-
directional natural-light source makes the room seem more pleasant. Dubbing this pattern Corner
Office, I come up with the following intent: I intend to “make a room more pleasant by locating
two sources of natural light on two adjacent walls.” Again, there are a myriad reifications: windows
on two walls, windows on one wall and French doors on the other, French doors on two walls.
You could argue that windows on one wall and mirrors on an adjacent wall would also fit since
the reflected natural light does serve as a light source. If I were Bill Gates, I could put a window on

CHAPTER 1 ■ PRELIMINARIES: OO AND DESIGN PATTERNS 101 3

388x_Ch01_CMP3 8/17/04 12:26 PM Page 3

one wall and a 600-inch plasma display that showed what you’d see if the wall wasn’t there on the
other, but that’s not a legitimate reification because the plasma display isn’t “natural light.” You
have, of course, millions of ways to implement the Window and French Door patterns as well.

Now let’s consider a concrete design—the plans for a building. Figure 1-1 shows reifica-
tions of both Cross Ventilation and Corner Office in a single design. I’ve put both an architec-
tural diagram and the equivalent UML in the figure. Patterns are identified using UML 1.5’s
collaboration symbol. The pattern name is put into an oval, with dashed lines extending to the
classes that participate in the patterns. The lines are annotated with the role that that class
plays within the pattern.

Figure 1-1. Combined reification of Cross Ventilation and Corner Office

The southwest window serves as an air entrance in Cross Ventilation, and the door across
from it serves as an exit. The other two windows don’t participate in Cross Ventilation since the
prevailing wind is from the southwest. Refocusing, the southwest and southeast windows partic-
ipate in Corner Office as the two light sources. Neither the door nor the northwest window is a
participant since they aren’t significant sources of light. That southwest window is interesting
because it participates in two patterns simultaneously. It has the role of “air source” in Cross
Ventilation and “light source” in Corner Office. The objects and classes that participate in
various patterns often intermesh in this way.

It’s critical to note that there’s no way to identify the patterns simply from structure. For
example, the wind may be blocked by another structure, in which case none of the windows
can be an air entrance. By the same token, one of the windows may be two feet away from the
blank wall on the building next door or look onto a hallway, so it wouldn’t be a significant light
source (though it could be an air entrance or exit). As you’ll see when you start looking at the
actual patterns, you need contextual information—including the intent of the architect—to

CHAPTER 1 ■ PRELIMINARIES: OO AND DESIGN PATTERNS 1014

388x_Ch01_CMP3 8/17/04 12:27 PM Page 4

identify a design pattern in a computer program. You can’t just look at a UML diagram and
identify all the patterns. You have to know the intended use of the objects or classes. You’ll see
many examples of this phenomenon in the examples in subsequent chapters.

Reopening the cut-and-paste issue, I’m hoping you can now see how a pattern can be
reified into a vast number of designs, each of which could be implemented in myriad ways.
To say that you can cut-and-paste a pattern in a design tool is nonsensical. Nonetheless,
many object-oriented CASE tools claim to have “pattern libraries,” from which you can insert
patterns into your designs. In practice, these libraries contain prebuilt UML structure for the
single reification of a given pattern that’s presented in the Gang-of-Four book. Though pasting
one of these structures into your design can be useful at times, don’t confuse this “paste”
operation with actually using a pattern in a design. A good design almost always must use a
custom reification that’s appropriate in context. The mindless cut-and-paste approach is no
more designing than paint-by-numbers is painting.

So, What’s It All Good For?
So, if patterns are so amorphous, what are they good for?

When I first read the Gang-of-Four book, I was unimpressed. It seemed like nothing
but a pedagogic presentation of stuff that most competent designers had already discovered,
usually by beating their heads against brick walls trying to find elegant solutions to the prob-
lems that the patterns addressed. True, had I read the book a few years earlier, my head would
have many fewer bumps on it, but the whole thing seemed to be much ado about nothing.

I thought that way until the first time I needed to discuss a project with another designer.
He pointed at a piece of the design and said, “These interfaces comprise a bridge between these
two subsystems; the bridge itself is implemented with this set of object adapters.” I was struck
with the economy of what just happened. In two sentences, he had eliminated probably half an
hour of elaborate explanation. Maybe there was something to all this pattern stuff after all.

Then I went to a presentation at the first Java One, where all of AWT was described in
terms of patterns. The description was both short and lucid—much shorter and clearer, in
fact, than could possibly have been the case had the speaker not taken a patterns approach.

I went back and reread the book before starting my next design project and then
consciously tried to think of my next design in terms of the patterns. That is, I started asking
myself, “What am I trying to accomplish here, and are there any patterns that address this
problem?” (using the purpose section of the pattern description to see what was relevant).
When the answer was “yes,” I used the pattern right off the bat. I found that taking this
approach noticeably shortened the design time and that the resulting design was better
quality as well. The better I knew the patterns, the faster things went. Moreover, my initial
design needed much less refinement than usual to be acceptable.

I was hooked.
The patterns provide an organizational framework that vastly improves communication,

which in the long run is what design is all about. Conversations that previously took hours
could happen in a few minutes, and everyone could get more real work done in less time. I
went back and read everything about patterns that I could lay my hands on and discovered
that the Gang-of-Four book just scratched the surface. Hundreds of documented patterns
were out there on the web and in the literature, and many of these were applicable to work I
was doing. In practice, I’ve found that a solid familiarity with the patterns that are relevant to

CHAPTER 1 ■ PRELIMINARIES: OO AND DESIGN PATTERNS 101 5

388x_Ch01_CMP3 8/17/04 12:27 PM Page 5

my work have made that work go much faster and given me much better results. (By “solid,” I
mean that you know the stuff cold—you don’t have to look things up in a book.)

The Role of Patterns in Design
When do patterns come up in the design process, and what role do they play in design? The
answer to this question varies with the methodology you’re using—I hope that you do use a
methodology—but design patterns are of interest primarily at the implementation level, so
they start coming up when you start thinking about implementation. The deeper question
then is, when does analysis (which concerns itself with the problem domain) stop and design
(which concerns itself with implementation) begin?

The best analogy that I know is in the design and construction of buildings. The plans of a
building don’t show every construction detail. They show where the walls go, but not how to build
a wall. They show where the plumbing fixtures go, but not how to route pipes. When the building
is constructed, design activities involving wall construction and pipe routing do happen, but the
artifacts are rarely kept since the implementation speaks for itself. A carpenter, for example, may
use a “stud-placement” pattern to build a strong wall. The design shows where the wall goes, but
not how to build the wall.

Moving the analogy to software: In most projects, design activities should stop when
you get the point that a good programmer can implement without difficulty. I would never
consider putting the mechanics of creating a window with Swing into a design. That’s just
something that the programmer should know how to do, and if the code is written up to
professional standards (well-chosen names, good formatting, comments where necessary,
and so on), the implementation choices should be self-documenting.

Consequently, design patterns are often not spelled out in detail in the design documents
but, rather, represent decisions that the implementer makes. Patterns applied by an imple-
menter are rarely documented in depth, though the name of the participants (or other
comment) should identify what’s going on. (For example, WidgetFactory reifies Factory).

Of course, exceptions exist to this don’t-design-patterns rule. The software equivalent of the
windows used in the Corner Office pattern may well appear in the design documents (which
show you where to place the windows). Similarly, very complex systems, where much more
detail is required in the design (in the same way that the architectural plans for a skyscraper
are more detailed than those of a small house), often document the patterns in depth.

The Tension Between Patterns and Simplicity
A related issue is the complexity that patterns tend to introduce into a system. If “foolish
consistency is the hobgoblin of little minds,” unnecessary complexity is the hobgoblin of bad
programmers. Just like Emerson’s “little statesmen and philosophers and divines” who adore
consistency, many “little” programmers and architects think that patterns are good for their
own sake and should be used at every possible opportunity. That mindless approach almost
guarantees a fragile, unmaintainable mess of a program. Every pattern has a downside that
serves as an argument for not using it.

Simple systems are easier to build, easier to maintain, smaller, and faster than complex
ones. A simple system “maximizes the work done,” by increasing “the amount of work not
done.” A program must do exactly what’s required by the user. Adding unasked-for function-
ality dramatically increases development time and decreases stability.

CHAPTER 1 ■ PRELIMINARIES: OO AND DESIGN PATTERNS 1016

388x_Ch01_CMP3 8/17/04 12:27 PM Page 6

Simplicity is often not an easy goal to achieve. Programmers love complexity, so they have
a strong tendency to overcomplicate their work. It’s often easier to quickly build an overly
complex system than it is to spend the time required to make the system simple. Program-
mers who suspect that requirements will be added (or change) over time tend to add support
for requirements that may exist in the future. It’s a bad idea to complicate the code because
you think that something may have to change in the future, however. (Whenever I try to
predict the future, I’m wrong.) Programmers need to write the code in such a way that it’s
easy to add new features or modify existing ones, but not add the features now.

The flip side of this problem is oversimplification of an inherently complex problem.
You really want to do “exactly” what’s needed; removing required functionality is as bad as
adding unnecessary functionality. One example of oversimplification is an “undo” feature.
Alan Cooper—the inventor of Visual Basic and well-known UI guru—argues that you never
want to ask users if they really want to do something. Of course they do—why else would they
have asked to do it in the first place? How many times have you not deleted a file because that
stupid confirmation dialog pops up? The best solution to the unwanted deletion or similar
problem is to do what the user asks but then provide a way to undo it if the user makes a
mistake. That’s what your editor does, for example. (Imagine an editor that asked, “Do you
really want to delete that character?”) Undo is hard to implement, however, and a tendency
exists to disguise laziness in the garb of simplicity. “A complete undo system adds too much
complexity, so let’s just throw up a confirmation dialog.”

These three requirements—simplicity, completeness, and ease of modification—are
sometimes at odds with one another. The patterns described in this book help considerably
when it comes time to change or add something, but by the same token, the patterns compli-
cate the code. Unfortunately, no hard-and-fast rule describes when using a pattern is a good
idea—it’s a seat-of-the-pants judgment call on the part of the programmer. A sensitive seat
comes from experience that many designer/programmers simply don’t have (and, as Ken
Arnold—coauthor of the original book on Java programming—points out, from a sense of
aesthetics that many don’t cultivate.) Thus, you end up with bad programs that use design
patterns heavily. Simply using patterns doesn’t guarantee success.

On the other hand, the building blocks of patterns, such as the heavy use of interfaces,
are always worth incorporating into the code, even when a full-blown pattern is inappropriate.
Interfaces don’t add much complexity, and down-the-line refactoring is a lot easier if the inter-
faces are already in place. The cost of doing it now is low, and the potential payoff is high.

Classifying Patterns
It’s sometimes useful to classify patterns in order to make it easier to choose appropriate ones.
Table 1-1, taken from the Gang-of-Four book, shows you one way to look at the Gang-of-Four
patterns. But you can also create similar tables of your own that categorize the patterns in
different ways, however.

The Gang of Four broke the patterns into two scopes: Class patterns require implementa-
tion inheritance (extends) to be reified. Object patterns should be implemented using nothing
but interface inheritance (implements). It’s not an accident that there are many more Object
than Class patterns. (You’ll find more on this issue in the next chapter.)

Within a scope, the patterns are further divided into three categories. The Creational
patterns all concern themselves with object creation. For example, Abstract Factory provides
you with a means of bringing objects into existence without knowing the object’s actual class

CHAPTER 1 ■ PRELIMINARIES: OO AND DESIGN PATTERNS 101 7

388x_Ch01_FINAL.qxd 1/12/05 11:52 AM Page 7

name. (I’m simplifying here, but I’ll explain this notion in depth later in the book.) The Struc-
tural patterns are all static-model patterns, concerned with the structural organization of your
program. For example, Bridge describes a way to separate two subsystems from each other so
that either subsystem can be modified without affecting the other. The Behavioral patterns are
all dynamic-model patterns, addressing the way that various objects will interact at runtime.
Chain of Responsibility, for example, describes an interobject message-passing system that
allows a message to be fielded by the particular object that knows how to deal with it. You
don’t have to know which object that will be at compile time—it’s a runtime decision.

Table 1-1. The Gang-of-Four Design Patterns Classified

I’ll cover all these patterns in depth (though not in order), but bear in mind that there are
many other pattern categories than the ones identified by the Gang of Four. Examples include
real-time programming patterns, threading patterns, Java Enterprise JavaBean (EJB) patterns,
and so forth.

One other issue is the interdependence between patterns. For example, as you’ll see
later in the book, Command appears in one form or another in most of the other Behavioral
patterns. The Gang-of-Four book includes a diagram showing these dependency relation-
ships, but frankly, the diagram looks like a mess of spaghetti and is of little practical use. The
main thing to remember is that the various patterns are indeed related to each other, some-
times in significant and intricate ways.

If you have trouble distinguishing one pattern from another, you aren’t alone. Most often
the confusion is caused precisely because of the natural interdependence of patterns. My
advice is to focus on the intent/purpose section of the pattern description—remember, any
reification that satisfies the designer’s intent is legitimate. Looking solely at the structure—
natural for a programmer—often adds confusion instead of clarity. You’ll find, for example,
that the patterns in the Structural category have almost identical static structures, but these
structures are used toward profoundly different ends. The patterns are as much about
communication as about software, so don’t focus solely on the software issues.

Purpose

Creational Structural Behavioral

Class Factory Method Class Adapter

S
c
o
p
e

O
b
j
e
c
t

Abstract Factory

Builder
Prototype
Singleton

Bridge
Composite
Decorator
Facade
Flyweight
Object Adapter
Proxy

Chain of Responsibility
Command
Iterator
Mediator
Memento
Observer
State
Strategy
Visitor

Interpreter
Template Method

CHAPTER 1 ■ PRELIMINARIES: OO AND DESIGN PATTERNS 1018

388x_Ch01_CMP3 8/17/04 12:27 PM Page 8

On Design, Generally
The other main preliminary topic I have to discuss before leaping into the patterns themselves
is OO design generally.

First, Object-Oriented Design (OOD) and Object-Oriented Programming (OOP) are very
different things. The design process starts at requirements gathering, involves an orderly
progression through tasks such as use-case analysis, and arrives, eventually, at a design from
which you code. The programming process starts with the design or some portion of the
design, and using concepts such as derivation, encapsulation, and design patterns results in
a computer program—a realization of the design. Many people confuse programming with
design. Simply because you’ve used Java for six years, understand subclassing, and can write
1,000 lines of debugged code a day doesn’t mean that you know OOD. In fact, the contrary
is more likely: many spectacularly good programmers don’t understand the basic principles
of OOD.

A good analog is in the building trades. Buildings are designed by architects, and they’re
built by contractors. In the same way, OO systems are designed by OO designers and imple-
mented by OO programmers. These two roles can be filled the same people, but often aren’t.
Architects have to know how to construct a building, or they couldn’t come up with a workable
design. Contractors, on the other hand, don’t have to have much understanding at all of what
architects do. (This isn’t to say that there aren’t architects who will happily design buildings that
can’t be built or lived in or that there aren’t contractors who can easily identify a bad design
when they see it.) The best programmers are also good architects, and the best architects are
good programmers. This melding of skills is particularly important in the now-fashionable
Agile methodologies, where design and coding go on in parallel. No Agile methodology
supports the notion of a puppet-master architect who pulls all the strings while the program-
mers dance.

That being said, many programmers are experienced craftsmen and craftswomen who
produce beautiful code but don’t understand the design process at all—they’re builders, not
designers. Please don’t think that I’m in any way degenerating the considerable skills of a good
builder, but the ad-hoc designs that these programmers come up with are often less than
ideal.

A recent Standish Group report, which looked at thousands of programming projects
over multiple years, determined that roughly 72 percent of software projects were failures.
The lack of up-front design, and everything that entails (requirements gathering, for example),
was pegged the primary cause of this failure. That is, even skilled architects can fail when they
abandon the architectural process.

This book is about OO programming and architecture, not about process. Design patterns
are typically implementation details that are applied by OO programmers when they translate
the initial design to code. You can’t arrive at a reasonable design, however, without using a
reasonable process. (The Agile processes are certainly reasonable.) You can’t arrive at reason-
able code without the benefit of a reasonable design (which may evolve). Simply applying
design patterns to your code in an ad-hoc way will not make your programs significantly
better and may make them worse. Unnecessary complexity—and many patterns are
complex—never improves anything.

So, please don’t confuse the topics discussed elsewhere in this book with the OOD process
as a whole. Patterns are just a small part of the puzzle—and in some ways an insignificant part.
This isn’t a book about OOD—it’s a book about moving an OO design toward a concrete imple-
mentation. To really apply design patterns effectively, you need to know how to design. You

CHAPTER 1 ■ PRELIMINARIES: OO AND DESIGN PATTERNS 101 9

388x_Ch01_CMP3 8/17/04 12:27 PM Page 9

need to know the process. I’ve listed several books on the subject of design on the web page
mentioned in the preface, and I recommend you peruse them.

Programming FORTRAN in Java
Given that this book takes a hard-line attitude toward OO programming, it seems worthwhile
to discuss the differences between OO and procedural approaches at the system (as compared
to structural) level. Procedural approaches to programming can be characterized as “data-
centric.” A procedural program is structured around the flow of data between subroutines that
manipulate or examine that data. The database is central to the design of the program; in fact,
many procedural programs do little beyond exposing database tables via a nice user interface.
Procedural systems tend to be heavily hierarchical, centered on the notion of “global control.”
A global entity (a subroutine toward the top of a hierarchy) performs work on data that it
collects from elsewhere—either from subroutines beneath it in the hierarchy or by harvesting
global data created earlier. The main disadvantage of procedural systems is in debugging and
maintenance. The shared data creates “coupling” relationships (undesirable dependencies)
between subroutines. When you change one subroutine, you affect others. In extreme cases,
the effects of a seemingly trivial change could take months to become clear and to fix.

Object-oriented systems, on the other hand, are networks of intercooperating agents that
communicate by means of some messaging system. The objects are peers—there’s no one object
that’s clearly in charge, issuing directives to the other objects. I’ll discuss the characteristics of a
well-done object throughout the remainder of this chapter, but a few broad principles are worth
introducing now. Looking at an object from the outside, you should have no idea how it’s imple-
mented. It should be possible to replace the entire implementation without affecting any of the
client objects (objects that use the one you’ve just changed). Though objects sometimes pass
other objects to each other, data doesn’t flow through the system in a procedural sense. An
object jealously guards its data and performs operations on that data in response to receiving
some message. Objects don’t give the data to other objects unless absolutely necessary, and
then, the data is itself encapsulated in another object. These two concepts (implementation
hiding and data abstraction) are key.

One good way to tell the difference between an object-oriented and procedural system is
to note what happens when you change something. In procedural systems, changes tend to
“ripple out” into the rest of the program; large changes in behavior typically require wide-
spread modification of the code. Object-oriented systems tend to concentrate changes into
one place. A single change in the code tends to make large changes in program behavior. For
example, if you need to change a data format used for persistent storage, procedural systems
often must be changed in several places because each procedure is responsible for parsing the
data. In an OO system, you’d change the object that’s stored persistently, and that’s it.

Of course, OO principles such as data abstraction (hiding the way that a bunch of func-
tions work by hiding the data structures from the users of those functions) have been around
for a long time and are the foundation of any quality programming—procedural or otherwise.
The C language file-I/O system and Ken Arnold’s Curses library are both object oriented, for
example. A procedural system can look object oriented in places. A “pure” OO system is char-
acterized primarily by the consistent and meticulous use of concepts such as data abstraction.

OO systems have other key differences from procedural ones. For example, object-oriented
systems tend to be models of real-world processes. This train of thought gets you into the entire
OOD process, however, and this book is primarily about OO structure, so I won’t follow this
avenue further.

CHAPTER 1 ■ PRELIMINARIES: OO AND DESIGN PATTERNS 10110

388x_Ch01_CMP3 8/17/04 12:27 PM Page 10

Unfortunately, many people who grew up in a procedural world think of an OO approach
to a problem as wrong, not different. I’m always flabbergasted by the controversy that my arti-
cles on OO technique seem to engender. When I published (in the online magazine JavaWorld)
early drafts of the sections of this book, I was shocked by the invective that was hurled at me for
discussing far-from-earth-shattering concepts—concepts that have been tossed around in the
literature for 30 years. I was called “incompetent,” “clueless,” “a shyster,” “ a dunderhead,” and
various other epithets that aren’t polite to print. My articles are “badly thought out” and “tosh.”
One reader actually threatened physical violence, titling an invective-filled epistle (which the
site removed) with “THIE [sic] AUTHOR SHOULD BE SMACKED AROUND WITH A PIPE!”

Don’t confuse “familiar” with “correct.” Many programmers assume that the libraries
they use regularly are “right,” and if that library does things in a certain way, then that library
sets a standard. This disease is particularly prevalent with people who learn programming
from how-to books focused on particular tasks. If the only architecture they’ve ever seen is EJB
and Struts, they’ll tend to classify everything that doesn’t look like EJB and Struts as bad. Just
because we’ve done things historically in a particular way doesn’t mean that that’s the best
way to do things; otherwise, we’d all still be programming in assembly language.

I had an interesting discussion many years ago with the person who led Microsoft’s C++
and Foundation Class (MFC) efforts. When I brought up that MFC wasn’t particularly object
oriented, his response was that he was well aware of that fact, but most of the people who
programmed Microsoft systems didn’t understand OO concepts. It wasn’t Microsoft’s job to
teach OO, he said. Consequently, Microsoft deliberately created a procedural system in C++,
because that system would be “easier to understand.” That OO-is-hard-to-understand philos-
ophy is still dominant at Microsoft. The .NET APIs are procedural in structure, for example,
and C# has language features that encourage procedural thinking. So, it’s not surprising to
find Microsoft applications that don’t follow some of the basic principles of OO systems. Many
Microsoft programmers seem to take violent exception to any OO practice that doesn’t jibe
with the way .NET does things, however. They’re confusing “familiarity” with “correct.”

Please don’t try to apply procedural thinking to OO systems, and don’t criticize an OO
technique that I’m describing simply because the approach isn’t procedural. Many common
OO notions simply aren’t embodied in a lot of existing code that you may have seen. Saying
that some coding practice isn’t viable in an OO system isn’t the same as saying that code that
uses those practices is never viable. I’m not going to bring this point up every time I discuss an
OO approach to a problem, however.

Finally, bear in mind that a “pure” OO solution isn’t always required. As is the case with
most design issues, there are always trade-offs and risks. For example, a simple web site
that’s using Servlets to put a thin front end on a database probably doesn’t need to be object
oriented. The risk is that, as the small program evolves, it turns into a mass of unmaintainable
spaghetti code. Similarly, many programmers don’t understand OO concepts, so if your system
doesn’t have a significant long-term maintainability requirement and if business requirements
are not likely to change, assigning a programmer to it who quickly implements a procedural
solution isn’t necessarily a bad decision. The risk, of course, is that the lifetime of that program
is longer than you expect, or that significant changes to the business rules indeed occur, and it
ends up being less expensive to just toss the original code than it is to try to modify it. Nothing
is inherently wrong with choosing a procedural solution; but you should make that choice
knowing the risks you’re taking.

CHAPTER 1 ■ PRELIMINARIES: OO AND DESIGN PATTERNS 101 11

388x_Ch01_CMP3 8/17/04 12:27 PM Page 11

Programming with Your Eyes Open
So, let’s talk about my general philosophy of design.

Design is a series of informed choices, trade-offs, and risk management. If you don’t
understand both sides of an issue, you can’t make an intelligent choice or manage risk effec-
tively; in fact, if you don’t understand all the ramifications of what you’re doing, you’re not
designing at all. You’re just stumbling in the dark. It’s not an accident that every chapter in the
Gang-of-Four book includes a “Consequences” section that describes when using a pattern is
inappropriate and why.

Moreover, “good” and “bad” aren’t absolutes. A “good” decision in one context may be
“bad” in another. Every choice has a good and a bad side and is made in the context of overall
criteria that are defined by necessity. Decisions aren’t binary. You often have shades of good-
ness—consequences associated with your decisions—that can mean that none of the possi-
bilities you’re contemplating is “best.” Moreover, a decision that seems good right now may
not seem so good six months from now.

Saying that some language feature or common programming idiom has problems isn’t the
same thing as saying that you should never use that feature or idiom under any circumstances.
By the same token, simply because a feature or idiom is in common use doesn’t mean you should
use it. Lots of programs are written by uninformed programmers, and simply being hired by Sun,
Microsoft, or IBM doesn’t magically improve someone’s programming or design abilities. You’ll
find a lot of great code in the Java packages. You’ll also find a lot of code that, I’m sure, the author
is embarrassed to admit to writing.

To further muddy the waters, some design idioms are pushed for marketing or political
reasons. Sometimes a programmer makes a bad decision, but the company wants to push what
the technology can do, so it deemphasizes the way in which you have to do it. It’s making the
best of a bad situation. In this context, adopting any programming practice simply because
“that’s the way you’re supposed to do things” is acting irresponsibly. Many failed EJB projects
give proof to this principle. EJB can be a good technology when used appropriately; it can liter-
ally bring down a company when used inappropriately.

The point I’m trying to make is that you shouldn’t be programming blindly. By under-
standing the havoc that a feature or idiom can wreak, you’re in a much better position to decide
whether using that feature or idiom is appropriate. Your choices should be both informed and
pragmatic, made from a position of strength. That’s why I’m bothering to write this book, so that
you can approach your programming with your eyes open.

What Is an Object?
What does object orientation actually mean?

The patterns discussed in this book are creatures of OO systems. If a system as a whole
isn’t really object oriented, you don’t get much benefit from using an OO pattern in some
corner of the code. I’ve found that many programmers, even programmers who have been
working with languages such as C++ or Java for years, don’t have a good grasp of what exactly
constitutes an OO system, however, so I have to make sure we’re all clear on this point.

CHAPTER 1 ■ PRELIMINARIES: OO AND DESIGN PATTERNS 10112

388x_Ch01_CMP3 8/17/04 12:27 PM Page 12

Balderdash!
Bjarne Stroustrup, the creator of C++, once characterized OO programming as “buzzword-
oriented programming,” and certainly one of the most abused (or at least misunderstood)
buzzwords in the pack is object itself. Since the idea of an object is so central, a full discussion
of what exactly an object actually is is essential to understanding OO systems and their needs.

First of all, think of an OO system as a bunch of intelligent animals inside your machine (the
objects) talking to each other by sending messages to one another. Think “object.” Classes are
irrelevant—they’re just a convenience provided for the compiler. The animals that comprise this
system can be classified together if they have similar characteristics (if they can handle the same
messages as other objects in the class, for example), but what you have at runtime is a bunch of
objects, not classes. What programmers call classes are really classes of objects. That is, objects
that have the same properties comprise a class of objects. This usage is just English, not techno-
speak, and is really the correct way to think about things. We’re doing object-oriented design,
not class-based design.

The most important facet of OO design is data abstraction. This is the CIA, need-to-know
school of program design. All information is hidden. A given object doesn’t have any idea of
what the innards of other objects look like, any more than you may know what your spouse’s
gallbladder looks like. (In the case of both the object and the gallbladder, you really don’t want
to know either.)

You may have read in a book somewhere that an object is a data structure of some sort
combined with a set of functions, called methods, that manipulate that data structure. Balder-
dash! Poppycock!

An Object Is a Bundle of Capabilities
First and foremost, an object is defined by what it can do, not by how it does it. In practical
terms, this means an object is defined by the messages it can receive and send. The “methods”
that handle these messages comprise its sole interface to the outer world. The emphasis must
be on what an object can do—what capabilities it has—not on how those capabilities are
implemented. The “data” is irrelevant. Most OO designers will spend considerable time in
design before they even think about the data component of an object. Of course, most objects
will require some data in order to implement their capabilities, but the makeup of that data
is—or at least should be—irrelevant.

The prime directive of OO systems is as follows:

Never ask an object for information that you need to do something; rather, ask
the object that has the information to do the work for you.

Ken Arnold says, “Ask for help, not for information.”
I’ll explain the whys and wherefores in a moment, but this prime directive engenders a

few rules of thumb that you can apply to see if you’re really looking at an object-oriented
system (I’ve presented them in a rather pithy way; details follow):

• Objects are defined by “contract.” They don’t violate their contract.

• All data is private. Period. (This rule applies to all implementation details, not just the
data.)

CHAPTER 1 ■ PRELIMINARIES: OO AND DESIGN PATTERNS 101 13

388x_Ch01_CMP3 8/17/04 12:27 PM Page 13

• It must be possible to make any change to the way an object is implemented, no matter
how significant that change, by modifying the single class that defines that object.

• “Get” and “set” functions are evil when used blindly (when they’re just elaborate ways
to make the data public). I’ve a lot more to say on this issue later in the “Getters and
Setters Are Evil” section.

If the system doesn’t follow these rules, it’s not object oriented. It’s that simple. That’s
not to say non-OO systems are bad—many perfectly good procedural systems exist in the
world. Nonetheless, not exposing data is a fundamental principle of OO, and if you violate
your principles, then you’re nothing. The same goes for OO systems. If they violate OO princi-
ples, they’re not OO by definition; they’re some sort of weird hybrid that you may or may not
ever get to work right. When this hybrid system goes down in flames and takes the company
with it, don’t blame OO. Note, however, that an OO system can be written in a procedural
language (and vice versa). It’s the principles that matter, not the language you’re using.

Don’t be fooled, by the way, by marketing hype such as “object based” and “there are lots of
ways to define an object.” Translate this sort of sales-speak as follows: “Our product isn’t really
OO—we know that, but you probably don’t, and your manager (who's making the purchase
decision) almost certainly doesn’t, so we’ll throw up a smoke screen and hope nobody notices.”
In the case of Microsoft, it has just redefined OO to mean something that fits with its product
line. Historically, VB isn’t in the least bit OO, and even now that VB has transmogrified into an
OO language, most VB programs aren’t object oriented because the Microsoft libraries aren’t
object oriented. (How many Microsoft programmers does it take to screw in a light bulb?
None—let’s define darkness as the new industry standard.)

Now for the “whereas” and “heretofores.”
First, the notion of a contract: An object’s contract defines the way in which the object

appears to behave from the outside. The users of the objects assume that this behavior won’t
change over time. The interfaces that an object implements are part of the contract (so you
can’t lightly change method arguments or return values, for example), but other aspects of
the contract can include performance guarantees, size limitations, and so forth. The object’s
implementation isn’t part of the contract. You should be able to change it at will.

The rules in the earlier list are really just ways of enforcing the notion of a contract.
Exposed implementation details would effectively make those details part of the object’s
contract, so the implementation couldn’t change (as you discovered bugs or introduced new
business requirements).

Similarly, the nuanced interpretation of the everything-is-private rule is this: If it’s not
private, then it’s part of the contract and can’t be changed. The decision to make a field public
may well be correct in some (rare) situations, but the consequences of making that decision
are significant.

The notion of a contract also comes into play with the third rule I mentioned earlier.
Ideally, the scope of a change is limited to a single class, but interdependencies are sometimes
necessary. For example, the HashMap class expects contained objects to implement hashCode().
This expectation is part of the contained object’s contract.

CHAPTER 1 ■ PRELIMINARIES: OO AND DESIGN PATTERNS 10114

388x_Ch01_CMP3 8/17/04 12:27 PM Page 14

How Do You Do It Wrong?
The main reason for following the rules in the previous section is that the code becomes easier
to maintain, because all the changes that typically need to be done to fix a problem or add a
feature tend to be concentrated in one place. By the way, don’t confuse ease of maintenance
with lack of complexity. OO systems are usually more complex than procedural systems but
are easier to maintain. The idea is to organize the inevitable complexity inherent in real
computer programs, not to eliminate it—a goal that an OO designer considers impossible
to meet.

Consider a system that needs to get a name from some user. You may be tempted to use
a TextField from which you extract a String, but that just won’t work in a robust application.
What if the system needs to run in China? (Unicode—Java’s character set—comes nowhere near
representing all the ideographs that comprise written Chinese.) What if someone wants to enter
a name using a pen (or speech recognition) rather than a keyboard? What if the database you’re
using to store the name can’t store Unicode? What if you need to change the program a year
from now so that both a name and employee ID are required every place that a name is entered
or displayed? In a procedural system, the solutions you may come up with as answers to these
questions usually highlight the enormous maintenance problems inherent in these systems.
There’s just no easy way to solve even the simplest-seeming problem, and a vast effort is often
required to make simple changes.

An OO solution tries to encapsulate those things that are likely to change so that a change
to one part of the program won’t impact the rest of the program at all. For example, one OO
solution to the problems I just discussed requires a Name class whose objects know how to both
display themselves and to initialize themselves. You’d display the name by saying, “Display your-
self over there,” passing in a Graphics object or perhaps a Container to which the name could
drop in a JPanel that displayed the name. You would create a UI for a name by asking an empty
Name object to “initialize yourself using this piece of this window.” The Name object may choose to
create a TextField for this purpose, but that’s its business. You, as a programmer, simply don’t
care how the name goes about initializing itself, as long as it gets initialized. (The implementa-
tion may not create a UI at all—it may get the initial value by getting the required information
from a database or from across a network.)

Getting back to my Visual Basic critique from a few paragraphs back, consider the way
that a UI generated by VB (or VB-like systems, of which there are legions) is typically struc-
tured: You create a Frame class whose job is to collect messages coming in from “control” or
“widget” objects in response to user actions. The Frame then sends messages into the object
system in response to the user action. Typically, the code takes the following form:

1. “Pull” some value out of a widget using a “get” method.

2. “Push” that value into a “Business” object using a “set” method.

This architecture is known as Model/View/Controller (MVC)—the widgets comprise the
“view,” the Frame is the “controller,” and the underlying system is the “model.”

MVC is okay for implementing little things such as buttons, but it fails miserably as an
application-level architecture because MVC requires the controller to know way too much
about how the model-level objects are implemented. Too much data is flowing around in
the system for the system to be maintainable.

CHAPTER 1 ■ PRELIMINARIES: OO AND DESIGN PATTERNS 101 15

388x_Ch01_CMP3 8/17/04 12:27 PM Page 15

Rather than take my word for it, let’s explore a few of the maintenance problems that arise
when you try to develop a significant program using the MVC architecture I just described.
Taking the simple problem I mentioned earlier of needing to add an employee ID to every
screen that displays an employee, in their VB-style architecture you’ll have to modify every
one of these screens by hand, modifying or adding widgets to accommodate the new ID field.
You’ll also have to add facilities to the Employee class to be able to set the ID, and you’ll also
have to examine every class that uses an Employee to make sure that the ID hasn’t broken
anything. (For example, comparing two Employee objects for equality must now use the ID,
so you’ll have to modify all this code.) If you had encapsulated the identity into a Name class,
none of this work would be necessary. The Name objects would simply display themselves in
the new way. Two Name objects would now compare themselves using the ID information,
but your code that called fred.compareTo(ginger) or fred.equals(ginger) wouldn’t have
to change at all.

You can’t even automate the update-the-code process, because all that WYSIWYG form
layout touted in the advertisements hides the code-generation process. In any event, if you
automatically modify machine-generated code, your modifications will be blown away the next
time somebody uses the visual tool. Even if you don’t use the tool again, modifying machine-
generated code is always risky since most of the VB-style tools are picky about what this code
looks like, and if you do something unexpected in your modifications, the tool is likely to
become so confused that it’ll refuse to do anything at all the next time you do need to use it.
Moreover, this machine-generated code is often miserable stuff, created with little thought
given to efficiency, compactness, readability, and other important issues.

The real abomination in MVC architecture is the “data-bound grid control,” a table-like
widget that effectively encapsulates the SQL needed to fill its cells from a database. What
happens when the underlying data dictionary changes? All this embedded SQL breaks. You’ll
have to search out every screen in the system that has a data-bound control and change that
screen using a visual tool. Going to a “three-tier” system, where the UI layer talks to a layer
that encapsulates the SQL, which in turn talks to the database, does nothing but make the
problem worse since the code you have to modify has been distributed into more places. In
any event, if the middle tier is made of machine-generated code (usually the case), then it’s
very existence is of little use from a maintenance point of view.

All this modifying-every-screen-by-hand business is way too much work for me. Any time
savings you may have made in using some tool to produce the initial code is more than lost as
soon as the code hits maintenance.

The appeal of these systems often lies in familiarity. They help you program in an unfamiliar
OO language using a familiar procedural mind-set. This sort of I-can-program-FORTRAN-in-
any-language mindset precludes your leveraging the real maintenance benefits of OO systems,
however. I personally think there’s absolutely no reason to use Java unless you’re indeed imple-
menting an OO design. Java is simple only when compared against C++. You’re better off just
using some procedural language that really is simple if you want to write procedural systems.
(I don’t agree with many Java proponents who claim that the side benefits of Java such as type
safety, dynamic loading, and so forth, justify writing procedural Java.)

On the other hand, if you are doing an OO design, a language designed to implement OO
systems (such as Java) can make the implementation dramatically easier. Many C programmers
try to program in Java as if they were programming in C, however, implementing procedural
systems in Java rather than OO systems. This practice is really encouraged by the language,
which unfortunately mimics much of C and C++’s syntax, including flaws such as the messed-up

CHAPTER 1 ■ PRELIMINARIES: OO AND DESIGN PATTERNS 10116

388x_Ch01_FINAL.qxd 1/12/05 11:55 AM Page 16

precedence of the bitwise operators. Java mitigates the situation a bit because it’s more of a “pure”
OO language than C++. It’s harder, though not impossible, to abuse. A determined individual can
write garbage code in any language.

So How Do You Do It “Right?”
Because the OO way of looking at things is both essential and unfamiliar, let’s look at a more
involved example of both the wrong (and right) way to put together a system from the perspec-
tive of an OO designer. I’ll use an ATM machine for this example (as do many books), not because
any of us will be implementing ATMs but because an ATM is a good analog for both OO and
client/server architectures. Look at the central bank computer as a server object and an ATM
as a client object.

Most procedural database programmers would see the server as a repository of data and
the client as a requester of the data. Such a programmer may approach the problem of an
ATM transaction as follows:

1. The user walks up to a machine, inserts the card, and punches in a PIN.

2. The ATM then formulates a query of the form “give me the PIN associated with this
card,” sends the query to the database, and then verifies that the returned value
matches the one provided by the user. The ATM sends the PIN to the server as a
string—as part of the SQL query—but the returned number is stored in a 16-bit int
to make the comparison easier.

3. The user then requests a withdrawal.

4. The ATM formulates another query; this time it’s “give me the account balance.”
It stores the returned balance, scaled appropriately, in a 32-bit int.

5. If the balance is large enough, the machine dispenses the cash and then posts an
“update the balance for this user” to the server.

(By the way, this isn’t how real ATM machines work.)
So what’s wrong with this picture? Let’s start with the returned balance. What happens

when Bill Gates walks into the bank wanting to open a non-interest-bearing checking account
and put all his money in it? You really don’t want to send him away, but last time you looked
he was worth something like 100 gigabucks. Unfortunately, the 32-bit int you’re using for the
account balance can represent at most 20 megabucks (4 gigabucks divided by 2 for the sign
bit divided by 100 for the cents). Similarly, the 16-bit int used for the PIN can hold at most 4
decimal digits. And what if Bill wants to use “GATES” (five digits) for his PIN? The final issue
is that the ATM formulates the SQL queries. If the underlying data dictionary changes (if the
name of a field changes, for example), the SQL queries won’t work anymore. (Though this
example is obviously nonsensical, consider the before-the-euro lira and the pain of transi-
tioning to the euro.)

The procedural solution to all these problems is to change the ROMs in every ATM in the
world (since there’s no telling which one Bill will use) to use 64-bit doubles instead of 32-bit
ints to hold account balances and to 32-bit longs to hold 5-digit PINs. That’s an enormous
maintenance problem, of course.

CHAPTER 1 ■ PRELIMINARIES: OO AND DESIGN PATTERNS 101 17

388x_Ch01_CMP3 8/17/04 12:27 PM Page 17

Stepping into the real world for a moment, the cost of software deployment is one of the
largest line items on an IT department’s budget. The client/sever equivalent of “swapping all
the ROMs”—deploying new versions of the client-side applications—is a big deal. You can find
similar maintenance problems inside most procedural programs, even those that don’t use
databases. Change definitions of a few central data types or global variables (the program’s
equivalent of the data dictionary), and virtually every subroutine in the program may have to
be rewritten. It’s exactly this sort of maintenance nightmare that OO solves.

To see how an OO point of view can solve these problems, let’s recast the earlier ATM
example in an object-oriented way, by looking at the system as a set of cooperating objects
that have certain capabilities. The first step in any OO design is to formulate a “problem state-
ment” that presents the problem we’re trying to solve entirely in what’s called the “problem
domain.” In the current situation, the problem domain is Banking. A problem statement
describes a problem, not a computer program. I could describe the current problem as
follows:

A customer walks into a bank, gets a withdrawal slip from the teller, and fills it
out. The customer then returns to the teller, identifies himself, and hands him
or her the withdrawal slip. (The teller verifies that the customer is who he says
he is by consulting the bank records). The teller then obtains an authorization
from a bank officer and dispenses the money to the customer.

Armed with this simple problem statement, you can identify a few potential “key
abstractions” (classes) and their associated operations, as shown in Table 1-2. I’ll use Ward
Cunningham’s CRC-Card format (discussed in more depth shortly).

Table 1-2. Use-Case Participants Listed in CRC-Card Format

Class Responsibility Collaborates With

Bank Records Creates withdrawal slips. Verifies Teller: Requests empty deposit slip.
that the customers are who they
say they are.

Bank Officer Authorizes withdrawals. Teller: Requests authorization

Withdrawal Slip Records the amount of money Bank Records: Creates it.
requested by the teller. Bank Officer: Authorizes the withdrawal.

Teller: Presents it to customer.

Teller Gets deposit slips from the Bank Bank Records: Creates deposit slips.
Records and routes the deposit Bank Officer: Authorizes transactions.
slip to the Bank Officer
for authorization.

The server, in this model, is really the Bank-Officer object, whose main role is to authorize
transactions. The Bank, which is properly a server-side object as well, creates empty deposit
slips when asked. The client side is represented by the Teller object, whose main role is to get a
deposit slip from the Bank and pass it on. Interestingly, the customer (Bill) is external to the
system so doesn’t show up in the model. (Banks certainly have customers, but the customer
isn’t an attribute of the bank any more than the janitorial service is part of the bank. The
customer’s accounts could be attributes, certainly, but not the actual customers. You, for
example, don’t define yourself as a piece of your bank.) An OO ATM system just models the
earlier problem statement. Here’s the message flow:

CHAPTER 1 ■ PRELIMINARIES: OO AND DESIGN PATTERNS 10118

388x_Ch01_CMP3 8/17/04 12:27 PM Page 18

1. Bill walks up to an ATM, presents his card and PIN, and requests a withdrawal.

2. The Teller object asks the server-side BankRecords object, “Is the person with this card
and this PIN legitimate?”

3. The BankRecords object comes back with “yes” or “no.”

4. The Teller object asks the BankRecords object for an empty WithdrawalSlip. This
object will be an instance of some class that implements the WithdrawalSlip interface
and will be passed from the BankRecords object to the Teller object by value, using
RMI. That’s important. All that the Teller knows about the object is the interface it
implements—the implementation (the .class file) comes across the wire along with
the object itself, so the Teller has no way of determining how the object will actually
process the messages sent to it. This abstraction is a good thing because it lets you
change the way that the WithdrawalSlip object works without having to change the
Teller definition.

5. The Teller object tells the WithdrawalSlip object to display a user interface. (The
object complies by rendering a UI on the ATM screen using AWT.)

6. Bill fills in the withdrawal slip.

7. The Teller object notices that the initialize-yourself operation is complete (perhaps by
monitoring the OK key) and passes the filled-out WithdrawalSlip object to the server-
side BankOfficer object (again by value, using RMI) as an argument to the message,
“Am I authorized to dispense this much money?”

8. The server-side BankOfficer object comes back with “yes” or “no.”

9. If the answer is “yes,” the ATM dispenses the money. (For the sake of simplicity, I won’t
go into how that happens.)

Of course, this isn’t the only (or even the ideal) way to do things, but the example gets the
idea across—bear with me.

The main thing to notice in this second protocol is that all knowledge of how a balance
or PIN is stored, how the server decides whether it’s okay to dispense money, and so forth, is
hidden inside the various objects. This is possible because the server is now an object that
implements the “authorization” capability. Rather than requesting the data that you need to
authorize a transaction, the Teller asks the (server-side) BankOfficer object (which has the
data) to do the work for it. No data (account balance or PIN) is shipped to the ATM, so there’s
no need to change the ATM when the server code changes.

Also note that the Teller object isn’t even aware of how the money is specified. That is,
the requested withdrawal amount is encapsulated entirely within the WithdrawalSlip object.
Consequently, a server-side change in the way that money is represented is entirely transparent
to the client-side Teller. The bank’s maintenance manager is happily sleeping it off in the
back office instead of running around changing ROMs.

If only ATMs had been written this way in Europe, translation to the euro would have
been a simple matter of changing the definition of the WithdrawalSlip (or Money) class on the
server side. Subsequent requests for a WithdrawalSlip from an ATM would get a euro-enabled
version in reply.

CHAPTER 1 ■ PRELIMINARIES: OO AND DESIGN PATTERNS 101 19

388x_Ch01_CMP3 8/17/04 12:27 PM Page 19

Cellular Automata
Let’s expand our notions of OO to include things such as interfaces with another example that
will pave the way for understanding the Game of Life program used later in the book.

A good case study of a natural OO system is a class of programs called cellular automata.
These programs solve complex problems in a very object-oriented way: A large problem is
solved by a collection of small, identical objects, each of which implements a simple set of
rules, and each talks only to its immediate neighbors. The individual cells don’t actually know
anything about the larger problem, but they communicate with one another in such a way
that the larger problem seems to solve itself.

The classic example of a cellular automaton, a solution for which is way beyond the scope
of this book, is traffic modeling. The problem of predicting traffic flow is extremely difficult;
it’s a classic chaos-theory problem. Nonetheless, you can model traffic flow in such a way
that watching the simulation in action can help you make predictions based on the model’s
behavior. Predicting traffic flow and simulating it are different problems, and cellular
automata are great at simulating chaotic processes.

I’ll spend a few pages discussing the traffic-flow problem, not only because it demonstrates
automata, but also because the example illustrates several basic principles of OO design that I
want you to understand before you can look at an OO system such as Game of Life.

Most programs work by implementing an algorithm—a single (though often complex)
formula that has well-defined behavior when presented with a known set of inputs. Any solu-
tion that attempts to model traffic flow in an entire city using a single (complex) algorithm is
just too complicated to implement. As is the case with most chaos problems, you don’t even
know how to write an algorithm to “solve” the traffic-flow problem.

Cellular automata deal with this problem by avoiding it. They don’t use algorithms per se,
but rather they model the behavior of a tractable part of the system. For example, rather than
modeling traffic flow for an entire city, a cellular automaton breaks up the entire street grid
into small chunks of roadway and models only this small chunk. The road chunks can talk to
adjoining road chunks, but the chunks don’t know anything about the entire street grid.

You can model the behavior of a small chunk of Roadway pretty easily. The chunk has a
certain capacity based on number of lanes, and so on. There’s a maximum speed based on the
percentage of capacity and speed limits, and there’s a length. That’s it. Cars arrive at one end
of the road and are pushed out the other end sometime later. We’ll need two additional objects
to round out the system: a Car, and a Map, both of which also have easy-to-model behavior.
(I’ll talk about these other objects in a moment.)

The various objects in this system must communicate across well-defined interfaces.
(Figure 1-2 shows the entire conversation I’m about to discuss.)

The Road interface has two methods.

1. Can you take N cars?

boolean canYouAcceptCars(int n, Road fromThisRoad)

2. Give me N cars.

Car[] giveMeCars(int n)

CHAPTER 1 ■ PRELIMINARIES: OO AND DESIGN PATTERNS 10120

388x_Ch01_CMP3 8/17/04 12:27 PM Page 20

Figure 1-2. UML sequence diagram for the traffic model

Road segments communicate using a simple handshake. The current segment decides
that it has to get rid of a couple of cars, so it asks an adjacent segment if it can take them
(Message 1). The adjacent segment accepts the cars by asking for them (Message 2).

You’ll see this two-part handshake again in Chapter 3. The initial request has to carry with
it a Road reference that the receiving Road can use to request the cars; otherwise the receiving
segment doesn’t know which source segment is making the request. A segment in the middle
of the block talks to two neighbors (the two adjacent Road segments), an intersection has four
neighbors, and so forth. (These connections are set up when the street grid is created and
would be implemented as constructor arguments.)

The Road segment has a few rules that it uses internally to decide when to evict cars. For
example, the average effective speed of a Car (the difference in time between when the Car
enters the Road and when it leaves) may be a function of traffic density—the number of Cars
on the segment. Different road types (highway, alley, and so on) may implement these rules
differently. These rules are known only by the Road, however. As is the case in any OO system,
these sort of rules can be changed radically without impacting the surrounding code, because
the interface to a Road segment doesn’t change.

The next object you need is a Car. The Road is primarily a caretaker of Cars. Since the
speed limit and Road-segment length are attributes of the Road, the Road can easily deter-
mine how long to hold onto a particular car without having to interact with the Car at all.

source
:Road

destination
:Road

canYouAcceptCars(n, source)

giveMeCars(n)

cars

car[i]
:

Car

whichWayWouldYou-
LikeToTurn(here)

:Map

whichWayShould-
ITurn(here,there)

direction = left

direction = left

canYouAcceptCars(1, source)

giveMeCars(1)

car[i]

Straight
Line

Intersection

Operation
initiated by clock
tick

CHAPTER 1 ■ PRELIMINARIES: OO AND DESIGN PATTERNS 101 21

388x_Ch01_CMP3 8/17/04 12:27 PM Page 21

The only difficulty is an intersection. The Road needs to know to which neighbor to route the
Car. Solve this problem with a second simple interface. (The Car implements this one, and
the Road uses it.)

1. You are here; which way would you like to turn?

Direction whichWayWouldYouLikeToTurn(Location here)

Again, the Road couldn’t care less how the Car answers the question, as long as it gets an
answer. When the code is in debugging, the method that handles this message may print a
query on a console and do whatever you type. The real system would need an automated
solution, of course, but you can make the change from manual to automated by changing
the Car class alone. None of the rest of the system is affected.

Notice that the Car doesn’t know exactly where it is (just like the real world that we’re
modeling). The Road does know where it is (its Location), however, so the Road passes its
Location into the Car. Since the Location changes, the Car doesn’t bother to store it internally.
The Car needs only a single attribute: a destination.

The Car needs a way to answer the which-way-do-you-want-to-turn question, so you
need one more object: a Map. The Map needs another one-message interface.

2. I am here, and I need to go there; which way should I turn?

Direction whichWayShouldITurn(Location here, Location there)

Again, the Car has no idea how the map answers the question, as long as it gets an answer.
(This routing problem is, by far, the hardest part of the system to write, but the problem has
already been solved by every GPS navigator on the market. You may be able to buy the solution.)
Note how the Car is passed its location, which it relays to the Map. This process, called delegation,
is also commonplace in OO systems. A given object solves a problem by delegating to a contained
object, passing that contained object any external information it needs. As the message propa-
gates from delegator to delegate, it tends to pick up additional arguments.

The last piece of the puzzle is figuring out how cars get onto the Road to begin with.
From the perspective of traffic modeling, a house is really a kind of dead-end Road called a
driveway. Similarly, an office building is a kind of Road called a parking lot. The house and
office-building objects implement the Road interface, know the Road segments to which
they’re connected, and inject cars (or accept them) into the system at certain times of day
using the Road interface—all easy code to implement.

Now let’s add a user interface. It’s a classic requirement of OO systems that an object not
expose implementation details. Our goal is maintainability. If all the implementation informa-
tion is a closely guarded secret of the object, then you can change the implementation of that
object without impacting the code that uses the object. That is, the change doesn’t “ripple out”
into the rest of the system. Since all changes are typically concentrated in a single class defini-
tion, OO systems are easy to maintain, but only if they follow this encapsulation rule. (You
may have a good reason to violate the encapsulation occasionally, but do so knowing that
your system will be harder to maintain as a consequence.)

The encapsulation requirement implies that a well-designed object will have at least
some responsibility for creating its own UI. That is, a well-done class won’t have getter or
setter methods because these methods expose implementation details, introducing down-
the-line maintenance problems as a consequence. If the implementation of the object

CHAPTER 1 ■ PRELIMINARIES: OO AND DESIGN PATTERNS 10122

388x_Ch01_CMP3 8/17/04 12:27 PM Page 22

changes in such a way that the type or range of values returned by a getter method needs
to change, for example, you’ll have to modify not only the object that defines the getter but
also all the code that calls the “getter.” I’ll talk more about this issue and about how to design
systems without getter and setter methods in a moment.

In the current system, you can build a UI by adding a single method to the Road interface.

3. Draw a representation of yourself along this line:

drawYourself(Graphics g, Point begin, Point end);

The Road UI could indicate the average speed of the traffic (which will vary with traffic
density) by changing the line color. The result would be a map of the city where traffic speed is
shown in color. The Map, of course, needs to know about Roads, so the Map builds a rendition
of itself, delegating drawing requests to Road objects when necessary. Since the Road objects
render themselves, there’s no need for a bunch of getter methods that ask for the information
that some external UI builder needs to do the rendering: methods such as getAverageSpeed()
are unnecessary.

Now that the groundwork is done, you’ll set the wheels in motion, so to speak. You hook
up Roads, driveways, and parking lots to each other at compile time. Put some cars in the
system (also at compile time), and set things going. Every time a clock “ticks,” each Road
segment is notified, decides how many cars it needs to get rid of, and passes them along.
Each Road segment automatically updates its piece of the UI as the average speed changes.
Voilà! Traffic flow.

Once you’ve designed the messaging system, you’re in a position to capture what you’ve
learned in a static-model diagram. Associations exist only between classes whose objects
communicate with one another, and only those messages that you need are defined. Figure 1-3
shows the UML. Note that it would have been a waste of time to start with the static model.
You need to understand the message flow before you can understand the relationships
between classes.

Figure 1-3. UML static-model diagram for the traffic model

Map «singleton»

Street-grid representation

+whichWayShouldITurn(here,there: Location)

Car

Destination

+whichWayWouldYouLikeToTurn (here:Location): Direction

Road
Maximum Load, Speed Limit

+canYouAcceptCars (n:int, source:Road) : boolean
+giveMeCars(n:int): Car[n]

1

1..4adjacentRoads

1

0..ntraffic

CHAPTER 1 ■ PRELIMINARIES: OO AND DESIGN PATTERNS 101 23

388x_Ch01_CMP3 8/17/04 12:27 PM Page 23

If you want hands-on experience playing with a traffic simulator of this sort, look at Maxis
Software’s SimCity. Having not seen the source code, I don’t actually know if SimCity is imple-
mented as an automaton, but I’d be shocked if it wasn’t one. It certainly acts like it on at the
user-interface level, so it will do for our purposes. Maxis has a free online version of SimCity
Classic on its web site (http://www.maxis.com).

Getters and Setters Are Evil
As I mentioned earlier, it’s a fundamental precept of OO systems that an object not expose any
of its implementation details. This way, you can change the implementation without needing
to change the code that uses the object. It follows that you should avoid getter and setter func-
tions, which typically do nothing but provide access to implementation details (fields), in OO
systems. Note that neither the ATM nor traffic-flow example used getter or setter methods to
do their work.

This isn’t to say that your functions shouldn’t return values or that “get” or “set” function-
ality is never appropriate. Objects must sometimes move through the system to get work
done. Nonetheless, get/set functions are often used inappropriately as a means of accessing
otherwise private fields, and it’s that usage that will give you the most trouble. I’ll discuss what
I consider to be appropriate uses of get/set methods at the end of this section. Getter and
setter methods (often called accessors and mutators, though the word accessor is commonly
used for both) usually indicate a lack of clear, up-front thinking about the problem you’re
solving. Programmers often put them into class definitions because they don’t want to think
about how objects of that class will actually communicate at runtime. The presence of a getter
lets you defer that thinking until you’re actually coding. This behavior is plain laziness; it isn’t
“programming for flexibility.”

Consider this trivial example of why “getters” should be avoided: There may be 1,000 calls to
a getX() method in your program, and every one of those calls assumes that the return value is a
particular type. The return value of getX() may be stored in a local variable, for example, and the
variable type must match the return-value type. If you need to change the way that the object is
implemented in such a way that the type of X changes, you’re in deep trouble. If X used to be an
int, but now has to be a long, you’ll now get 1,000 compile errors. If you fix the problem incor-
rectly by casting the return value to int, the code will compile cleanly but won’t work. (The
return value may be truncated.) You have to modify the code surrounding every one of those
1,000 calls to compensate for the change. I, at least, don’t want to do that much work.

Now consider the case of a Money class. Originally written to handle only U.S. dollars, it
has a getValue() method that returns a double and a setValue() that sets a new value. The
first problem is that you can do nonsensical things with money, illustrated in the following
code:

Money a, b, c;
//...
a.setValue(b.getValue() * c.getValue());

What does it mean to multiply $2 by $5?
The second problem is more significant: You need to internationalize the application to

handle multiple currencies. You go into the class and add a field called currency that’s set
(internally) to values such as US_DOLLAR, YEN, LEU, and HRYVNA. Small change; big problems.

CHAPTER 1 ■ PRELIMINARIES: OO AND DESIGN PATTERNS 10124

388x_Ch01_CMP3 8/17/04 12:27 PM Page 24

http://www.maxis.com

In any event, what’s getValue() going to return? It can’t just return a double because that value
no longer tells you anything useful. You need to know the currency, too. It can’t normalize the
return value on U.S. dollars because the exchange rate changes by the minute. What are you
going to do with the value in any case? You can’t just print it, because you need the currency
again. You could augment getValue() with getCurrency(), but now all the code that uses the
value must also get the currency and normalize on some standard currency locally. That’s a lot
of work that may need to be duplicated in 1,000 places in the code. You also have to find every
screen in the system where the value of money is displayed and change the display logic to
include currency. This “simple” change is rapidly becoming an incredible mess.

Another example: Think of all the problems that were caused by System.in, System.out, and
System.err when the Reader and Writer classes were introduced to Java. These three fields were
public, which is itself anathema. Simply wrapping them (with a System.getOut() that returned
System.out, for example) doesn’t improve the actual problem: System.out and System.err need to
be a (Unicode-based) Writer objects, not (byte-based) PrintStream objects. Ditto for System.in
and Reader. Changing the declared types of the objects that hold System.out isn’t, in and of itself,
enough. Writers are used differently than Output streams. They have different semantics and
different methods. You have to change (or at least examine) all the code surrounding the use of
System.out access as a consequence. If your program had been writing Unicode using the old
System.out, for example, it needed two write() calls to write a single glyph. It also needed some
logic to extract the high and low bytes of the glyph to write them separately. All that code has to be
removed with the Writer version.

The problem is compounded by force of habit. When procedural programmers come to
Java, they tend to start out by building code that looks familiar. Procedural languages don’t
have classes, but they do have things such as the C struct (think: a class without methods;
everything’s public). It seems natural, then, to mimic a struct by building class definitions
with virtually no methods and nothing but public fields. These procedural programmers read
somewhere that fields should be private, however, so they make the fields private and supply
public get/set methods. They haven’t achieved much other than complicating the public
access, though. They certainly haven’t made the system object oriented.

Procedural programmers will argue that a public accessor that wraps a private field is
somehow “better” than a public field because it lets you control access. An OO programmer
will respond that all access—controlled or otherwise—leads to potential maintenance prob-
lems. Controlled access may be better than unfettered access, but that doesn’t make the prac-
tice good. The accessor-is-better-than-direct-access argument misses the real point entirely:
The vast majority of your classes don’t need the accessor (or mutator) methods at all. That is, if
the messaging system is designed carefully (I’ll talk about how in a moment), then you can
probably dispense with the get/set methods entirely and make your classes more maintain-
able as a consequence.

This isn’t to say that return values are bad or that you can eliminate all “get” methods
from your program—you can’t. But minimizing the getter/setter functions will make the code
more maintainable.

From a purely practical perspective, heavy use of get/set methods make the code more
complicated and less agile. Consider a typical procedural “god” class, which collects the infor-
mation that it needs to do some piece of work from other objects. The god-class implementa-
tion is littered with “get” calls. What if the object that already has the data does the work,
though? That is, what if you moved the code that does real work from the god class to the
place where the data is stored? The accessor calls disappear, and the code is simplified.

CHAPTER 1 ■ PRELIMINARIES: OO AND DESIGN PATTERNS 101 25

388x_Ch01_CMP3 8/17/04 12:27 PM Page 25

The get/set methods also make the program inflexible (it can’t accommodate new busi-
ness requirements easily) and hard to maintain. Perhaps the most important principle of OO
systems is data abstraction: The way in which an object goes about implementing a message
handler should be completely hidden from other objects. That’s one of the reasons that all
of your instance variables (the nonconstant fields of a class) should be private. If you make
an instance variable public, then you can’t change the field as the class evolves over time,
because you’d break the external code that used the field. You really don’t want to search out
1,000 uses of some class simply because you make a change to that class.

Naive getter and setter methods are dangerous for the same reason that public fields are
dangerous: They provide external access to implementation details. What if you need to change
the type of the accessed field? You also have to change the return type of the accessor. This return
value is used lots of places, though, so you’ll have to change all of that code as well. I want the
effects of a change to be limited to a single class definition, however. I don’t want them to ripple
out into the entire program.

This principle of implementation hiding leads to a good acid test of the quality of an OO
system: Can you make massive changes to a class definition—even throw out the whole thing
and replace it with a completely different implementation—without impacting any of the
code that uses objects of that class? This sort of modularization makes maintenance much
easier and is central to the notion of object orientation. Without implementation hiding,
there’s little point in using other OO features.

Since accessors violate the principle of encapsulation, you can argue quite reasonably
that a system that makes heavy or inappropriate use of accessors simply isn’t object oriented.
More to the point, if you go through a design process, as compared to just coding, you’ll find
that there will be hardly any accessors in your program. The process is important.

You’ll notice that there are no getter/setter methods in the traffic-modeling example. There’s
no getSpeed() method on a Car or getAverageSpeed() method on a Road segment. You don’t need
getLocation() or setLocation() methods on the Car because you’re storing location information
in the Road, where it belongs. You don’t need a setAverageSpeed() on the Road because it figures
its own speed. You don’t need a getAverageSpeed() on the Road because no other object in the
system needs that information. The lack of getter/setter methods doesn’t mean that some data
doesn’t flow through the system; the Road passes its location to the Car, for example. Nonetheless,
it’s best to minimize data movement as much as possible. You can go a long way toward getting it
“right” by observing the following rule: Don’t ask for the information that you need to do some
work; ask the object that has the information to do the work for you.

For example, you don’t say the following:

Money a, b, c;
//...
a.setValue(a.getValue() + b.getValue());

Rather, you ask the Money object to do the work, as follows:

Money a, b, c;
//...
a.increaseBy(b);

You don’t say, “Give me this attribute so I can print it.” You say, “Give me a printable
rendering of this attribute” or “print yourself.”

CHAPTER 1 ■ PRELIMINARIES: OO AND DESIGN PATTERNS 10126

388x_Ch01_CMP3 8/17/04 12:27 PM Page 26

Another way to cast this rule is to think about coarse-grained vs. fine-grained operations.
A coarse-grained operation asks an object to do a lot of work. A fine-grained operation asks
the object to do only a small amount of work. Generally, I prefer coarse-grained methods
because they simplify the code and eliminate the need for most getter and setter methods.

Accessor and mutator methods end up in the model because, without a well-thought-out
dynamic model to work with, you’re only guessing how the objects of a class will be used. Conse-
quently, you need to provide as much access as possible, because you can’t predict whether you’ll
need it. This sort of design-by-guessing strategy is inefficient at best because you end up wasting
time writing methods that aren’t used (or adding capabilities to the classes that aren’t needed).
When you follow the static-model-first approach, the best you can hope for is a lot of unneces-
sary work developing these unused or too-flexible methods. At worst, the incorrect static model
creates so much extra work that the project either fails outright, or if you manage to get it built,
the maintenance cost is so high that a complete rewrite is less expensive. Remembering back to
the traffic-flow example, I used the static model to capture relationships that I discovered while
modeling the messaging system. I didn’t design the static model first and then try to make the
dynamic model work within the confines of that static model.

By designing carefully, focusing on what you need to do rather than how you’ll do it, you’ll
eliminate the vast majority of getter/setter methods in your program.

Render Thyself
Probably the most shocking thing I’ve done in the traffic-model example is put a drawYourself(...)
method on the Road segment. I’ve (gasp!) put UI code into the business logic! Consider what
happens when the requirements of the UI change, though. For example, I may want to repre-
sent the Road as a bifurcated line with each direction having its own color. I may want to actu-
ally draw dots on the lines representing the cars, and so on. If the Road draws itself, then these
changes are all localized to the Road class. Moreover, different types of Roads (parking lots, for
example) can draw themselves differently. The downside, of course, is that I’ve added a small
amount of clutter to the Road class, but that UI clutter is easily concentrated in an inner class
to clean up things.

Also, bear in mind that I haven’t actually put any UI code into the business logic. I’ve
written the UI layer in terms of AWT or Swing, both of which are abstraction layers. The actual
UI code is in the AWT/Swing implementation. That’s the whole point of an abstraction layer—
to isolate your “business logic” from the mechanics of a subsystem. I can easily port to
another graphical environment without changing the code, so the only problem is a little bit
of clutter. This clutter is easily eliminated by concentrating it into an inner class (or by using
the Facade pattern, which I’ll discuss soon).

Note that only the most simple classes can get away with a simplistic drawYourself()
method. Usually, you need finer control. Objects sometimes need to draw themselves in
various ways (HTML, a Swing JLabel, and so on), or you may need to render only a few of
the object’s attributes.

Moreover, an object doesn’t need to physically draw itself on the screen to isolate its
implementation from the rest of the program. All you need is some sort of universal (with
respect to the program) representation. An object could pass an XML rendering of itself to
a display subsystem, for example. A helper class along the lines of java.text.NumberFormat
could transform this representation for specific locals. The Money class that I discussed earlier
could return a Unicode String rendering that concatenates the currency symbol and value,
represented in a localized fashion. You could even return a .gif image or a JLabel.

CHAPTER 1 ■ PRELIMINARIES: OO AND DESIGN PATTERNS 101 27

388x_Ch01_CMP3 8/17/04 12:27 PM Page 27

My main point is that if these attribute representations are handled properly, then you
can still change the internal workings of a class without impacting the code that uses the
representation. (A representation of some object or attribute that’s presented in such a way
that it can be displayed, but not manipulated, is a variant on the Memento pattern, discussed
later in the current chapter.) Also, you can use several design patterns [notably, Builder] to
allow an object to render itself but nonetheless isolate the UI-creation code from the actual
object. I’ll discuss this pattern further in Chapter 4.

JavaBeans and Struts
“But,” you may object, “what about JavaBeans, Struts, and other libraries that use accessors
and mutators?” What about them? You have a perfectly good way to build a JavaBean without
getters and setters; the BeanCustomizer, BeanInfo, and BeanDescriptor classes all exist for
exactly this purpose. The designers of the JavaBean specification threw the getter/setter idiom
into the picture because they thought it’d be an easy way to for a junior programmer to create
a bean, something you could do while you were learning how to do it “right.” Unfortunately,
nobody did that.

People often let the “tail wag the dog” when they talk about JavaBeans (or whatever library
they use that has procedural elements). People seem to forget that these libraries started out as
some programmer’s personal attempt at solving a problem. Sometimes the programmers had a
procedural bias; sometimes they had an OO bias. Sometimes the designers deliberately “dumbed
down” an interface because they knew a lot of people just wouldn’t “get it” otherwise.

The JavaBeans get/set idiom is an example of this last problem. The accessors were
meant solely as a way to tag certain properties so that they could be identified by a UI-builder
program or equivalent. You weren’t supposed to call these methods yourself. They were there
so that an automated tool (such as a UI builder) could use the introspection APIs in the Class
class to infer the existence of certain “properties” by looking at method names. This approach
hasn’t worked out well in practice. It has introduced a lot of unnecessary methods to the
classes, and it has made the code vastly too complicated and too procedural. Programmers
who don’t understand data abstraction actually call the tagging methods, and the code is less
maintainable as a consequence. For this reason, a “metadata” feature will be incorporated
into the 1.5 release of Java. Instead of using the following get/set idiom to mark an attribute,
like so:

private int property;
public int getProperty (){ return property; }
public void setProperty (int value){ property = value; }

you’ll be able to say something like this:

private @property int property;

The UI-construction tool or equivalent will be able to use the introspection APIs to find
the properties, rather than having to examine method names and infer the existence of a
property from a name. More to the point, no runtime accessor is damaging your code.

Returning to Struts, this library isn’t a model of OO architecture and was never intended to
be. The MVC architecture embodied in Struts pretty much forces you to use get/set methods.
You can reasonably argue, that given the generic nature of Struts, it can’t be fully OO, but other

CHAPTER 1 ■ PRELIMINARIES: OO AND DESIGN PATTERNS 10128

388x_Ch01_FINAL.qxd 1/12/05 11:57 AM Page 28

UI architectures manage to hide encapsulation better than MVC. (Perhaps the real solution is
to avoid an MVC-based UI framework altogether. MVC was developed almost 30 years ago,
and we’ve learned a lot since then.) There’s one compelling reason for using Struts: The library
contains a lot of code that you don’t have to write, and it’s “good enough” for many purposes.
If “good enough” is good enough, go for it.

To sum up, people have told me that fundamental concepts of object orientation, such
as implementation hiding, are “hogwash,” simply because the libraries that these people use
(JavaBeans, Struts, .NET, and so on) don’t embody them. That argument is, I think, hogwash.

Refactoring
The other argument I’ve heard to justify the use of accessors and mutators is that an inte-
grated development environment such as Eclipse or its cousins make it so easy to refactor a
method definition to return a different argument type that there’s no point in worrying about
this stuff. I still worry, though.

Firstly, Eclipse just refactors within the scope of the existing project. If your class is being
reused in many projects, then you have to refactor all of them. A company that properly reuses
class will have many groups of programmers all working on separate projects in parallel, and
these other programmers won’t take kindly to your telling them that they have to refactor all
their code because of some specious change you want to make to a shared class.

Secondly, automated refactoring works great for simple things, but not for major changes.
The ramifications of the change are typically too far-reaching for an automated tool to handle.
You may have to change SQL scripts, for example, and the effects of the change may ripple
indirectly into the methods that are called from the place where the refactoring is made.

Finally, think about the changes to Money and System.out discussed earlier. Simply changing
a few return-value types isn’t sufficient to handle the changes I discussed. You have to change
the code that surrounds the getter invocation as well. Though it’s hard to argue that refactoring
the code isn’t a good thing, you can’t do this sort of refactoring with an automated tool.

People who use the automated-refactoring argument also tend not to understand the
most important issue: Overuse of accessors and mutators at the key-abstraction level is an
indication of a poorly designed messaging system. In other words, the code is probably struc-
tured so poorly that maintenance is unnecessarily difficult, whether or not you can refactor
easily. A redesign is required, not a refactor.

Using the earlier System.out example as a characteristic, imagine that you redesigned
Java to print a String on the console as follows:

String s = "hello world";

s.print(String.TO_CONSOLE);

and loaded a String like this:

s.load(String.FROM_CONSOLE);

All the byte-vs.-Unicode problems would disappear into the String class implementation.
Any changes from byte-based to glyph-based I/O would disappear. Since the whole point of
the Reader and Writer interfaces is to load and store strings, you could dispense with them
entirely. Overloads of print(...) and load(...) could handle file I/O.

CHAPTER 1 ■ PRELIMINARIES: OO AND DESIGN PATTERNS 101 29

388x_Ch01_CMP3 8/17/04 12:27 PM Page 29

You can argue with me about whether things should be done in this way. You can also
quibble about whether TO_CONSOLE should be a member of the String or File class. Nonethe-
less, the redesign eliminated the need for System.out and its accessors. Of course, you can
think of a billion things to do with a string and can reasonably argue that all of those things
shouldn’t be part of the String class, but design patterns (Visitor, Strategy, and so on) can
address this problem.

Life Without Get/Set
So, how do you end up with a design without getters and setters in it? That is, how do you
design a messaging system that minimizes the need for accessors and mutators? The solution
is in design, not in coding. There’s no simplistic just-replace-this-code-with-that-code solu-
tion because the problem has to do with the way you think about the interaction of objects.
You can’t just refactor the get/set methods out of the code—you have to rebuild the code from
scratch with a fundamentally different structure.

The OO-design process is centered on use cases: stand-alone tasks performed by an end
user that have some useful outcome. “Logging On” isn’t a use case because there’s no outcome
that’s useful in the problem domain. “Drawing a Paycheck” is a use case. In the earlier ATM
example, I was flushing out the “Depositing Funds” use case.

An OO system, then, implements the activities needed to play out the various “scenarios”
that comprise a use case. The runtime objects that have roles in the use case act out their roles
by sending messages to one another. Not all messages are equal, however. You haven’t accom-
plished much if you’ve just built a procedural program that uses objects and classes.

Back in 1989, Kent Beck and Ward Cunningham were teaching classes on OO design, and
they were having problems getting programmers to abandon the get/set mentality. They char-
acterized the problem as follows:

The most difficult problem in teaching object-oriented programming is getting the
learner to give up the global knowledge of control that is possible with procedural
programs, and rely on the local knowledge of objects to accomplish their tasks. Novice
designs are littered with regressions to global thinking: gratuitous global variables,
unnecessary pointers, and inappropriate reliance on the implementation of other
objects.

When they talk about “global knowledge of control,” they’re describing the "god" class I
discussed earlier—a class whose objects collect information from elsewhere and then process
that information (rather than allowing the object that has the data to do the processing). That
“inappropriate reliance on the implementation of other objects” is an accessor or mutator call.

Cunningham came up with a teaching methodology that nicely demonstrates the design
process: the CRC card. The basic idea is to make a set of 4×6 index cards that are laid out in the
following three sections:

Class: The name of a class of objects.

Responsibilities: What those objects can do. These responsibilities should be focused on
a single area of expertise.

CHAPTER 1 ■ PRELIMINARIES: OO AND DESIGN PATTERNS 10130

388x_Ch01_CMP3 8/17/04 12:27 PM Page 30

Collaborators: Other classes of objects to which the current class of objects can talk. This
set should be as small as possible.

The initial pass at the CRC card is just guesswork—things will change.
In class, Beck and Cunningham picked a use case and made a best guess at determining

which objects would be required to “act out” the use case. They typically started with two
objects and added others as required as the scenario played out. People from the class were
selected to be those objects and were handed a copy of the associated CRC card. If several
objects of a given class were needed, several people represented those objects. The students
literally acted out the use case. Here are the rules I use when acting out a use case with CRC
cards:

• Perform the activities that comprise the use case by talking to one another.

• You can talk only to your collaborators. If you need to talk to someone else, talk to a
collaborator who can talk to the other person. If that turns out not to be possible, add
a collaborator to your CRC card.

• You may not ask for the information you need to do something. Rather, you must ask
the collaborator who has the information to do the work. It’s okay to give your collabo-
rators some bit of information that they need to do the work, but keep this sort of
passing to a minimum.

• If something needs to be done and nobody can do it, create a new class (and CRC card)
or add a responsibility to an existing class (and CRC card).

• If a CRC card gets too full, you must create another class (CRC card) to handle some of
the responsibilities. Complexity is limited by what you can fit on a 4×6 index card.

• Stick to the “domain” of the problem (accounting, purchasing, and so on) in both your
vocabulary and your processes. That is, model what would happen if real people who
were domain experts were solving the problem. Pretend computers don’t exist. It’s not
very often that two people say “getX” to each other in the course of doing some task, so
in practice, the get/set methods won’t even come up.

Once you’ve worked out a conversation that solves the problem, turn on a tape recorder
or transcribe it. That transcription is the program’s “dynamic model.” The finished set of CRC
cards is the program’s “static model.” With lots of fits and starts, it’s possible to solve just about
any problem in this way.

The process I just described is the OO-design process, albeit simplified for a classroom
environment. Some people design real programs this way, using CRC cards, but the technique
tends not to scale to nontrivial programs. More often than not, designers develop the dynamic
and static models in UML, using some formal process (for example, RUP, Crystal, and even
some flavors of Extreme Programming). The point is that an OO system is a conversation
between objects. If you think about it for a moment, get/set methods just don’t come up
when you’re having a conversation. By the same token, get/set methods won’t appear in
your code if you design in this way before you start coding.

The modeling must stay in the “problem domain” as long as possible, as I mentioned
in the last rule. What gets most people in trouble is that they think they’re doing domain

CHAPTER 1 ■ PRELIMINARIES: OO AND DESIGN PATTERNS 101 31

388x_Ch01_CMP3 8/17/04 12:27 PM Page 31

modeling but are actually modeling at the implementation level. If your messaging system
isn’t using the vocabulary of the problem domain—if it doesn’t make sense to an average end
user of your program—then you’re doing implementation-level modeling. Things such as
computers (or worse, the databases or UI-construction kits) have no place at this level of
modeling.

In CRC modeling, for example, you need to keep the conversation in the problem domain
by using the vocabulary and processes that real users would use. This way the messaging
system reflects the domain directly. The database is just an internal thing that some of the
classes use as a persistence mechanism and won’t appear in the initial model at all.

If you keep the message structure in the problem domain, then you’ll eliminate the vast
majority of get/set methods, simply because “get” and “set” isn’t something your domain
experts do when solving most problems.

When Are Accessors and Mutators Okay?
If you must pass information between objects, encapsulate that information into other
objects. A “get” function that returns an object of class Money is vastly preferable to one that
returns a double.

It’s best if a method returns an object in terms of an interface that the object implements
because the interface isolates you from changes to the implementing class. This sort of method
(that returns an interface reference) isn’t really a getter in the sense of a method that just provides
access to a field. If you change the internal implementation of the provider, you must change the
definition of the returned object to accommodate the changes, of course. You can even return
an object of different class than you used to return as long as the new object implements the
expected interface. The external code that uses the object through its interface is protected.

In general, though, I try to restrict even this relatively harmless form of accessor to return
only instances of classes that are key abstractions in the system. (If the class or interface name
appears regularly in the English, domain-level description of the problem, then it’s a key
abstraction.)

Generally, messages should carry as little data as possible with them as arguments, but it’s
better to “push” data into an object than to “pull” it out. Put another way, it’s better to delegate
to another object, passing it some bit of information that it doesn’t have, than it is for that
object to call one of your methods to get the information. This isn’t to say that return values
are bad, but insofar as it’s possible, you should return either objects that encapsulate their
implementation or booleans, which give away nothing about implementation. In an ATM
machine, it’s better to ask “am I authorized to give Bill $20?” (a Boolean result) than it is to
say “give me Bill’s account balance” and make the decision locally.

One big exception exists to the no-getter-or-setter rule. I think of all OO systems as having
a “procedural boundary layer.” The vast majority of OO programs run on procedural operating
systems and talk to procedural databases, for example. The interfaces to these external proce-
dural subsystems are by their nature generic. The designer of JDBC hasn’t a clue about what
you’ll be doing with the database, so the class design has to be unfocused and highly flexible.
UI-builder classes such as Java’s Swing library are another example of a “boundary-layer”
library. The designers of Swing can’t have any idea about how their classes will be used; they’re
too generic. Normally, it would be a bad thing to build lots of flexibility that you didn’t use
because it increases development time. Nonetheless, the extra flexibility is unavoidable in
these boundary APIs, so the boundary-layer classes are loaded with accessor and mutator
methods. The designers really have no choice.

CHAPTER 1 ■ PRELIMINARIES: OO AND DESIGN PATTERNS 10132

388x_Ch01_CMP3 8/17/04 12:27 PM Page 32

In fact, this not-knowing-how-it-will-be-used problem infuses all of the Java packages. It’s
difficult to eliminate all the accessors and mutators if you can’t know how objects of the class
are actually used. Given this constraint, the designers of Java did a pretty good job of hiding as
much implementation as they could. This isn’t to say that the design decisions that went into
JDBC and its ilk apply to your code. They don’t. You do know how the classes are going to be
used, so you don’t have to waste time building unnecessary flexibility.

I should also mention constant values, which are often accessed directly as public
members. Here’s my advice:

• Don’t do it if you don’t have to do it. It’s better to have a list scale to fit its contents than
have a MAX_SIZE, for example.

• Use the new (JDK 1.5) enum facility whenever possible rather than expressly declared
and initialized static final int values. Alternatively, use the typesafe-enum pattern
described by Joshua Bloch in his book Effective Java Programming Language Guide
(Addison-Wesley, 2001).

The basic notion is to define an enum like this:

private static class Format{ private Format(); }
public static final Format SINGLE_LINE = null;
public static final Format POPUP_DIALOG = new Format();
public static final Format PANEL = new Format();

public displayYourselfAs(Format how)
{ // display the current value of calendar in

// the format specified.
}

Since the argument to displayYourselfAs(...) is a Format object, and since only two
instances of (and three references to) format can possibly exist, you can’t pass a bad
value to displayYourselfAs(...). Had you used the following more common int-enum
idiom:

public static final int SINGLE_LINE = 0;
public static final int POPUP_DIALOG = 1;
public static final int PANEL = 2;

public displayYourselfAs(int how)
{ //...
}

you could pass an arbitrary nonsense value (say, -1) to the method. Bloch devotes ten
pages to this idiom, and I refer you to his book for more information.

• If you do have to expose a constant, make sure that it’s really a constant. Java’s final
keyword guarantees that a reference can’t be changed to reference something else, but
it doesn’t protect the referenced object. If an object is used as a constant, you have to
write the class in such a way that the object can’t be modified. (Java calls this kind of
class immutable, but other than declaring all the fields of the class as final, there’s no
language mechanism to guarantee immutability. You just program the class that way.)

CHAPTER 1 ■ PRELIMINARIES: OO AND DESIGN PATTERNS 101 33

388x_Ch01_CMP3 8/17/04 12:27 PM Page 33

Consider Java’s Color class. Once the object is created, you can’t change the color, simply
because the color class doesn’t expose any methods that change the color. Consider this code:

public static final Color background = Color.RED;
//...
c.darken();

The call to darken() doesn’t modify the object referenced by background; rather, it returns
a new Color object that’s a shade darker than the original. The foregoing code doesn’t do
anything, since the returned Color object isn’t stored anywhere, and you can’t say this:

background = c.darken();

because background is final.
Finally, it’s sometimes the case that an object is a “caretaker” for other objects. For example,

a Java Collection holds a bunch of objects that were passed into it from outside. Though the
words “get” and “set” are often used in the names of the methods that give an object to a care-
taker and fetch the object back from the caretaker, these methods don’t expose any information
about how the caretaker works, so they’re also okay. In general, if you pass something into an
object, it’s reasonable to expect to be able to get that something back out again.

Databases are extreme examples of caretakers of data, though their interfaces are pushed
even further in the direction of get/set methods because a database is a fundamentally proce-
dural thing—a big bag of data; a database is part of the “boundary layer” I discussed earlier.
Consequently, it’s impossible to access a procedural database in an OO way. The get/set methods
are unavoidable. Nonetheless, you can (and should) encapsulate the procedural calls to the data-
base layer into higher-level domain objects and then write your code in terms of the interfaces to
these encapsulating objects. Inside the encapsulating objects, you’ll be doing what amounts to
get/set calls on the database. Most of the program won’t see this work, however, because they’ll
be interacting with the higher-level encapsulating object, not the database.

Summing Up the Getter/Setter Issues
So let’s sum up: I’m not saying that return values are bad, that information can’t flow through
the system, or that you can eliminate all accessors and mutators from your program. Informa-
tion has to flow, or the program won’t do anything. That information should be properly
encapsulated into objects that hide their implementation, however.

The basic issues are as follows:

• The maintainability of a program is inversely proportional to the amount of data that
flows between objects.

• Exposing implementation harms maintainability. Make sure that the accessor or
mutator really is required before you add it.

• Classes that directly model the system at the domain level, sometimes called business
objects, hardly ever need accessors or mutators. You can think of the program as parti-
tioned broadly into generic libraries that have to relax the no-getter/no-setter rule and
domain-specific classes that should fully encapsulate their implementation. Getters
and setters at this level are an indication that you didn’t do enough up-front design
work. In particular, you probably didn’t do enough dynamic modeling.

CHAPTER 1 ■ PRELIMINARIES: OO AND DESIGN PATTERNS 10134

388x_Ch01_CMP3 8/17/04 12:27 PM Page 34

• By keeping the design process in the problem (“business”) domain as long as possible,
you tend to design messaging systems that don’t use getters and setters because state-
ments such as “Get this” or “Set that” don’t come up in the problem domain.

• The closer you get to the procedural boundary of an OO system (the database interface,
the UI-construction classes, and so on), the harder it is to hide implementation. The
judicious use of accessors and mutators has a place in this boundary layer.

• Completely generic libraries and classes also can’t hide implementation completely so
will always have accessors and mutators.

• Sometimes it’s not worth the trouble to fully encapsulate the implementation. Think
of trivial classes such as Point and Dimension. Similarly, private implementation classes
(a Node class defined as a private inner class of Tree, for example) can often used a
relaxed encapsulation model. On the other hand, think of all the problems that were
caused by System.in, System.out, and System.err when the Reader and Writer classes
were introduced, and what if I want to add units (feet, inches) to a Dimension?

At a JavaOne conference (I think in 1991) James Gosling was asked to give some pithy
piece of programming advice to the multitude. He chose to answer (I’m paraphrasing) that
maintainability was inversely proportional to the amount of data that moves between objects.
The implication is that you can’t get rid of all data movement, particularly in an environment
where several objects have to collaborate to accomplish some task, but you should try to
minimize date flow as much as possible.

When I have to pass information around, I use the following two rules of thumb:

• Pass around objects (ideally in terms of the interfaces they implement) rather than
raw data.

• Use a “push” model, not a “pull” model. For example, an object may delegate to a
collaborator, passing the collaborator some piece of information that the collaborator
needs to do its work. The alternative—the collaborator “pulling” the information from
the delegator using a getter method—is less desirable. The Flyweight pattern relies on
this “push” model.

Converting a pull to a push is often just a matter of routing the message differently.
Maintainability is a continuum, not a binary. Personally, I like to err in the direction of

easy maintenance, because maintenance really begins two seconds after you write the code.
Code that’s build with maintenance in mind tends to come together faster and have fewer
bugs.

Nonetheless, you must decide where on that ease-of-maintenance continuum you want
to place your program. The Java libraries are, for the most part, examples of how you need to
compromise maintainability to get generic functionality. The authors of the Java packages hid
as much implementation as they could, given the fact that the libraries were both completely
generic and also on the procedural boundary. The price they paid is that it’s difficult to make
structural changes to libraries such as Swing because too many existing programs depend on
implementation specifics.

CHAPTER 1 ■ PRELIMINARIES: OO AND DESIGN PATTERNS 101 35

388x_Ch01_CMP3 8/17/04 12:27 PM Page 35

Not all of the Java libraries expose implementation. Think of the Crypto APIs (in javax.crypto)
and the URL/URLConnection classes, which expose hardly any information and are extraordinarily
flexible as a consequence. The Servlet classes are a good example of an encapsulated implemen-
tation that nonetheless supports information movement, though they could go even further by
providing an abstraction layer that you could use to build HTML.

So, when you see methods starting with the “get” or “set,” that’s a clue. Ask yourself whether
the data movement is really necessary. Can you change the messaging system to use coarser-
grained messages that will make the data movement unnecessary? Can you pass the information
as a message argument instead of using a separate message? Would an alternative architecture
work better at hiding implementation? If you have no alternative, though, go ahead and use it.

CHAPTER 1 ■ PRELIMINARIES: OO AND DESIGN PATTERNS 10136

388x_Ch01_FINAL.qxd 1/12/05 11:58 AM Page 36

Programming with Interfaces,
and a Few Creational Patterns

Programming in terms of interfaces is a fundamental concept in OO systems in general and
the Gang-of-Four design patterns in particular. Nonetheless, many Java programmers make
little use of interfaces (and overuse the extends relationship). This chapter explains the prob-
lems with extends and how you can solve some of those problems with interfaces. I also
introduce a few of the Creational patterns that simplify interface-based programming.

Why extends Is Evil
The extends keyword is evil—maybe not at the Charles-Manson/Vlad-the-Impaler level, but
bad enough that reputable designers don’t want to be seen in public with it. The Gang-of-Four
Design Patterns book is, in fact, largely about replacing implementation inheritance (extends)
with interface inheritance (implements). That’s why I’ve devoted this entire chapter to using
interfaces. I’ll also introduce a couple of design patterns in this chapter: Template Method,
Abstract Factory, and Singleton.

Before launching into the discussion of extends, I want to head off a few misconceptions.
First, the next few sections talk in depth about how extends can get you into trouble. Since

I’m focusing on the downside with such intensity, you may come to the conclusion that I think
you should never use extends. That’s not the case. I’m assuming you already are familiar with
the upside of extends and its importance in OO systems, so I don’t talk about that upside at all.
I don’t want to qualify every statement I make with an “on the other hand,” so please excuse
me if I give the wrong impression at times. Implementation inheritance is certainly a valuable
tool when used appropriately.

Second, an important issue is the language itself. Simply because a language provides
some mechanism doesn’t mean that that mechanism should be used heavily or thoughtlessly.
Adele Goldberg—a pioneer of object orientation—once quipped,

Many people tell the story of the CEO of a software company who claimed that his

product would be object oriented because it was written in C++. Some tell the story

without knowing that it is a joke.

37

C H A P T E R 2

■ ■ ■

388x_Ch02_CMP3 8/17/04 12:41 PM Page 37

Java programmers sometimes confuse language features, such as extends, with object
orientation itself. They will equate a statement such as “extends has problems” with “don’t do
things in an OO way.” Don’t make this mistake. Inheritance is certainly central to OO, but you
can put inheritance into your program in lots of ways, and extends is just one of these ways.

Language features such as extends certainly make it easier to implement OO systems, but
simply using derivation does not make a system object oriented. (Polymorphism—the ability
to have multiple implementations of the same type—is central to object-oriented thinking.
Since the notion of polymorphism is unique to OO, you could reasonably argue that a system
that doesn’t use polymorphism isn’t object oriented. Nonetheless, polymorphism is best
achieved through interfaces, not extends relationships.)

To my mind, data abstraction—the encapsulation of implementation details within the
object—is just as central to OO thinking as polymorphism. Of course, procedural systems can
use data abstraction, but they don’t have to do so. Hard-core data abstraction is not optional
in an OO system, however.

As I discussed in the preface, using a language feature mindlessly, without regard to the
negative consequences of using the feature, is a great way to create bad programs. Implemen-
tation inheritance (extends) is valuable in certain situations, but it also can cause a lot of grief
when used incorrectly. Polymorphism (redefining base-class behavior with a derived-class
override) is central to object orientation, and you need some form of inheritance to get poly-
morphism. Both extends and implements are forms of inheritance, though. The class that
implements an interface is just as much a derived class as one that extends another class.1

The similarity between extends and implements is quite clear in a language such as C++,
simply because C++ doesn’t distinguish between the two syntactically. For you C++ program-
mers, a C++ interface is a virtual base class containing nothing but “pure” virtual functions.
The lack of syntactic sugar to support interface-based programming doesn’t mean that C++
doesn’t support interfaces. It’s just that it doesn’t have an interface keyword.

Interfaces vs. Classes
I once attended a Java User’s Group meeting where James Gosling (Java’s inventor) spoke
about some eminently forgettable topic. Afterward, in a memorable Q&A session, someone
asked him, “If you could do Java over again, what would you change?” His reply was, “I’d leave
out classes.” After the laughter died down, he explained that the real problem wasn’t classes
per se but rather implementation inheritance (the extends relationship). Interface inheritance
(the implements relationship) is much preferred. Avoid implementation inheritance whenever
possible.

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS38

1. Pedagogically, an interface defines a type, not a class, so is not properly called a base class.
That is, when you say class, you really mean a “class of objects that share certain characteristics.”
Since interfaces can’t be instantiated, they aren’t really “classes of objects,” so some people use the
word type to distinguish interfaces from classes. I think the argument is pedantic, but feel free to use
whatever semantics you want.

388x_Ch02_CMP3 8/17/04 12:41 PM Page 38

Losing Flexibility
So, why? The first problem is that explicit use of a concrete-class name locks you into a specific
implementation, making down-the-line changes unnecessarily difficult.

At the core of the contemporary “agile” development methodologies is the concept of
parallel design and development. You start programming before you have fully specified the
program. This way of working flies in the face of traditional wisdom—that a design should be
complete before programming starts—but many successful projects have proven that you can
use the technique to develop good-quality code even more rapidly (and cost effectively) than
with the traditional pipelined approach. Agile development isn’t a good fit for every project,
but it works nicely on small projects whose requirements change during development.

At the core of Agile parallel development is the notion of flexibility. You have to write your
code in such a way that you can incorporate newly discovered requirements into the existing
code as painlessly as possible. Rather than implementing features you may need, you imple-
ment only the features you do need, but in a way that accommodates change. Without flexi-
bility, parallel development simply isn’t possible. Programming to interfaces is at the core of
flexible structure. To see why, let’s look at what happens when you don’t use them. Consider
the following code:

void f()
{ LinkedList list = new LinkedList();

//...
modify(list);

}

void modify(LinkedList list)
{

list.add(...);
doSomethingWith(list);

}

Suppose that a new requirement for fast lookup has now emerged, so the LinkedList isn’t
working. You need to replace it with a HashSet. In the existing code, that change is not local-
ized since you’ll have to modify not only the initial definition (in f ()), but also the modify()
definition (which takes a LinkedList argument). You’ll also have to modify the definition of
doSomethingWith(), and so on, down the line.

So, let’s rewrite the code as follows so that modify() takes a Collection rather than a
LinkedList argument:

void f()
{ Collection list = new LinkedList();

//...
modify(list);

}

void modify(Collection list)
{ list.add(...);

doSomethingWith(list);
}

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS 39

388x_Ch02_CMP3 8/17/04 12:41 PM Page 39

Let’s also presuppose that you make that change—from LinkedList to Collection every-
where else the concrete-class name appears in your code. This change makes it possible to
turn the linked list into a hash table simply by replacing the new LinkedList() with a new
HashSet() in the original definition (in f()). That’s it. No other changes are necessary.

As another example, compare the following code, in which a method just needs to look
at all the members of some collection:

f()
{

Collection c = new HashSet();
//...
examine(c);

}

void examine(Collection c)
{ for(Iterator i = c.iterator(); i.hasNext() ;)

//...
}

to this more-generalized version:

void f()
{

Collection c = new HashSet();
//...
examine(c.iterator());

}

void examine(Iterator i)
{ for(; i.hasNext() ; i.next())

//...
}

Since examine() now takes an Iterator argument rather than a Collection, it can traverse
not only Collection derivatives but also the key and value lists that you can get from a Map. In
fact, you can write iterators that generate data instead of traversing a collection. You can write
iterators that feed information from a test scaffold or a file to the program. g2() can accom-
modate all these changes without modification. It has enormous flexibility.

Coupling
A more important problem with implementation inheritance is coupling, the undesirable
reliance of one part of a program on another part. Global variables are the classic example
of why strong coupling is bad. If you change the type of a global variable, for example, all the
code that uses that variable—that is coupled to the variable—can be affected, so all this code
must be examined, modified, and retested. Moreover, all the methods that use the variable
are coupled to each other through the variable. That is, one method may incorrectly affect the
behavior of another method simply by changing the variable’s value at an awkward time. This
problem is particularly hideous in multithreaded programs.

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS40

388x_Ch02_CMP3 8/17/04 12:41 PM Page 40

You should strive to minimize coupling relationships. You can’t eliminate coupling alto-
gether, because a method call from an object of one class to an object of another is a form of
coupling. Without some coupling, you’d have no program. Nonetheless, you can minimize
coupling considerably by diligently following OO precepts, the most important being that the
implementation of an object should be completely hidden from the objects that use it. For
example, any fields that aren’t constant should always be private. Period. No exceptions. Ever.
I mean it. (You can occasionally use protected methods to good effect, but protected instance
variables are an abomination; protected is just another way to say public.)

As I discussed in depth in Chapter One, you should never use accessors and mutators
(get/set functions that just provide access to a field) for the same reason—they’re just overly
complicated ways to make a field public. Methods that return full-blown objects rather than
a basic-type value are reasonable in situations where the class of the returned object is a key
abstraction in the design. Similarly, a function called getSomething() can be reasonable if
it’s a fundamental activity of the object to be a provider of information. (A getTemperature()
on a Thermometer object makes sense, provided that this method returns a Temperature.) If
the easiest way to implement some method is simply to return a field, that’s fine. It’s not
fine to look at things the other way around (“I have this field, so I need to provide access”).

I’m not being pedantic here. I’ve found a direct correlation in my own work between the
“strictness” of my OO approach, how fast the code comes together, and how easy it is to main-
tain the code. Whenever I violate a central OO principle such as implementation hiding, I find
myself rewriting that code (usually because the code is impossible to debug). I don’t have time
to write programs twice, so I’m really good about following the rules. I have no interest in
purity for the sake of purity—my concern is entirely practical.

The Fragile-Base-Class Problem
Now let’s apply the concept of coupling to inheritance. In an implementation-inheritance
system (one that uses extends), the derived classes are tightly coupled to the base classes, and
this close connection is undesirable. Designers have applied the moniker “the fragile-base-class
problem” to describe this behavior. Base classes are considered “fragile” because you can
modify a base class in a seemingly safe way, but this new behavior, when inherited by the
derived classes, may cause the derived classes to malfunction. You just can’t tell whether a
base-class change is safe simply by examining the methods of the base class in isolation; you
have to look at (and test) all derived classes as well. Moreover, you have to check all code that
uses both base-class and derived-class objects, since the new behavior may also break this
code. A simple change to a key base class can render an entire program inoperable.

Let’s look at the fragile-base-class and base-class-coupling problems together. The
following class extends Java’s ArrayList class to make it behave like a stack (a bad idea, as
you’ll see in a moment):

class Stack extends ArrayList
{ private int topOfStack = 0;

public void push(Object article)
{ add(topOfStack++, article);
}

public Object pop()

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS 41

388x_Ch02_CMP3 8/17/04 12:41 PM Page 41

{ return remove(--topOfStack);
}

public void pushMany(Object[] articles)
{ for(int i = 0; i < articles.length; ++i)

push(articles[i]);
}

}

Even a class as simple as this one has problems. Consider what happens when a user
leverages inheritance and uses the ArrayList’s clear() method to pop everything off the
stack, like so:

Stack aStack = new Stack();
aStack.push("1");
aStack.push("2");
aStack.clear();

The code compiles just fine, but since the base class doesn’t know anything about the
index of the item at the top of the stack (topOfStack), the Stack object is now in an undefined
state. The next call to push() puts the new item at index 2 (the current value of the topOfStack),
so the stack effectively has three elements on it, the bottom two of which are garbage.

One (hideously bad) solution to the inheriting-undesirable-methods problem is for Stack
to override all the methods of ArrayList that can modify the state of the array to manipulate
the stack pointer. This is a lot of work, though, and doesn’t handle problems such as adding a
method like clear() to the base class after you've written the derived class.

You could try to fix the clear() problem by providing an override that threw an exception,
but that’s a really bad idea from a maintenance perspective. The ArrayList contract says
nothing about throwing exceptions if a derived class doesn’t want some base-class method
to work properly. This behavior will be completely unexpected. Since a Stack is an ArrayList,
you can pass a Stack to an existing method that uses clear(), and this client method will
certainly not be expecting an exception to be thrown on a clear() call. It’s impossible to write
code in a polymorphic environment if derived-class objects violate the base-class contract at
all, much less this severely.

The throw-an-exception strategy also moves what would be a compile-time error into
runtime. If the method simply isn’t declared, the compiler kicks out a method-not-found
error. If the method is there but throws an exception, you won’t find out about the call until
the program is actually running. Not good.

You would not be wrong if you said that extending ArrayList to define a Stack is bad
design from a conceptual level as well. A Stack simply doesn’t need most of the methods that
ArrayList provides, and providing access to those methods through inheritance is not a good
plan. That is, many ArrayList operations are nonsensical in a Stack.

As an aside, Java’s Stack class doesn’t have the clear() problem because it uses the base-
class size() method in lieu of a top-of-stack index, but you could still argue that java.util.Stack
should not extend java.util.Vector. The removeRange() and insertElementAt() methods inher-
ited from Vector have no meaning to a stack, for example. There’s nothing to stop someone from
calling these methods on a Stack object, however.

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS42

388x_Ch02_CMP3 8/17/04 12:41 PM Page 42

A better design of the Stack class uses encapsulation instead of derivation. That way, no
inherited methods exist at all. The following new-and-improved version of Stack contains an
ArrayList object rather than deriving from ArrayList:

class Stack
{ private int topOfStack = 0;

private ArrayList theData = new ArrayList();

public void push(Object article)
{ theData.add(topOfStack++, article);
}

public Object pop()
{ return theData.remove(--topOfStack);
}

public void pushMany(Object[] articles)
{ for(int i = 0; i < articles.length; ++i)

push(articles[i]);
}

public int size() // current stack size.
{ return theData.size();
}

}

The coupling relationship between Stack and ArrayList is a lot looser than it was in the
first version. You don’t have to worry about inheriting methods you don’t want. If changes are
made to ArrayList that break the Stack class, you would have to rewrite Stack to compensate
for those changes, but you wouldn’t have to rewrite any of the code that used Stack objects.
I do have to provide a size() method, since Stack no longer inherits size() from ArrayList.

So far so good, but now let’s consider the fragile-base-class issue. Let’s say you want to
create a variant of Stack that keeps track of the maximum and minimum stack sizes over a
period of time. The following implementation maintains resettable “high-water” and “low-
water” marks:

class MonitorableStack extends Stack
{

private int highWaterMark = 0;
private int lowWaterMark = 0;

public void push(Object o)
{ push(o);

if(size() > highWaterMark)
highWaterMark = size();

}

public Object pop()

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS 43

388x_Ch02_CMP3 8/17/04 12:41 PM Page 43

{ Object poppedItem = pop();
if(size() < lowWaterMark)

lowWaterMark = size();
return poppedItem;

}

public int maximumSize() { return highWaterMark; }
public int minimumSize() { return lowWaterMark; }
public void resetMarks () { highWaterMark = lowWaterMark = size(); }

}

This new class works fine, at least for a while. Unfortunately, the programmer chose to
inherit the base-class pushMany() method, exploiting the fact that pushMany() does its work by
calling push(). This detail doesn’t seem, at first, to be a bad choice. The whole point of using
extends is to be able to leverage base-class methods.

One fine day, however, somebody runs a profiler and notices the Stack is a significant
bottleneck in the actual execution time of the code. Our intrepid maintenance programmer
improves the performance of the Stack by rewriting it not to use an ArrayList at all. Here’s the
new lean-and-mean version:

class Stack
{

private int topOfStack = -1;
private Object[] theData = new Object[1000];

public void push(Object article)
{ theData[++topOfStack] = article;
}

public Object pop()
{ Object popped = theData[topOfStack--];

theData[topOfStack] = null; // prevent memory leak
return popped;

}

public void pushMany(Object[] articles)
{ assert (topOfStack + articles.length) < theData.length;

System.arraycopy(articles, 0, theData, topOfStack+1,
articles.length);

topOfStack += articles.length;
}

public int size() // current stack size.
{ return topOfStack + 1;
}

}

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS44

388x_Ch02_CMP3 8/17/04 12:41 PM Page 44

Notice that pushMany() no longer calls push() multiple times—it just does a block transfer.
The new version of Stack works just fine; in fact, it’s better (or at least, faster) than the

previous version. Unfortunately, the MonitorableStack derived class doesn’t work any more,
since it won’t correctly track stack usage if pushMany() is called. The derived-class version of
push() is no longer called by the inherited pushMany() method, so the highWaterMark is no
longer updated by pushMany(). Stack is a fragile base class.

Let’s imagine you can fix this problem by providing the following pushMany() implementa-
tion in MonitorableStack:

public void pushMany(Object[] articles)
{ for(int i = 0; i < articles.length; ++i)

push(articles[i]);
}

This version explicitly calls the local push() override, so you’ve “fixed” the problem, but
note that similar problems may exist in all the other overrides of Stack, so you’ll have to
examine all of them to make sure they still work.

Now let’s imagine that a new requirement emerges—you need to empty a stack without
explicitly popping the items. You go back into the Stack declaration and add the following:

public void discardAll()
{ stack = new Object[1000];

topOfStack = -1;
}

Again, adding a method seems both safe and reasonable. You wouldn’t expect derived-class
(or any other) code to break if you simply add a base-class method, since no derived class could
possibly leverage the previously nonexistent addition. Unfortunately, this reasonable-seeming
modification to the base-class definition has broken the derived classes yet again. Since
discardAll() doesn’t call pop(), the high- and low-water marks in MonitorableStack are not
updated if the entire stack is discarded.

So how can you structure the code so fragile base classes are less likely to exist? You’ll find
a clue in the work you had to do. Every time you modified the base class, you had to override
all the base-class methods in the derived classes and provide derived-class versions. If you
find yourself overriding everything, you should really be implementing an interface, not
extending a base class.

Under interface inheritance, there’s no inherited functionality to go bad on you. If Stack
were an interface, implemented by both a SimpleStack and a MonitorableStack, then the code
would be much more robust.

Listing 2-1 provides an interface-based solution. This solution has the same flexibility
as the implementation-inheritance solution: You can write your code in terms of the Stack
abstraction without having to worry about what kind of concrete stack you’re actually manip-
ulating. You can also use an interface reference to access objects of various classes polymor-
phically. Since the two implementations must provide versions of everything in the public
interface, however, it’s much more difficult to get things wrong.

Note that I’m not saying that implementation inheritance is “bad,” but rather that it’s a
potential maintenance problem. Implementation inheritance is fundamental to OO systems,

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS 45

388x_Ch02_CMP3 8/17/04 12:41 PM Page 45

and you can’t (in fact, don’t want to) eliminate it altogether. I am saying that implementation
inheritance is risky, and you have to consider the consequences before using it.

Generally, it’s safer to implement an interface using a delegation model as I've done with
the MonitorableStack in Listing 2.1. (You delegate interface operations to a contained object
of what would otherwise be the base class.) Both of these strategies are viable ways to incor-
porate inheritance into your system.

But, as with any design decision, you are making a trade-off by using a delegation model.
The delegation model is harder to do. You’re giving up implementation convenience to eliminate
a potential fragile-base-class bug. On the other hand, being able to use inherited functionality
is a real time-saver, and these small “pass-through” methods increase the code size and impact
maintainability. It’s your decision whether you’re willing to take the risk of a difficult-to-find bug
emerging down the line in order to save you a few lines of code now. Sometimes it’s worth the
risk—the base class may have 200 methods, and you’d have to implement all of them in the
delegation model. That’s a lot of work to do.

Listing 2-1. Eliminating Fragile Base Classes Using Interfaces

1 import java.util.*;
2
3 interface Stack
4 {
5 void push(Object o);
6 Object pop();
7 void pushMany(Object[] articles);
8 int size();
9 }
10
11 class SimpleStack implements Stack
12 {
13 private int topOfStack = 0;
14 private ArrayList theData = new ArrayList();
15
16 public void push(Object article)
17 { theData.add(topOfStack++, article);
18 }
19
20 public Object pop()
21 { return theData.remove(--topOfStack);
22 }
23
24 public void pushMany(Object[] articles)
25 { for(int i = 0; i < articles.length; ++i)
26 push(articles[i]);
27 }
28
29 public int size() // current stack size.
30 { return theData.size();
31 }

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS46

388x_Ch02_CMP3 8/17/04 12:41 PM Page 46

32 }
33
34 class MonitorableStack implements Stack
35 {
36 private int highWaterMark = 0;
37 private int lowWaterMark = 0;
38
39 SimpleStack stack = new SimpleStack();
40
41 public void push(Object o)
42 { stack.push(o);
43
44 if(stack.size() > highWaterMark)
45 highWaterMark = stack.size();
46 }
47
48 public Object pop()
49 {
50 Object returnValue = stack.pop();
51 if(stack.size() < lowWaterMark)
52 lowWaterMark = stack.size();
53 return returnValue;
54 }
55
56 public void pushMany(Object[] articles)
57 { for(int i = 0; i < articles.length; ++i)
58 push(articles[i]);
59
60 if(stack.size() > highWaterMark)
61 highWaterMark = stack.size();
62 }
63
64 public int maximumSize() { return highWaterMark; }
65 public int minimumSize() { return lowWaterMark; }
66 public void resetMarks () { highWaterMark = lowWaterMark = size(); }
67 public int size() { return stack.size(); }
68 }

Multiple Inheritance
Languages that support multiple inheritance let you have the equivalent of multiple extends
relationships in a class definition. If extends is “bad,” surely multiple extends relationships are
worse, but occasionally the moral equivalent of multiple inheritance is legitimately useful. For
example, in the next chapter I’ll introduce the concept of a “menu site”—a frame window that
has a menu bar. The main window of my application is both a frame window (a JFrame) and a
MenuSite. A frame that acts as a menu site has all the properties of both base classes, so multiple
inheritance seems reasonable in this context.

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS 47

388x_Ch02_CMP3 8/17/04 12:41 PM Page 47

I’ve implemented this feature using interfaces and the delegation model I discussed in
the previous section. (My class extends JFrame and implements the MenuSite interface, dele-
gating all MenuSite operations to a default implementation object.) Conceptually, this solution
accomplishes the same thing as multiple inheritance. Since this delegation-based solution is
in common use, you could call this architecture the Multiple Inheritance design pattern.

Here’s the general form of the pattern:

interface Base
{ void f();

static class Implementation implements Base
{ public void f(){/*...*/}
}

}

// Effectively extend both Something and Base.Implementation:

class Derived extends Something implements Base
{ Base delegate = new Base.Implementation();

public void f()
{ delegate.f();
}

}

The implement/delegate idiom, like inheritance, has the benefit of not having to write
the base-class code more than once. I’m using encapsulation of a default version rather than
derivation from that default version to achieve that end. On the downside, I have to access the
default implementation through a trivial accessor method in the encapsulating class, such as
the one on the first line in f(), above. Similarly, the MonitorableStack.push(...) method (on
line 41 of Listing 2-1) has to call the equivalent method in SimpleStack. Programmers grumble
about having to write these one-liners, but writing an extra line of code is a trivial price to pay
for eliminating a fragile base class. C++ programmers will also note that the implement/dele-
gate idiom eliminates all of C++’s multiple-inheritance-related problems (such as implemen-
tation ambiguity).

Frameworks
A discussion of fragile base classes wouldn’t be complete without a mention of framework-
based programming. Frameworks such as Microsoft’s Foundation Class (MFC) library have
become a popular way of building class libraries. Though MFC itself is mercifully fading away,
the structure of MFC has been entombed in countless Microsoft shops where the program-
mers assume that if Microsoft does it that way, it must be good.

A framework typically starts out with a library of half-baked classes that don’t do everything
they need to do; but, rather, they rely on a derived class to provide key functionality that’s
needed for the base class to operate properly. A good example in Java is the paint() method of
the AWT Component class, which represents a rectangular area of the screen. Component defines
paint(), but you’re expected to override paint() in the derived class to actually draw something
on the screen. The paint() method is effectively a placeholder for the rendering code, and the

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS48

388x_Ch02_FINAL.qxd 1/12/05 12:01 PM Page 48

real version of paint() must be provided by a derived class. Most frameworks are comprised
almost entirely of these partially implemented base classes.

This derivation-based architecture is unpleasant for several reasons. The fragile-base-
class issue I’ve been discussing is one of these. The proliferation of classes required to get the
framework to work is an even more compelling problem. Since you have to override paint()
to draw a window, each different window requires a derived class that overrides paint() to
draw that window. You must derive a unique class from Component for every window that has
to paint itself in some unique way. A program with 15 different windows may require 15
different Component derivatives.

One of my rules of thumb in OO estimation is that a class takes, on average, two to three
weeks to fully implement in Java (including documentation and debugging) and longer in C++.
The more classes you have, the longer it takes to write your program.

Here’s another perspective on the proliferation-of-classes problem: The customization-via-
derivation strategy just doesn’t work if the hierarchy is at all deep. Consider the class hierarchy in
Figure 2-1. The Editor class handles basic text manipulation. It accepts keystrokes and modifies
an internal buffer in response to those keystrokes. The actual buffer update is performed by
the (protected) updateBuffer() method, which is passed keystrokes and updates the buffer
appropriately. In theory, you can change the way that particular keystrokes are interpreted by
overriding this method (Custom Editor in gray in Figure 2-1).

Figure 2-1. A failure of Template Method

Unfortunately, the new behavior is available to only those classes that extend Custom
Editor, not to any existing classes that extend Editor itself. You’ll have to derive classes from
Editor, EditableTextControl, and Standalone Editor to get the new key mappings to be
universally supported. You’ve doubled the size of this part of the class hierarchy. It would be
nice to inject a class between Editor and its derivatives, but you’d have to change the source
code to do that, and you may not have the source code. Design patterns such as Strategy,
which I’ll discuss later in this chapter and in Chapter 4, can solve this problem nicely, but a
pure derivation-based approach to customization won’t often work.

The Template-Method and Factory-Method Patterns
The updateBuffer() in Figure 2-1 is an example of the Template-Method pattern. In Template
Method, base-class code calls an overridable placeholder method, the real implementation of
which is supplied by the derived class. The base-class version may be abstract, or it may actu-
ally implement a reasonable default operation that the derived class will customize.

Template Method is best used in moderation; an entire class “framework” that depends
on derivation-based customization is brittle in the extreme. The base classes are just too
fragile. When I was programming in MFC, I had to rewrite all my applications every time

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS 49

388x_Ch02_FINAL.qxd 1/12/05 10:56 AM Page 49

Microsoft released a new version. Often the code compiled just fine but didn’t work anymore
because some base-class method had changed. Template Method is not used in any of the
code I supply in this book.

It’s a telling condemnation of Template Method that most of the Java-library code works
pretty well “out of the box” and that the Java libraries are more useful than MFC ever was. You
can extend the Java classes if you need to customize them for an off-the-wall application, but
they work just fine without modification for the vast majority of applications. This sort of it-
works-out-of-the-box structure is just better than a derivation-based framework. It’s easier
to maintain, it’s easier to use, and it doesn’t put your code at risk if a vendor-supplied class
changes its implementation.

Template Method is also an example of how fine the line between “idiom” and “pattern”
can sometimes be. You can easily argue that the Template Method is just a trivial use of poly-
morphism and shouldn’t be glorified by the exalted title of pattern.

One reason for discussing Template Method in the current chapter is that you can use a
trivial variant of Template Method to create objects that instantiate an unknown concrete class.
The Factory-Method pattern describes nothing more than a Template Method that creates an
object whose concrete class isn’t known to the base class. The declared return value of the Factory
Method is some interface that the created object implements. Factory Method describes another
way to hide concrete-class names from base-class code. (Factory Method is an unfortunate
choice of name. People have a natural tendency to call any method that creates an object a
factory method, but these creational methods are not the Factory-Method pattern.)

Swing’s JEditorPane class provides an example of Factory Method that demonstrates both
what’s right and what’s wrong with Swing. JEditorPane implements a text-control widget that
can display HTML and, as such, is incredibly useful. For example, the following code pops up
a frame that displays some simple HTML text:

JFrame mainFrame = new JFrame();
JEditorPane pane = new JEditorPane();

pane.setContentType ("text/html");
pane.setEditable (false);
pane.setText
(

"<html>" +
"<head>" +
"</head>" +
"<body>" +

"<center>Hello <i>World</i></center>" +
"</body>" +
"</html>"

);
mainFrame.setContentPane(pane);
mainFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
mainFrame.pack();
mainFrame.show();

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS50

388x_Ch02_CMP3 8/17/04 12:41 PM Page 50

All you need do is set the content type to "text/html" to get the JEditorPane to interpret
the tags for you.

The flip side of JEditorPane is that its underlying design is so complex that it’s excruci-
ating to change its behavior in even trivial ways. The problem I wanted to solve was client-
side-UI layout. Swing’s layout-manager mechanism can be difficult to use for laying out
nontrivial UIs. Looking at Java’s JavaServer Pages (JSP) system, I thought, “how nice it would
be to do most of my layout in HTML but have a simple mechanism (such as JSP custom tags)
to call in custom controls where I needed them.” Essentially, I wanted a Panel whose layout
could be specified in HTML (with custom tags). I called this class MarkupPanel because its
layout could be specified with a markup language (HTML + custom tags).

I looked, first, at solving this problem by creating a custom LayoutManager, but I abandoned
this approach for two reasons: I didn’t want to build an HTML parser, and it was difficult to asso-
ciate the Component objects that I dropped into the Container with specific locations in the HTML
that specified the layout. I decided to create my panel by modifying the JEditorPane, which did
most of what I wanted already, to support custom tags. Listing 2-2 shows a stripped-down version
of the real MarkupPanel class. I’ve added support for a <today> tag, which displays today’s date on
the output screen, rather than implementing the generic mechanism I actually use. Even in its
stripped-down form, you get a feel for the work involved in modifying the class to accept custom
tags. It’s not a pretty picture.

HTML parsing is done by something called an EditorKit that’s used internally by the
JEditorPane. To recognize a custom tag, you have to provide your own EditorKit. You do this by
passing the JEditorPane object a setEditorKit(myCustomKit) message, and the most convenient
way to do that is to extend JEditorKit and set things up in the constructor (Listing 2-2, line 15).
By default the JEditorKit uses an EditorKit extension called HTMLEditorKit, which does almost
all the necessary work.

The main thing you have to change is something called a ViewFactory, which the JEditorKit
uses to build the visible representation of the HTML page. I’ve created an HTMLEditorKit deriva-
tive called MarkupPanelEditorKit that returns my custom view factory to the JEditorPane
(Listing 2-2, line 21).

The CustomViewFactory (Listing 2-2, line 29) overrides a single method, create(). Every
time the JEditorPane recognizes a new HTML element in the input, it calls create(), passing
it an Element object that represents the element actually found. The create() method extracts
the tag name from the Element. If the tag is a <today> tag (recognized on line 40), create()
returns an instance of yet another class: a View, whose createComponent() method returns
the Component that’s actually displayed on the screen in place of the <today> tag.

Whew! As I said, Swing is not an example of simplicity and clarity in program design. This
is an awful lot of complexity for an obvious modification. Swing’s architecture is, I think, way
too complex for what it does. One of the reasons for this overcomplexity is that someone went
crazy with patterns without considering whether the resulting system was usable. I wouldn’t
disagree if you argued that Factory Method was not the best choice of patterns in the previous
code.

Be that as it may, this code demonstrates an abundance of Factory Method reifications—
the pattern is used thee times in an overlapping fashion.

Figure 2-2 shows the structure of the system. The design patterns are indicated using the
collaboration symbol: a dashed oval labeled with the pattern name. The lines that connect to
the oval indicate the classes that participate in the pattern, each of which is said to fill some
role. The role names are standardized—they’re part of the formal pattern description in the

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS 51

388x_Ch02_FINAL.qxd 1/12/05 11:25 AM Page 51

Gang-of-Four book, for example. The roles taken on by some class are identified in UML by
putting the names at the end of the line that comes out of the collaboration symbol.

Look at the first of the Factory Method reifications: By default, an HTMLEditorKit creates
an HTMLEditorKit.HTMLFactory by calling getViewFactory() (the Factory Method). Markup-
PanelEditorKit extends HTMLEditorKit and overrides the Factory Method (getViewFactory())
to return an extension of the default HTMLEditorKit.HTMLFactory class.

In this reification, HTMLEditorKit has the role of Creator. HTMLEditorKit.HTMLFactory has
the role of Product, and the two derived classes, MarkupPanelEditorKit and CustomViewFactory,
have the roles of Concrete Creator and Concrete Product.

Now shift focus and look at the classes and patterns from a slightly different perspective. In
the second reification of Factory Method, HTMLEditorKit.HTMLFactory and ComponentView have
the roles of Creator and Product. The Factory Method is create(). I extend HTMLEditorKit.HTML-
Factory to create the Concrete Creator, CustomViewFactory, whose override of create() manu-
factures the Concrete Product: the anonymous inner class that extends ComponentView.

Now refocus again. In the third reification, ComponentView and the anonymous inner class
have the roles of Creator and Product. The Factory Method is createComponent(). I extend
ComponentView to create the Concrete Creator, the anonymous inner class, whose override
of createComponent() manufactures the Concrete Product: a JLabel.

So, depending on how you look at it, HTMLEditorKit.HTMLFactory is either a Product or a
Creator, and CustomViewFactory is either a Concrete Product or a Concrete Creator. By the
same token, ComponentView is itself either a Creator or a Product, and so on.

Listing 2-2. Using the Factory Method

1 import java.awt.*;
2 import javax.swing.*;
3 import javax.swing.text.*;
4 import javax.swing.text.html.*;
5 import java.util.Date;
6 import java.text.DateFormat;
7
8 public class MarkupPanel extends JEditorPane
9 {
10 public MarkupPanel()
11 { registerEditorKitForContentType("text/html",
12 "com.holub.ui.MarkupPanel$MarkupPanelEditorKit");
13 setEditorKitForContentType(
14 "text/html",new MarkupPanelEditorKit());
15 setEditorKit(new MarkupPanelEditorKit());
16
17 setContentType ("text/html");
18 setEditable (false);
19 }
20
21 public class MarkupPanelEditorKit extends HTMLEditorKit
22 {
23 public ViewFactory getViewFactory()

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS52

388x_Ch02_CMP3 8/17/04 12:41 PM Page 52

24 { return new CustomViewFactory();
25 }
26 //...
27 }
28
29 private final class CustomViewFactory extends HTMLEditorKit.HTMLFactory
30 {
31 public View create(Element element)
32 { HTML.Tag kind = (HTML.Tag)(
33 element.getAttributes().getAttribute(
34 javax.swing.text.StyleConstants.NameAttribute));
35
36 if(kind instanceof HTML.UnknownTag
37 && element.getAttributes().getAttribute(HTML.Attribute.ENDTAG)
38 ==null)
39 { // <today> tag
40 if(element.getName().equals("today"))
41 { return new ComponentView(element)
42 { protected Component createComponent()
43 { DateFormat formatter = DateFormat.
44 getDateInstance(DateFormat.MEDIUM);
45 return new JLabel(formatter.format(;
46 new Date()));
47 }
48 };
49 }
50 }
51 return super.create(element);
52 }
53 }
54 }

If you’re appalled by the complexity of this system, you’re not alone. Factory Method is
just a bad choice of architecture. It takes way too much work to add a custom tag, an obvious
modification to any HTML parser. You’ll see many other design patterns in subsequent chap-
ters (such as Strategy) that would have been better choices.

If you’re mystified by why things are so complex, consider that the Swing text packages
are extraordinarily flexible. In fact, they’re way more flexible than they need to be for any
applications I’ve ever written. (I’ve been told there are actually requirements for this level of
complexity in real programs, but I haven’t seen it.) Many designers fall into the trap of making
up requirements because something may have to work in a certain way (as compared to
requirements actually demanded by real users). This trap leads to code that’s more complex
than it needs to be, and this complexity dramatically impacts the system’s maintainability and
ease of use.

In my experience, the degree of flexibility built into Swing is a bogus requirement—a
“feature” that nobody actually asked for or needed. Though some systems indeed need to be
this complex, I have a hard time even imagining why I would need the level of flexibility that

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS 53

388x_Ch02_CMP3 8/17/04 12:41 PM Page 53

Swing provides, and the complexity increases development time with no obvious payback.
In strong support of my claim that nobody needs to customize Swing to this degree is that
nobody (who I know, at least) actually does it. Though you can argue that nobody can figure
out how to do it, you can also argue that nobody has been lobbying for making customization
easier.

I’ll finish up with Factory Method by noting that the pattern forces you to use implemen-
tation inheritance just to get control over object creation. This is really a bogus use of extends
because the derived class doesn’t really extend the base class; it adds no new functionality, for
example. This inappropriate use of the extends relationship leads to the fragile-base-class
problem I discussed earlier.

Figure 2-2. Overlapping uses of Factory Method in MarkupPanel

Factory Method

MarkupPanel JEditorPane

+setEditorKit (EditorKit) :void

HTMLEditorKit

+getViewFactory(): ViewFactory

MarkupPanelEditorKit

+getViewFactory(): ViewFactory

EditorKit

CustomViewFactory

+create (Element) :View

HTMLFactory

+create (Element) :View

ComponentView «abstract»

+createComponent(): Component

«Anonymous»

+createComponent(): Component

View

Concrete Creator Creator

ProductConcrete Product

Creator

ProductConcrete Product

Concrete Creator

ComponentJLabel

Concrete Creator Creator

ProductConcrete Product

«creates»

«creates»

«creates»

«creates»

«creates»

«creates»

«creates»

«creates»

Factory Method

Factory Method

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS54

388x_Ch02_CMP3 8/17/04 12:41 PM Page 54

Summing Up Fragile Base Classes
I published an early version of parts of this chapter on JavaWorld, and I know from the
responses there that many JavaWorld readers have discounted at least some of what I’ve just
said because they’ve come up with workarounds for the problem. That is, you have a “solu-
tion” to the problem, so the issue is somehow invalid.

If that’s the case, you’re missing the point.
You should write your code so you don’t need to even think about these sorts of “solu-

tions.” The problem with fragile base classes is that you are forced to worry about these sorts
of “solutions” all the time, even after you think you have a debugged, functional class. No
“solution” is permanent, since someone can come along and add a method to the base class
that breaks all the derived classes. (Again, imagine that clear() wasn’t part of the original
ArrayList class but was added after you wrote the Stack class. The addition seemed harmless,
but it broke your Stack implementation.) The only real solution to the adding-a-malicious-
method problem is encapsulation.

If you’ve come up with a solution that works, great. My point is that that’s what you
should have done to begin with, and that many of the design patterns discussed later in this
book are elegant solutions to the fragile-base-class problem. All the Gang-of-Four-design-
pattern solutions depend on encapsulation and interfaces, however.

In general, it’s best to avoid concrete base classes and extends relationships. My rule of
thumb is that 80 percent of my code at minimum should be written in terms of interfaces. I
never use a reference to a HashMap, for example; I use references to the Map interface. (I’m using
the word interface loosely here. An InputStream is effectively an interface when you look at
how it’s used, even though it’s implemented as an abstract class.)

The more abstraction you add, the greater the flexibility. In today’s business environment,
where requirements change regularly as the program is under development, this flexibility
is essential. Moreover, most of the “agile” development methodologies (such as Crystal and
Extreme Programming) simply won’t work unless the code is written in the abstract. On the
other hand, flexibility typically comes at a cost: more complexity. Swing, I think, can be
improved by making it less flexible, which would make it simpler to program and easier to
maintain. Trade-offs always exist.

If you examine the Gang-of-Four patterns closely, you’ll see that a significant number of
them provide ways to eliminate implementation inheritance in favor of interface inheritance,
and that’s a common characteristic of many patterns you find. By definition, successful design
patterns are extracted from well-written, easy-to-maintain code, and it’s telling that so much
of this well-written, easy-to-maintain code avoids implementation inheritance like the
plague.

Also bear in mind that extends is sometimes the best solution to a problem (see the next
section). I know I’ve spent a lot of time arguing strongly against using extends, but that’s not
to say that implementation inheritance is never valuable. Use extends with care, however, and
only in situations where the fragility issue is outweighed by other considerations. As is the
case with every design trade-off, you should weigh both the good and the bad points of every
alternative and choose the alternative that has the most going for it. Implementation inheri-
tance is certainly convenient and is often the simplest solution to a problem. Nonetheless, the
base class is fragile, and you can always get inheritance without extends by implementing an
interface that defines methods that access a contained instance of a default implementation.

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS 55

388x_Ch02_CMP3 8/17/04 12:41 PM Page 55

When extends Is Appropriate
Having thoroughly vilified the extends relationship, let’s talk about when it’s appropriate to
use it.

One good use of extends is in class normalization (a term I’ve borrowed from database
design). A normalized class hierarchy concentrates into base classes code that would other-
wise be implemented identically in multiple derived classes. Let’s explore this issue in some
depth.

Though this book is not about the object-oriented design process, the way in which you
go about producing a design can have a large effect on the quality of the result, and it’s impor-
tant to discuss the process, at least superficially, so that you can see how extends relationships
end up in the model.

Bad designs tend to be created inside out. The designer starts by creating a towering
edifice of a static model (a giant “class diagram”) without any thought as to how those classes
will actually be used in the actual program. The result is an ungainly mess—ten times larger
than necessary, impossible to implement, and probably unusable without serious modifica-
tion in the real program.

In practice, the class diagram should be little more than a convenient way of annotating
information that you discover elsewhere in the design process. It’s an artifact of the process,
not a driving force. Done properly, OO design involves the following steps:

1. Learn the “problem domain” (accounting, order processing, and so on).

2. Talk to your users to figure out the problems they need to solve.

3. Identify use cases—stand-alone tasks performed by an end user that have some useful
outcome—that cover all these problems.

4. Figure out the activities you need to do to accomplish the goals established in the
use case.

5. Create a “dynamic model” that shows how a bunch of objects will send messages to
one another at runtime to perform the activities identified in the previous step.

While you’re modeling dynamically, create a class diagram that shows how the objects
interact. For example, if an object of class A sends a message to an object of class B, then the
class diagram will show an association between these classes and a “operation” in the class
representing the receiving object.

Working this way, the static model is as lightweight as possible. It contains only those
operations that are actually used in the design. Only those associations that need to exist
actually exist.

So where does implementation inheritance (extends) come into the picture? It’s often the
case that you notice that certain kinds of objects use only a subset of the operations in a given
class. Whenever you see a subset, you should think “normalization.” All operations that are
used by all the objects in the system should be defined in a common base class. All operations
that are used by only a subset of the objects in a class should be defined in a class that extends
that “normalized” base class. Adding derivation, then, is a design activity that occurs well into
the design process, after you’ve done enough dynamic modeling that you can identify the
common operations. It’s a way of concentrating common operations into a shared base class.
So, normalization is one quite reasonable use of implementation inheritance.

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS56

388x_Ch02_CMP3 8/17/04 12:41 PM Page 56

Now let’s discuss the “is-a” relationship. Many books teach that you can use the phrase “
is a” to recognize inheritance relationships. If you can say that “an employee is a manager,”
then the Manager class should derive from Employee. “Is a” works well when reading a class-
hierarchy diagram. (“A HashSet ‘is a’ Collection.”) It’s not a great design tool, however.

Don’t be thrown by the English language here. Simply because a real-world manager is
an employee does not mean that you have Employee and Manager classes or that these classes
have any relationship with each other in your model, much less an extends relationship. You
could just as easily say that “this employee has management responsibilities” (which implies
some sort of encapsulation) as say that “a manager is an employee” (which implies deriva-
tion).

I can think of several valid ways to associate Manager and Employee classes, but each way
makes sense in only one context: If Employee and Manager do the same thing—have the same
operations implemented in the same way—then they’re really the same class. Employees
could be distinguished from managers by how they’re stored (the Employee objects in some list
have managerial permissions), by an internal attribute, or by some other mechanism. Don’t
confuse an employee in a managerial role (in other words, an instance of Employee that’s refer-
enced by a variable called manager) with a Manager class.

If the two classes perform identical operations but do so differently, then there should be
a common interface that each class implements. For example, Employee could be an interface
that is implemented in different ways by both the Manager and Engineer classes.

If the two classes have no operations in common, then they are completely distinct, and
no extends or implements relationship exists at all. For example, Employees may fill out time-
sheets, and Managers may authorize them. No common operations exist.2

If one of the classes adds a few operations to the other (a Manager does everything an
Employee does, plus a bit), then extends may be appropriate.

The key to the inheritance structure is in the operations that are performed, whether
these operations are shared, and so on.

The other issue affecting the should-I-use-extends decision is compile-time type checking.
If you want the compiler to guarantee that certain operations can be executed only at certain
times, then use extends. For example, if a Manager extends Employee, then you can’t perform
managerial operations in methods that are passed Employee objects. This restriction is usually
a good thing, but if there’s a reasonable default thing to do (nothing, for example), then it may
make sense to dispense with the derivation and put a few empty methods in the base class.
Simple class hierarchies are easier to build and maintain than complicated ones.

Of course, you could accomplish the same thing with interfaces. If a Manager was an
Employee that implemented the Managerial interface, then you could pass around references
to Managerial objects when appropriate and pass around Employee references when Managerial
capabilities weren’t needed. I’d probably decide (between extends and implements) by looking
at the complexity of the two solutions, choosing the simpler one.

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS 57

2. Don’t confuse the object model with the physical users. It’s reasonable for the same person to log
on sometimes in the role of Manager and other times in the role of Employee. The object model
concerns itself with the roles that the physical users take on, not with the users themselves.

388x_Ch02_FINAL.qxd 1/12/05 12:06 PM Page 57

I’ll mention one caveat: You don’t want any base-class methods that do nothing but
throw exceptions. This practice moves compile-time errors into runtime and results in buggier
programs. Sometimes the class hierarchy is simplified enough so that a runtime error is okay,
but not often. For example, the methods of the various Java Collection classes that throw
UnsupportedOperationException are reasonable, but only because it’s unlikely you’ll see this
exception thrown once the code is debugged. (I’ve been told that the reason Unsupported-
OperationException exists is that assertions weren’t part of the language when the collections
were designed, which is fair enough. To my mind, UnsupportedOperationException should
extend AssertionError, since it’s really identifying a problem that should be found at debug
time.)

Getting Rid of extends
So let’s say you’re refactoring your system (improving its structure without changing its
external behavior) and you notice that you need an interface where what you have now is a
class. How do you do it?

Let’s start from the beginning. Here’s your existing class:

class Employee
{ //...

public void youAreFired()
{ // lots of code
}

}

and there’s a lot of code scattered through the system that looks something like this:

Employee fred = new Employee();
//...
fred.youAreFired();

Follow these steps:

1. Create an interface that has the same name as the existing class, like so:

interface Employee
{ void youAreFired();
}

2. Rename the existing class, like so:

class Peon implements Employee // used to be Employee
{ public void youAreFired()

{ // lots of code
}

}

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS58

388x_Ch02_CMP3 8/17/04 12:41 PM Page 58

Now comes the hard part. You need to change every place that you create an Employee
using new. The obvious modification simply replaces new Employee() with new Peon(), but that
change will put you in the same position you were in when you started. If you need to change
the interface or class name again, you’ll still have to go back and change a lot of code. You
really want to get rid of that new altogether, or at least hide it.

Factories and Singletons
One good strategy for avoiding the must-change-all-new-invocations problem is to use the
Abstract-Factory pattern, which is usually combined with a second creational pattern,
Singleton, when it’s implemented. Abstract Factory is something of a building-block pattern,
since many other patterns rely on Abstract Factories for at least some of their implementation.
I’ll introduce the pattern now, and you’ll see many applications of it in subsequent chapters.

The common theme to all reifications of Abstract Factory is that you use a Factory to
create an object whose exact type you don’t know. You do know the interfaces that the created
object implements, but you don’t know the created object’s actual class. Listing 2-3 shows a
workable example. (The UML is in Figure 2-3, though I don’t expect you to understand this
diagram fully yet.) Using the Employee.Factory, you can replace all calls to new Employee()
with Employee.Factory.create(). Since the create() method can return an instance of any
class that implements the Employee interface, your code is isolated from any knowledge of the
implementation class. You can change this class to some other Employee implementer without
affecting your code.

Listing 2-3. A Workable Factory Implementation

1 public interface Employee
2 { void youAreFired();
3 }
4
5 public static class EmployeeFactory
6 { private Factory(){/*empty*/}
7
8 public static Employee create()
9 { return new Peon();
10 }
11 }
12
13 /*package*/ class Peon implements Employee
14 { public void youAreFired()
15 { // lots of code
16 }
17 }

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS 59

388x_Ch02_CMP3 8/17/04 12:41 PM Page 59

Figure 2-3. Factory structure

Note in Listing 2-3 that I’ve made the “concrete class” (Peon) package access to limit its
scope. Since I expect users of the Peon to get instances via EmployeeFactory.create(), and I
expect them to access the instances through only the Employee interface, no one needs to be
able to access Peon at all.

I could restrict access to the concrete class even further by making it a private inner class
of the factory, like this:

public static class EmployeeFactory
{ private EmployeeFactory(){/*empty*/}

public static Employee create()
{ return new Peon();
}

private static class Peon implements Employee
{ public void youAreFired()

{ // lots of code
}

}
}

Now, nobody (including classes in the same package as EmployeeFactory) can instantiate
Peon objects directly.

It’s also interesting to look at the following anonymous-inner-class version of the factory:

public static class EmployeeFactory
{ private Factory(){/*empty*/}

public static Employee create()
{ return new Employee()

{ public void youAreFired()
{ // lots of code
}

}
}

}

Employee «interface»

+youreFired () :void

Peon

+youreFired () :void

+
Concrete
Factory

Abstract
Product

Concrete
Product

Singleton
Abstract Factory

Singleton

EmployeeFactory

+create() :Employee

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS60

388x_Ch02_CMP3 8/17/04 12:41 PM Page 60

In this version, the concrete-class name is so private that you—the programmer—don’t
even know what it is.

I’m just touching the surface of Abstract Factory for now. I’ll explore this pattern a bit
further later in the current chapter.

The other design pattern in Listing 2-3 is Singleton. A Singleton is a one-of-a-kind object;
only one instance of it will ever exist. You must be able to access the Singleton globally, in the
same way that you could call new globally. Anything that satisfies these two requirements
(uniqueness [or at least a constrained number of instances] and global access) is a reification
of Singleton. In the current example, the Employee.Factory object is a Singleton because it
meets both conditions of the pattern.

It’s often the case that Singleton is used to get an Abstract Factory, which is in turn used
to get an object whose actual class is unknown. You’ll see several examples of this melding of
Singleton and Abstract Factory in the Java libraries. For example, the following returns a
Singleton:

Runtime.getRuntime()

Here is another example from the java.awt package. In the following call, the
Toolkit.getDefaultToolkit() call returns a Singleton implementer of the Toolkit interface:

ButtonPeer peer = Toolkit.getDefaultToolkit().createButton(b);

This Toolkit object is itself an Abstract Factory of objects that implements the ButtonPeer
interface.

Returning to the UML diagram in Figure 2-3, you can see that Employee.Factory participates
simultaneously in both Abstract Factory and Singleton.

Singleton
Now let’s look at the patterns I just used in more depth, starting with Singleton.

Java has lots of Singletons in its libraries, such as the Toolkit object just described. Every
time you call getDefaultToolkit(), you get the same object back. Although Toolkit is actually
an abstract class, it’s effectively an interface because you can’t instantiate a ToolKit explicitly.
The fact that methods are actually defined in the abstract class doesn’t matter. It’s functioning
as an interface. You could, of course, create an interface made up of the abstract methods,
implement that interface in a class, and then extend the class, but whether you use that
approach or use an abstract class is really an implementation-level decision that doesn’t
impact the design at all.

Another example of Singleton is the following:

Runtime runtimeEnvironment = Runtime.getRuntime();

Again, every time you call getRuntime(), you get the same object back.
You’ll look at lots of possible reifications of Singleton in subsequent chapters, but returning

to the one in Listing 2-3, the easiest way to deal with the Singleton’s global-access requirement is
to make everything static. That way, I can say something such as Employee.Factory.create()
to create an Employee without needing the equivalent of a static getRuntime() method.

The main point of confusion with the make-everything-static reification of Singleton is
the illusion that there’s no object, per se, only a class. In Java, though, the line between a class

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS 61

388x_Ch02_CMP3 8/17/04 12:41 PM Page 61

and an object is a fine one. A class comprised solely of static methods and fields is indistin-
guishable from an object. It has state (the static fields) and behavior (you can send messages
to it that are handled by the static methods). It’s an object.

Moreover, the class actually is an object with a runtime presence: For every class, there’s a
class object—an implicit Class class instance that holds metadata about the class (a list of the
class’s methods, for example), among other things. In broad terms, the class object is created by
the JVM when it loads the .class file, and it remains in existence as long as you can access or
create objects of the class. The class object is itself a Singleton: There’s only one instance that
represents a given class, and you can access the instance globally through MyClassName.class
or by calling Class.forName("MyClass"). Interestingly, in this particular reification of Singleton,
many instances of the Class class exist, but they’re all unique.

Returning to the code, the Employee.Factory Singleton in Listing 2-3 has one nonstatic
method: a private constructor. Because the constructor is inaccessible, any attempts to call
new Employee.Factory() kick out a compiler error, thereby guaranteeing that only one object
exists.

Threading Issues in Singleton
The everything-is-static approach is nice, but it’s not workable in many situations. If every-
thing is static, you need to know enough at compile time to fully specify it. It’s not often the
case that you have this much information. Consider the Toolkit Singleton, which needs to
know the operating system that the program is actually executing under in order to instantiate
itself correctly.

Also, you don’t have much reason to derive a class from an everything-is-static variant of
Singleton since there are no overridable methods. If you anticipate that someone will want to
use derivation to modify the behavior of (or add methods to) a Singleton, then you have to use
the classic Gang-of-Four approach, discussed next.

It’s often the case that the Singleton class is abstract and the runtime instantiation returned
by createInstance() or the equivalent is an unknown class that extends the abstract class. Many
possible classes could be derived from the Singleton class, each instantiated in different circum-
stances. You can use the everything-is-static reification of Singleton only when you'll never want
to derive a class from the Singleton—when there is only one possible implementation.

You can solve these problems with the “classic” Gang-of-Four implementation of Singleton,
which allows for runtime initialization. The “classic” reification of Singleton looks like this:

1 class Singleton
2 { private static Singleton instance = null;
3 public static instance()
4 { if(instance == null)
5 { instance = new Singleton();
6 }
7 return instance;
8 }
9 //...

10 }

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS62

388x_Ch02_CMP3 8/17/04 12:41 PM Page 62

Lots of threading issues are associated with classic Singletons, the first of which being
accessor synchronization. The following will eventually happen in a multithreaded scenario:

1. Thread 1 calls instance(), executes test on line 4, and is preempted by a clock tick
before it gets to new.

2. Thread 2 calls instance() and gets all the way through the method, thereby creating
the instance.

3. Thread 3 now wakes up, thinks that the instance doesn’t exist yet (it finished the test
before it was suspended), and makes a second instance of the Singleton.

You can solve the problem by synchronizing instance(), but then you have the (admittedly
minor) overhead of synchronization every time you access the Singleton. You really need to
synchronize only once, the first time the accessor method is called.

The easy solution is to use a static initializer. Here’s the general structure:

class Singleton2
{ private static Singleton instance = new Singleton();

public instance() { return instance; }

//...
}

The explanation of why static initializers work is actually pretty complicated, but the Java
Language Specification guarantees that a class will not be initialized twice, so the JVM is
required to guarantee that the initializer is run in a thread-safe fashion.

The only time the static-initializer approach isn’t workable is when initialization infor-
mation must be passed into the constructor at runtime. Consider a database-connection
Singleton that must be initialized to hold the URL of the server. You need to establish the URL
quite early, but you don’t want to open the connection until you actually need it. For example,
I could put the following in main(...):

public static void main(String[] args)
{ //...

Connection.pointTo(new URL(args[i]));
//...

}

Elsewhere in the program, I get access to the connection by calling this:

Connection c = Connection.instance();

I don’t want the connection to be opened until the first call to instance(), and I don’t
want to pass the URL into every call to instance(). I can’t initialize the URL in a static initial-
izer because I don’t know what URL to use at class-load time.

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS 63

388x_Ch02_CMP3 8/17/04 12:41 PM Page 63

I can solve the problem with a “classic” Gang-of-Four Singleton, like this:

class Connection
{ private static URL server;

public static pointAt(URL server){ this.server = server; }

private Connection()
{ //...

establishConnectionTo(server);
//...

}

private static Connection instance;
public synchronized static Connection instance()
{ if(instance == null)

instance = new Connection();
return connection();

}
}

Double-Checked Locking (Don’t Do It)
The main problem with the classic Singleton approach is synchronization overhead. The
synchronized keyword does something useful only on the first call. Usually, this extra over-
head is trivial, but it may not be if access is heavily contested.

Unfortunately, the “solution” to this problem that’s used most often—called Double-
Checked Locking (DCL)—doesn’t work with JVM versions prior to 1.5. Listing 2-4 shows the
idiom. Generally, you shouldn’t use DCL because you have no guarantee that the JVM your
program is using will support it correctly (it has been said that getting rid of double-checked
locking is like trying to stamp out cockroaches; for every 10 you squash, 1,000 more are
lurking under the sink.) My advice is this: if you come across a double-checked lock in legacy
code, immediately replace it with solutions such as those discussed in the previous section.

Listing 2-4. Double-Checked Locking

1 class DoubleChecked
2 { private static volatile DoubleChecked instance = null;
3 private static Object lock = new Object();
4
5 public static DoubleChecked instance()
6 { if(instance == null)
7 synchronized(lock)
8 { if(instance == null)
9 instance = new DoubleChecked();
10 }
11 }
12 return instance;
13 }
14 }

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS64

388x_Ch02_CMP3 8/17/04 12:41 PM Page 64

The intent of DCL in the context of a Singleton is to synchronize only during creation,
when instance is null. You have to check twice because a thread could be preempted just
after the first test but before synchronization completes (between lines 6 and 7 in Listing 2-4).
In this case, a second thread could then come along and create the object. The first thread
would wake up and, without the second test, would create a second object.

The reason why DCL doesn’t work is complicated and has to do with the way with some-
thing called a memory barrier works in the hardware. Though DCL is intuitive, your intuition
is most likely wrong. I’ve listed a few articles on DCL and why it doesn’t work on the web page
mentioned in the preface (http://www.holub.com/goodies/patterns/). It’s been my experience
that many programmers don’t understand the DCL problem, even when they read about it.
Every time I’ve written something on this subject, I’ve received dozens of messages from too-
clever programmers who think they’ve come up with a solution. They’re all wrong. None of
these so-called solutions work. Please don’t send them to me. The only universal solutions
(which work across all JVMs) is either to synchronize the accessor or to use a static initializer.

Note, by the way, that Listing 2-4 should work correctly starting with Java version 1.5,
running under Sun’s HotSpot JVM, provided that you remember to include the volatile
keyword in the instance declaration on line 2. DCL won’t work with earlier versions of Java
and probably won’t work with other JVMs. It’s best to avoid DCL altogether.

Killing a Singleton
The only topic left to discuss about Singletons is how to get rid of the things. Imagine a
Singleton that wraps a global (outside-of-the-program) resource such as a database connec-
tion. How do you close the connection gracefully? Of course, the socket will be slammed shut
when the program terminates; slamming the door closed is not exactly graceful, but it must be
handled nonetheless.

First, let’s look at what you can’t do.
You can’t send a close() message to the Singleton object, because you have no way to

guarantee that someone won’t need the Singleton after you’ve closed it.
You can’t use a finalizer to clean up the resource. Finalizers just don’t work. Finalizers are

called only if the garbage collector reclaims the memory used by the object. You have absolutely
no guarantee that a finalizer will ever be called. (It won’t be called if the object is waiting to be
reclaimed when the program shuts down, for example.) Finalizers are also nasty to use. They can
slow down the garbage collector by an order of magnitude or more. The finalizer semantics have
thread-related problems that make it possible for an object to be used by a thread after it has
been finalized. My general advice about finalizer is: don’t use them.

Java provides only one viable way to shut down a Singleton that uses global resources—
the Runtime.addShutdownHook(...) method—and that method works only if the program
shuts down normally.

A “shutdown hook” is an initialized, but dormant, thread that’s executed when the program
shuts down, after all the user threads have terminated. Memory referenced from the shutdown-
hook object will not be garbage collected until the hook runs. Listing 2-5 shows the boilerplate
code. The objectClosed flag (set on line 10 and tested in all the public methods) makes sure that
an error is printed on the console window if someone tries to use the Singleton while shutdown
is in progress.

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS 65

388x_Ch02_FINAL.qxd 1/12/05 11:29 AM Page 65

http://www.holub.com/goodies/patterns

Listing 2-5. Shutting Down a Singleton
1 class Singleton
2 { private static Singleton instance = new Singleton();
3 private volatile boolean objectClosed = false;
4
5 private Singleton()
6 { Runtime.getRuntime().addShutdownHook
7 (new Thread()
8 { public void run()
9 { objectClosed = true;
10 // Code that clean's up global resources
11 }
12 }
13);
14
15 // Code goes here to initialize global
16 // resources.
17 }
18
19 public static Singleton instance()
20 { return instance;
21 }
22
23 public void method()
24 { if(objectClosed)
25 throw new Exception("Tried to use Singleton after shut down");
26 //...
27 }
28 }

Note, by the way, that the Runtime.getRuntime() call on line 6 of Listing 2-5 is another
example of a classic Gang-of-Four Singleton. It’s a static method that creates an object the
first time it’s called and returns the same object every time it’s called.

If you use the everything-is-static reification, establish the hook in a static-initializer
block, as follows:
class StaticSingleton
{ static

{ Runtime.getRuntime().addShutdownHook
(new Thread()

{ public void run()
{ // Code that cleans up global resources.
}

}
);

// Code goes here to initialize global resources.
}

}

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS66

388x_Ch02_CMP3 8/17/04 12:41 PM Page 66

The shutdown hook isn’t an ideal solution. It’s possible for the program to be terminated
abnormally (in Unix, with a kill -9, for example), in which case the hook never executes. If
you register several shutdown hooks, all the shutdown hooks can run concurrently, and you
have no way to predict the order in which they’ll be started. It’s possible, then, to have dead-
lock problems in the hooks that hang the VM and prevent it from terminating. Finally, if you
use a Singleton in a shutdown hook, you run the risk of creating a zombie Singleton that rises
from the dead.

Abstract Factory
If you can remember back that far, I started out talking about Singleton working in concert
with a second pattern, Abstract Factory, to create objects, so let’s explore Abstract Factories a
bit further. I’ll present the classic reification now, but you’ll see lots of this pattern in subse-
quent chapters.

The Employee.Factory object in Listing 2-3 (page 59) is a Singleton, but it’s also a factory
of Peon objects. The actual class of the object returned from Employee.Factory.create() is
unknown to the caller—a requirement of the Abstract Factory pattern. All you know about the
returned object is the interfaces that it implements (in this case, Employee). Consequently, you
can modify the concrete Peon class at will—even change its name—without impacting any
surrounding code.

Of course, changing the Employee interface in an “unsafe” way—removing methods or
modifying method arguments, for example—is hard work. Adding methods to the interface is
usually safe, however, and that’s the downside of interface-based programming generally. You
have to be careful when you’re designing your interfaces.

If you look up Abstract Factory in Appendix A, you’ll see that the Employee.Factory is not
a classic reification (though it’s probably the most commonplace variant). A good example of
a classic Abstract Factory in Java is in the Collection class, which serves as an Iterator
factory. Consider this code:

void g()
{ Collection stuff = new LinkedList();

//...
f(stuff);

}

void client(Collection c)
{ for(Iterator i = c.iterator(); c.hasNext() ;)

doSomething(i.next());
}

Not only is the product (the Iterator) abstract—in the sense that you don’t know its
actual class, only the interface it implements—but the iterator factory (the Collection) is
abstract too. Listing 2-6 shows a stripped-down version of this system, and Figure 2-4 shows
the associated UML. Collection and Iterator are both interfaces (which have the roles of

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS 67

388x_Ch02_CMP3 8/17/04 12:41 PM Page 67

Abstract Factory and Abstract Product in the design pattern). Collection is an Abstract
Factory of things that implement Iterator, the Abstract Product. LinkedList has the role of
Concrete Factory, which is the class that actually does the creating, and it creates an object
that has the role of Concrete Product (some class whose name you don’t know that imple-
ments the Iterator interface). Collection also demonstrates another characteristic of the
Abstract Factory pattern. Abstract Factories create one of a “family” of related classes. The
family of classes in this case is the family of iterators. A given abstract factory can create
several different Iterator derivatives depending on which Concrete Factory (data structure)
you’re actually talking to at any given moment.

The main benefit of Abstract Factory is that the isolation it gives you from the creation
means you can program strictly in terms of interfaces. The client() method doesn’t know that
it’s dealing with a LinkedList, and it doesn’t know what sort of Iterator it’s using. Everything
is abstract. This structure gives you enormous flexibility. You can pass any sort of Collection
to client()—even instances of classes that don’t exist when you wrote the client() method—
and client() doesn’t care.

Listing 2-6. A Classic Abstract Factory (Collection)

1 interface Collection
2 { Iterator iterator();
3 //...
4 }
5
6 interface Iterator
7 { Object next();
8 boolean hasNext();
9 //...
10 }
11
12 class Tree
13 { public Iterator iterator()
14 { return new Walker();
15 }
16
17 private class Walker implements Iterator
18 { public Object next() { /*...*/ return null; }
19 public boolean hasNext(){ /*...*/ return false; }
20 }
21 }

Let’s move back to the Factory object in Listing 2-3 (on page 59). It differs from the classic
reification in that it leaves out the Abstract Factory interface entirely (a commonplace variant
when the Factory is also a Singleton). Employee.Factory is the Concrete Factory. It still produces
an Abstract Product, however: the Employee derivative (Peon) is the Concrete Product.

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS68

388x_Ch02_CMP3 8/17/04 12:41 PM Page 68

Figure 2-4. Structure of a classic Abstract Factory (Collection)

Let’s fiddle a bit more with our solution and really make the product abstract. Consider
this variation:

interface Employee
{ void youAreFired();

public static class Factory
{ private Factory(){ }

static Employee create()
{ return new Employee()

{ public void youAreFired()
{ // lots of code
}

}
}

}
}

I’ve simplified things (always good) by using an anonymous inner class rather than a
named one. The anonymous-inner-class mechanism lets me leverage the language to enforce
the Concrete-Product-is-unknown rule. I don’t even know the actual name of the inner class.
As before, the structure of the code has changed, but I still have a reasonable reification of
Abstract Factory and Singleton. The structure of the system has only a loose correlation to
the underlying pattern.

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS 69

388x_Ch02_FINAL.qxd 1/14/05 3:40 PM Page 69

How about yet another variant? I don’t like saying Employee.Factory.create(). I'd rather
say Employee.create(), which is shorter. I can do that by changing the interface into an
abstract class, like so:

abstract class Employee
{ abstract void youAreFired();

static Employee create()
{ return new Employee()

{ public void youAreFired()
{ // lots of code
}

}
}

}

This reification has a big disadvantage—it’s a class, so it will use up the extends relation-
ship. On the other hand, all the methods except create() are abstract, so you don’t have a
fragile-base-class problem. The fact that I’ve declared the class using abstract class rather
than interface is just an implementation issue; from a design perspective, Employee is an
interface, regardless of the syntax I use to declare the thing. One advantage to the abstract-
class approach is that the Singleton-ness is enforced by the compiler, since new Employee()
is illegal on an abstract class. It would certainly be nice if Java supported static methods in
interfaces, but it doesn’t.

This example demonstrates two main design-pattern issues. First, the classes you’ve been
looking at reify two patterns simultaneously. Factory has two roles: Concrete Factory in the
Abstract Factory pattern and Singleton in the Singleton pattern. That’s two patterns in one
class. Next, you’ve looked at several possible reifications, but they’re all legitimate reifications
of the same patterns. A tenuous connection exists between a pattern and the structure of the
reification.

Pattern Stew
While we’re on the subject of Abstract Factory, let’s look at another interesting example from
Java that illustrates the things-change-when-you-refocus issue I discussed in Chapter 1.
Consider the following code, which dumps the main page of my web site to the console
verbatim. (It doesn’t interpret the HTML at all; it just prints it on the screen.)

URL url = new URL("http://www.holub.com/index.html");

URLConnection connection = url.openConnection();

connection.setDoInput(true);
connection.setDoOutput(false);
connection.connect();

InputStream in = connection.getInputStream();

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS70

388x_Ch02_CMP3 8/17/04 12:41 PM Page 70

http://www.holub.com/index.html

int c;
while((c = in.read()) != -1)
{ System.out.print((char)c);
}

The code in Listing 2-7 shows a simplified implementation of the classes used in this
example. Figure 2-5 shows the associated UML.

Here you see two overlapping reifications of Abstract Factory. The URL class is a Concrete
Factory of objects that implement URLConnection (the Abstract Product). The actual concrete
class for the current example is HttpURLConnection (the Concrete Product). But in another
context—if a different protocol were specified in the URL constructor, for example—the factory
would produce a different derivative (FtpURLConnection, and so on). Since all possible Concrete
Products implement URLConnection, the client code doesn’t care what class is actually created.
This reification is different from the one in the Gang-of-Four book in that it’s missing an inter-
face in the Abstract-Factory role.

Refocusing, the URLConnection is itself an Abstract Factory of InputStream derivatives.
(InputStream is actually an abstract class, but it’s always used as an interface.) In the current
context, an InputStream derivative that understands HTTP is returned, but again, a different
sort of stream (one that understands FTP, for example) would be returned in a different
context. This reification is a classic reification of the Gang-of-Four pattern.

Listing 2-7. A Stripped-Down URLConnection Implementation

1 interface URLConnection
2 { void setDoInput (boolean on);
3 void setDoOutput (boolean on);
4 void connect ();
5
6 InputStream getInputStream();
7 }
8
9 abstract class InputStream // used as interface
10 { public abstract int read();
11 }
12
13 class URL
14 { private String spec;
15
16 public URL(String spec){ this.spec = spec; }
17
18 public URLConnection openConnection()
19 { return new HttpURLConnection(this);
20 }
21 }

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS 71

388x_Ch02_CMP3 8/17/04 12:41 PM Page 71

22
23 class HttpURLConnection implements URLConnection
24 { public HttpURLConnection(URL toHere) { /*...*/ }
25 public InputStream getInputStream()
26 { return new InputStream()
27 { public int read()
28 { // code goes here to read using the HTTP Protocol
29 return -1;
30 }
31 };
32 }
33
34 public void setDoInput (boolean on) { /*...*/ }
35 public void setDoOutput (boolean on) { /*...*/ }
36 public void connect () { /*...*/ }
37 }

The main point of this exercise is to solidify the notion of focus. When you focus on the
design in different ways, you see different patterns. In Figure 2-5, the URLConnecction class has
two roles (Abstract Factory and Abstract Product), depending on how you focus. The overlap-
ping combination of patterns, and simultaneous participation of a single class in multiple
patterns, is commonplace.

Figure 2-5. Design patterns in URLConnection

URLConnection « interface»

+setDoInput (on: boolean) :void
+setDoOutput

(on: boolean) :void

+connect (on: boolean) :void
+getInputStream () :InputStream

InputStream «abstract»

«abstract» + read () :int

«anonymous»

+read () :int

HttpURLConnection

+setDoInput (on: boolean) :void
+setDoOutput (on: boolean) :void
+connect (on: boolean) :void
+getInputStream () :InputStream

URL

-spec: String

+«constructor» URL (arg)
+openConnection () :URLConnection

«creates»

Connection
Factory

Stream
Factory

Abstract
Factory

Abstract
FactoryAbstract

Product

Concrete
Product

Concrete
Factory

Abstract
Factory

Concrete
Factory

Concrete
Product

Abstract
Product

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS72

388x_Ch02_CMP3 8/17/04 12:41 PM Page 72

Dynamic Creation in a Factory
The URL/URLConnection system has another interesting facet. How does the URL object know
which sort of URLConnection derivative to create? You could use code such as the following:

public class URL
{ private String spec;

public URL(String spec)
{ this.spec = spec;
}

public URLConnection openConnection()
{

if (spec.startsWith("http:")) return new HttpURLConnection();
else if(spec.startsWith("ftp:")) return new FtpURLConnection();
//...
else

throw new IllegalArgumentException("Unknown Protocol");
}

}

class HttpURLConnection implements URLConnection { /*...*/ }
class FtpURLConnection implements URLConnection { /*...*/ }
interface URLConnection { /*...*/ }

The only problem with this approach is long-term flexibility. I’d like to be able to add
support for new protocols without having to modify the existing code at all. In fact, I want
to be able to add new protocols without even shutting down a running application. This sort
of flexibility is particularly important in server-side applications, where you need to modify
the server’s behavior without bouncing it (shutting down and then restarting the server).

Java, fortunately, provides you with an easy solution to this problem. The code in
Listing 2-8 uses dynamic creation to manufacture a class of the correct type. The first
few lines of openConnection() create a string that holds a class name representing the
connection. The class name is formed by extracting the protocol (everything to the left
of the colon) in the URL specification, converting the first character of the protocol to upper-
case, prefixing a package name, and appending the string "URLConnection". For example,
given new URL("xxx://www.holub.com"), the openConnection() method manufactures the
class name com.holub.protocols.XxxURLConnection.

The openConnection() method then calls Class.forName() to create the class object for the
class whose name you’ve just synthesized (an example of Singleton). Finally, openConnection()
passes the class object a newInstance() message to instantiate an instance of the class (an
example of Abstract Factory: Class has the role of Abstract Factory, the Class instance that
represents the synthesized name is in the Concrete-Factory role, Object has the role of Abstract
Product, and the created instance has the role of Concrete Product). Note that the created
object must implement a known interface (URLConnection) for all this stuff to work.

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS 73

388x_Ch02_CMP3 8/17/04 12:41 PM Page 73

xxx://www.holub.com

Listing 2-8. Dynamic Instantiation

1 import java.io.IOException;
2
3 public class URL
4 { private String spec;
5
6 public URL(String spec)
7 { this.spec = spec;
8 }
9
10 public URLConnection openConnection() throws IOException
11 {
12 // Assemble the class name by prefixing a package
13 // and appending URLConnection to the protocol.
14 // The first character of the protocol is mapped to
15 // uppercase.
16
17 StringBuffer name = new StringBuffer("com.holub.protocols.");
18 String prefix = spec.substring(0, spec.indexOf(":"));
19
20 name.append(Character.toUpperCase(prefix.charAt(0)));
21 name.append(prefix.substring(1));
22 name.append("URLConnection");
23
24 String className = name.toString();
25
26 // Manufacture an object of the class whose name we just
27 // assembled:
28
29 try
30 { Class factory = Class.forName(className);
31 return (URLConnection)(factory.newInstance());
32 }
33 catch(Exception e)
34 {
35 // Throw an IOException whose message is the one
36 // associated with the exception that got us here.
37
38 IOException toThrow = new IOException();
39 toThrow.initCause(e);
40 throw toThrow;
41 }
42 }
43 }
44

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS74

388x_Ch02_CMP3 8/17/04 12:41 PM Page 74

45 class HttpURLConnection implements URLConnection
46 { //...
47 }
48
49 class FtpURLConnection implements URLConnection
50 { //...
51 }
52
53 interface URLConnection
54 { //...
55 }

Another example of the same structure is Java’s Toolkit Singleton, which uses dynamic
creation to manufacture a Toolkit derivative that knows about the current operating environ-
ment. The getDefaultToolkit() method uses System.getProperty(...) to learn the operating-
system name and then assembles an appropriate class name using that string.

The main advantage of the dynamic-creation strategy is that the name of the class that
handles a protocol doesn’t need to be known at runtime. If I need to add support for a new
protocol, all I need do is create a class that implements URLConnection whose name starts with
the protocol name. I then compile the class and move the .class file to the directory associated
with the com.holub.protocols package. That’s it. I’m done. No recompile. No server bounce.
The next time the user specifies a URL for the new protocol, the server instantiates and loads
the new class.

The main downside of dynamic creation is that it’s difficult to pass arguments to the
object’s constructor. You can do that using the Introspection API methods of the Class class,
but it requires a lot of complicated code that I don’t want to go into here.

Command and Strategy
Another useful pattern for creating objects in an abstract way is Strategy, which is a special-
ization of the more general pattern Command.

Command is a building-block pattern upon which almost all the Gang-of-Four Behavioral
patterns rely. You’ll see many variants throughout the book.

The basic idea of Command is to pass around knowledge of how to do something by
encapsulating that knowledge within an object. In C or C++, you’d pass around an algorithm
by writing a function that implements the algorithm and then pass a function pointer—a
syntactic mechanism that allows a programmer to call a function if the programmer knows
the function’s address—its location in memory. If you’ve programmed in C, you’ll be reminded
of the qsort() function.

You don’t need function pointers in object-oriented systems, because you can pass
around an algorithm by passing around an object that implements the algorithm. (Typically
you’d pass an interface reference to the method that used the algorithm, and the method
executes the algorithm by calling an interface method.)

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS 75

388x_Ch02_CMP3 8/17/04 12:41 PM Page 75

One basic-to-Java use of Command is in threading. The following code shows a way to
run a bit of code on its own thread that emphasizes the use of the Command pattern:

class CommandObject implements Runnable
{ public void run()

{ // stuff to do on the thread goes here
}

};

Thread controller = new Thread(new CommandObject());
controller.start(); // fire up the thread

You pass the Thread object a Command object that encapsulates the code that runs on the
thread. This way, the Thread object can be completely generic—it needs to know how to create
and otherwise manage threads, but it doesn’t need to know what sort of work the thread will
perform. The controller object executes the code by calling run(). One of the main character-
istics of the Command pattern is that the “client” class—the class that uses the Command
object—doesn’t have any idea what the Command object is going to do.

You can use Command, itself, in more sophisticated ways to solve complex problems such as
“undo” systems. I’ll come back to the pattern in Chapter 4. For now, I want to move on to a simple
variant on Command: Strategy. The idea is simple: Use a Command object to define a strategy for
performing some operation and pass the strategy into the object at runtime. You can often use
Strategy instead of implementation inheritance if you’re extending a class solely to change
behavior.

Strategy is used all over the place in Java. Consider the array-sorting problem, as solved in
the Arrays utility. You can sort an array into reverse order like this:

public static void main(String[] args)
{

// sort the command-line arguments:

Arrays.sort
(args,

new Comparator()
{ public int compare(Object o1, Object o2)

{
// By using a minus sign to reverse the sign
// of the result, "larger" items will be
// treated as if they're "smaller."

return -(o1.compareTo(o2));
}

}
);

}

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS76

388x_Ch02_FINAL.qxd 1/12/05 12:15 PM Page 76

You pass into the sort method an object that defines a strategy for comparing two array
elements. The sort method compares objects by delegating to the Strategy object. Listing 2-9
shows a Shell sort implementation that uses Strategy for comparison purposes. shellSort(...)
delegates to the Strategy object on line 29.

Listing 2-9. Sorters.java: Using Strategy

1 package com.holub.tools;
2
3 import java.util.Comparator;
4
5 /** Various sort algorithms */
6
7 public class Sorters
8 { /** A Straightforward implementation of Shell sort. This sorting
9 * algorighm works in O(n^{1.2}) time, and is faster than
10 * Java's Arrays.sort(...) method for small
11 * arrays. The algorithm is described by Robert Sedgewick in
12 * Algorithms in Java, Third Edition, Parts 1-4
13 * (Reading: Addison-Wesley, 2003 [ISBN 0-201-36120-5]), pp. 300-308,
14 * and in most other algorithms books.
15 */
16
17 public static void shellSort(Object[] base, Comparator compareStrategy)
18 { int i, j;
19 int gap;
20 Object p1, p2;
21
22 for(gap=1; gap <= base.length; gap = 3*gap + 1)
23 ;
24
25 for(gap /= 3; gap > 0 ; gap /= 3)
26 for(i = gap; i < base.length; i++)
27 for(j = i-gap; j >= 0 ; j -= gap)
28 {
29 if(compareStrategy.compare(base[j], base[j+gap]) <= 0)
30 break;
31
32 Object t = base[j];
33 base[j] = base[j+gap];
34 base[j+gap] = t;
35 }
36 }
37
38 //...
39

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS 77

388x_Ch02_CMP3 8/17/04 12:41 PM Page 77

40 private static class Test
41 { public static void main(String[] args)
42 {
43 String array[] = { "b", "d", "e", "a", "c" };
44 Sorters.shellSort
45 (array,
46 new Comparator()
47 { public int compare(Object o1, Object o2)
48 { // sort in reverse order
49 return -(((String)o1).compareTo((String)o2));
50 }
51 }
52);
53
54 for(int i = 0; i < array.length; ++i)
55 System.out.println(array[i]);
56 }
57 }
58 }

Another good example of Strategy in Java is the LayoutManager used by java.awt.Container
and its derivatives. You add visual objects to a container, which it lays out by delegating to a
Strategy object that handles the layout. For example, the following code lays out four buttons
side by side:

Frame container = new Frame();
container.setLayout(new FlowLayout());
container.add(new Button("1"));
container.add(new Button("2"));
container.add(new Button("3"));
container.add(new Button("3"));

You can lay the buttons out in a two-by-two grid like this:

Frame container = new Frame();
container.setLayout(new GridLayout(2,2));
container.add(new Button("1"));
container.add(new Button("2"));
container.add(new Button("3"));
container.add(new Button("3"));

If you were using implementation inheritance rather than Strategy, you’d have to have
a FlowFrame class that extended Frame and did flow-style layout and another GridFrame class
that extended Frame and did grid-style layout. Using the LayoutManager Strategy object (which
implements the LayoutManager interface but doesn’t extend anything) lets you eliminate the
implementation inheritance and simplify the implementation.

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS78

388x_Ch02_CMP3 8/17/04 12:41 PM Page 78

Strategy provides a good alternative to Factory Method. Rather than use implementation
inheritance to override a creation method, use a Strategy object to create the auxiliary objects.
If I were king, I would rewrite the JEditorPane to work like this:

interface ProxyCreator
{ JComponent proxy(String tagName, Properties tagArguments);
}

MyJEditorPane pane = new MyJEditorPane();
pane.setProxyCreator
(new ProxyCreator()

{ public JComponent proxy(Sting tagName, Properties tagArguments)
{

/** Return a JComponent that replaces the tag
* on the page
*/

}
}

);

MyJEditorPane would look like this:

public class MyJEditorPane
{ private ProxyCreator default =

new ProxyCreator()
{ public JComponent proxy(Sting tagName, Properties tagArguments)

{
/** Return a JComponent that replaces the tag
* on the page
*/

}
}

public setProxyCreator(ProxyCreator creationStrategy)
{ default = creationStrategy;
}

private void buildPage(String html_input)
{ //...

JComponent proxy = factory.proxy(tagName, tagArguments);
//...

}
}

Every time MyJEditorPane encounters a tag, it calls the ProxyCreator’s proxy(...) method
to get a JComponent to display in place of that tag. No implementation inheritance is required.

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS 79

388x_Ch02_FINAL.qxd 1/12/05 11:36 AM Page 79

Summing Up
So, to sum up, as much as 80 percent of your code should be written in terms of interfaces, not
concrete classes, to give you the flexibility you need to modify your program easily as require-
ments change. You’ve looked at the following patterns that help you create objects in such a
way that you know the interfaces the object implements but not the actual class the object
instantiates:

• Singleton: A one-of-a-kind object.

• Abstract Factory: A “factory” that creates a “family” of related objects. The concrete
class of the object is hidden, though you know the interface it implements.

• Template Method A placeholder method at the base-class level that’s overridden in a
derived class.

• Factory Method: A Template Method that creates an object whose concrete class is
unknown.

• Command: An object that encapsulates an unknown algorithm.

• Strategy: An object that encapsulates the strategy for solving a known problem. In
the context of creation, pass the creating object a factory object that encapsulates the
strategy for instantiating auxiliary classes.

Singleton, in particular, is deceptively simple. It’s difficult to implement it correctly, and
many reifications are in common use. You’ve also spent a lot of time looking at how the patterns
merge and overlap in real code.

Of these four patterns, I don’t use Template Method and Factory Method often because
they depend on implementation inheritance with the associated fragile-base-class problems.

You’ll look at other Creational patterns (to use the Gang-of-Four term) in context later in
the book, but Singleton and Abstract Factory are used the most often. You’ll see lots of
different applications of both of these patterns.

CHAPTER 2 ■ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS80

388x_Ch02_CMP3 8/17/04 12:41 PM Page 80

The Game of Life

This chapter provides an in-depth look at an implementation of John Conway’s Game of
Life—probably the most widely implemented application on the planet. You’ll look at this
particular program because my version applies ten distinct design patterns, all jumbled
together as they are in the real world. At the same time, the program isn’t so large as to be
impossible to understand.

I can’t really devote enough space in this chapter to give Life it’s due, but reams have been
written on the subject. I’ve set up a web page at http://www.holub.com/software/life/ that
lists various links to Life resources and also provides an applet version of the game (written by
Alan Hensel). You can find the source code for the implementation discussed in this chapter
on the same web page.

I strongly recommend you play with the game before you continue; otherwise, a lot of
what I’m about to talk about will be incomprehensible.

My implementation of Life uses the Java client-side GUI library (Swing) heavily, and I’m
assuming some familiarity with that library. You don’t need to be an expert Swing programmer,
but I’m assuming you know the basics. If you’ve never used Swing, you should work through
the Swing Tutorial on the Sun web site (http://java.sun.com/docs/books/tutorial/uiswing/).

This chapter has a lot of code in it. I don’t expect you to read every line—I’ve called out
the important stuff in the text. I’m often frustrated by books that don’t show entire programs,
however. It seems like the code I’m interested in is never there. Consequently, I’ve risked
putting too much code in the text in order to show you the complete program. Feel free to
skim if you’re bored or overwhelmed by the sheer volume of the stuff.

Finally, the code in this chapter is toy code (not the case with the SQL interpreter in the
next chapter, which is production code). Consequently, I let myself get rather carried away
with the patterns. The point of the exercise it to learn how design patterns work, however,
not to write the best possible implementation of Life.

81

C H A P T E R 3

■ ■ ■

388x_Ch03_CMP3 8/17/04 9:29 PM Page 81

http://www.holub.com/software/life
http://java.sun.com/docs/books/tutorial/uiswing

Get a Life
Life is a simple cellular automaton like the ones discussed in Chapter 1. Among other things, Life
models organic patterns of behavior—cell growth in a petri dish or embers in a fire, for example.
It can also behave in interesting programmatic ways. You can, for example, make a Life game
behave like a Turing machine (so in theory, it could mimic any computer.) An anthropologist
friend of mine says that some of the patterns remind her of behavioral patterns within human
societies. Life also demonstrates “emergent” behavior—the behavior of the system as a whole
can’t be predicted solely by looking at the behavior of the objects that comprise the system
(and is much more interesting than the component-level behavior).

The standard game board is a large rectilinear grid. Each cell has eight neighbors.

A cell is either “dead” or “alive.” You “seed” the game by marking cells as alive, and then
you set things going. Two passes are made every time an internal clock ticks. In the first pass,
the cells determine their next state by examining their neighbor’s state. In the second pass, the
cells transition to the previously computed state. Here are the rules:

• A dead cell comes alive when it has exactly three live neighbors. In the following exam-
ples, the cells containing black dots are alive, and the cells marked with hollow circles
will come alive on the next tick.

• A cell stays alive if it has exactly two or three neighbors. In the following examples,
the cells containing black dots will stay alive.

...

...

1 2 3
4

567

8

CHAPTER 3 ■ THE GAME OF L IFE82

388x_Ch03_CMP3 8/17/04 9:29 PM Page 82

• Otherwise, the cell dies from either loneliness or overcrowding. In the following exam-
ples, the gray cells will die on the next tick (the example on the left from overcrowding,
the others from loneliness).

That’s it. Not much in the way of rules, but depending on how it’s seeded, the game board
exhibits remarkable, very lifelike, behavior. The simplest example of interesting behavior is a
glider, demonstrated by the following seed state (frame 1, on the left) and four subsequent
game states. After the first two ticks (in frame 3), the glider has flipped itself symmetrically
(along the diagonal axis) and moved itself down one row. After the fourth tick (frame 5), it flips
back and moves over one column. It’s now back in its original configuration but is offset diag-
onally by one cell from the starting position. Since the original configuration of cells is now
restored, the pattern repeats indefinitely, and the group of cells glides toward the lower-right
corner of the screen. When you look at the screen, you tend to think of the glider as an object
that’s moving across the board, but that’s not what’s going on at all. The real situation is just
cells turning themselves on and off based on their neighbor’s state. The cells have no notions
at all of gliders or of what’s happening on the board as a whole.

Hensel’s Life applet at http://www.holub.com/software/life/ demonstrates a bunch of
interesting behaviors. Click the Empty Universe button and then click Open to open a catalog
of preseeded Life games. The other buttons on the page bring up and run preseeded Life games
that demonstrates a few of the more interesting patterns.

Charting the Structure of Life
I’ve sketched the static structure of my implementation of Life in Figure 3-1. Though I’d
normally start designing with the dynamic model, I’ve found that when you’re trying to under-
stand (rather than design) an application, a good grasp of the static structure of the system is
an important precursor to drilling into the messaging. I’ll talk about the dynamic model as I
drill into the patterns.

1. 2. 3. 4. 5.

...

CHAPTER 3 ■ THE GAME OF L IFE 83

388x_Ch03_CMP3 8/17/04 9:29 PM Page 83

http://www.holub.com/software/life

Figure 3-1. The static structure of Life

Cell «interface»

+clear () :void
+create (): Cell
+edge (row, column): Cell
+figureNextState (n, s, e, w, ne, nw, se, sw: Cell): boolean
+isAlive (): boolean
+isDisruptiveTo (): Direction
+isStable () : boolean
+createMemento (): Storable
+redraw (graphics, here, draw_all): void
+transfer (memento, upperLeftCorner, do_load): boolean
+transition (): boolean
+userClicked (here, surface)
+widthInCells (): int

Dummy
«singleton» «constant»

all Cell methods . . .

Implements all Cell
methods with versions
that donít do anything.
Used at the edges of
the Universe.

+DUMMY

-grid [grid_size,grid_size]

Neighborhood

-gridSize , /gridWidth, /gridHeight: int
-amStable : boolean
-readingPermitted : ConditionVariable

 +«all Cell methods»
 +adjustEdgeActivity (row, column): void

«static» +createUniverse (): JComponent
«constructor» + Neighborhood (grid_size, prototype:Cell)

Resident

-amAlive : boolean
-willBeAlive : boolean

«all Cell methods»

Universe «Singleton»

 - doLoad (): void
 - doStore (): void
 (+) paint (graphics): void
 +refreshNow (): void

«constructor» - Universe (Cell)

-cells

11

Direction

+add (d: Direction): void
+clear (): void
+equals (:Direction): boolean
+the (Direction): boolean

-active_edges

Immutable

+add (Direction): void
+clear (): void

+NORTH,
+SOUTH,
+EAST, +WEST,
+NORTHWEST,
+SOUTHWEST,
+NORTHEAST,
+SOUTHEAST

Clock.Listner
«interface»

+tick (): void

Clock «singleton»

+addClockListener (): void
+startTicking (tickInterval): void
+stop (): void
+tick (): void

Storable «interface»

+ flush (:OutputStream): void
+ load (:InputStream): void

Memento «interface»

+isAlive (location: Point): boolean
+markAsAlive (location:Point): void

NeighborhoodState

+«All Memeto methos»
+toString (): String

com.holub.tools.Publisher

+publish (agent: Distributor): void
+subscribe (subscriber: Object): void
+cancelSubscription (subscriber: Object): void
+subscriptions (): int

Publisher.Distributor «interface»

+deliverTo (subscriber:Object): void

-publisher

Clock.«Anonymous»

+deliverTo (subscriber:Object): void

notifies>

-subscribers*

Universe.«Anonymous»

+tick(): void

<
 request update notification from

com.holub.ui.Colors «enum»

LIGHT_RED,
MEDIUM_RED,
DARK_RED,
. . .

com.holub.io.Files «singleton»

+ userSelected (...): File

com.holub.asynch.ConditionVariable

+isTrue (): boolean
+set (state: boolean)
+waitForTrue (): void

Life

+main (args: String[]): void

com.holub.ui.MenuSite «singleton»

-menu_b ar : JMenuBar

+establish (container:JFrame)
+addLine (requester: Object,

 to_this_menu: String,
 name:String,
 listener: ActionListener)

+removeMyM enus (requester)
+setEnable (requester, on)
+getMyMenuItem (requester, specifier, ...)

-menu_frame

8

Clock

notifies>

m
agages listeners for>

st
or

es
 >

cr
ea

te
s

UI
 fo

r >

Owns the
main frame
and menu bar

<
 notifies

 im
ple-

 m
enters

 of
Node

+remove (target: Object)
+accept (Distributor visitor)

-subscriber
-next Object

1

1

1

1

1

<
 creates

Cell

Memento

Universe

<
 c

on
tr

ib
ut

es
 to

< contributes to
overrides methods that can modify state of
Direction to throw an exception
Overrides methods that can modify a
Direction to throw an exception

<notifies accepts visitors from>

+
+

+

+

+

+

+

+

CHAPTER 3 ■ THE GAME OF L IFE84

388x_Ch03_CMP3 8/17/04 9:29 PM Page 84

Figure 3-2. The design patterns in Life

Figure 3-1 shows a lot of classes, but I’ll present them in small doses so you can see how
they work together. Perhaps more interesting than the class diagram is Figure 3-2, which shows
the static structure with the extraneous details stripped out and the main design patterns identi-
fied. I’ve put the interfaces into lozenges so that you can pick them out easily. I’ve also tried to
keep the classes more or less in the same relative positions as they are in Figure 3-1, so you can
correlate the two diagrams easily. You may want to bookmark these two diagrams; I’ll be refer-
ring to them regularly. I call this variant of a class diagram a patterns diagram, which is not an
official UML term. I find patterns diagrams to be quite useful in understanding a program’s
structure.

Dummy

Immutable Direction

Storable

Memento

Universe

Listener

Caretaker

Originator

Originator

Concrete
Memento

Concrete
Observer

Observer

Subject

Concrete
Mediator

Concrete
Colleague

Colleague

Concrete
Colleague

Leaf

Flyweight

Unshared
Concrete
Flyweight

Client

Client

Client

Facade

Colleague

Prototype

Client and
Concrete
Prototype

Concrete
Prototype

Memento

Dummy, Universe, Clock, Life, and
Menu_site all reify Singleton.Singleton

Distributor

«Anonymous»

«Anonymous»

Object
Structure

Concrete
Element

Visitor

Concrete
Flyweight

Concrete
Viisitor

Client

Swing
«subsystem»

Subsystem
Classes

Concrete
Observer

Concrete
Subject

Clock is a Concrete
observer of the
MenuSite, but it's also
a Concrete Subject
that publishes clock
ticks.

Node

Object

Cell

Memento

Universe

Concrete
Observer

Visitor

Observer

Flyweight

Mediator

Memento

Composite

Prototype

Composite

Resident

Facade

Observer

MenuSite

Life

Clock

+

+

+

+

+

+

Neighborhood

+

NeighborhoodState

Publisher

Clock

Concrete

Cell

Universe
(JMenu, etc.)
Menuing
«subsystem»

CHAPTER 3 ■ THE GAME OF L IFE 85

388x_Ch03_CMP3 8/17/04 9:29 PM Page 85

This diagram has a lot of design patterns—nine significant ones—all jumbled up in
complicated ways. The Cell interface, for example, participates in four design patterns. The
Neighborhood class participates in seven patterns! This is not the neat picture you’d expect
from the Gang-of-Four book, but it represents the real world pretty accurately. Though Figure
3-2 looks like so much spaghetti, we’ll take it one pattern at a time. (The real situation is even
worse—I’ve omitted several “building-block” patterns from the diagram because it was
already too cluttered.)

Don’t panic.
When I first showed these diagrams to my wife Deirdre, who’s also a programmer, her

initial reaction was “that’s so complicated I don’t want to deal with it.” Once we started going
through the system, as I’ll do with you as the chapter unfolds, her reaction changed to “this
diagram is really rich.” By “rich,” she meant that the drawing conveys a lot of useful informa-
tion in a compact form—it’s dense. Density in design documents is good. A knowledgeable
reader can glean an enormous amount from Figure 3-2 in a glance; this same information
would take hours to convey without the vocabulary supplied by the patterns.

That transition, from “complicated” to “rich” is an important one and is typical of what
happens when you start being able to apply the patterns with ease. The patterns let you make
sense of the overall structure, so the appearance of complexity falls away along with the concomi-
tant confusion. The incomprehensible becomes clear. As a client of mine once said, “I don’t see
how people can possibly program OO without a picture in front of them.”

Figure 3-2 contains other interesting facets. For example, Flyweight, Composite, and Proto-
type (all in the middle of the figure) are almost identical structurally. The same three classes,
along with their associated relationships, participate in all three patterns. If all you had was the
static structure, you’d be confused, since the structure could indicate any of the three patterns, or
perhaps none of them. Simply because you have a certain structure doesn’t mean that you have a
pattern. My point is one I made in Chapter 1—you can’t identify a design pattern solely by static
structure. You have to know the intent of the designer as well. Also, note how the patterns overlap.
The notion of pattern cut-and-paste is nonsensical on its face—patterns just don’t occur in the
sort of splendid isolation that allows a clean paste operation.

The Clock Subsystem: Observer
Now let’s look at the code itself. I’ll start describing the classes at the edges of the system—
looking at the ancillary pieces used by the core abstractions. These pieces form stand-alone
subsystems, so they’re easy to look at in isolation.

You’ll see the clock subsystem in the upper-right corners of Figures 3-1 and 3-2. The first
pattern it uses is Observer. Clock uses Observer to fire periodic clock-tick events at interested
parties (in this case, the Universe via an anonymous inner class).

Observer is also used in Java’s menuing system, which I’ll need to talk about anyway, so I
may as well cover it now. Figure 3-3 shows Java’s menuing system.

CHAPTER 3 ■ THE GAME OF L IFE86

388x_Ch03_CMP3 8/17/04 9:29 PM Page 86

Figure 3-3. Java’s menuing subsystem (simplified)

The main intent of Observer is to decouple an object that’s interested in some event from
the originator of that event. In the menuing system, the event occurs when you click a menu
item, and whoever is interested in that event needs to find out when the item is selected.

The best way to see the notification-related problems that Observer solves is to look at
the wrong way to do it: an implementation-inheritance based solution.

class BadJMenuItem
{ abstract void itemSelected();
}

class myMenuItem extends BadJMenuItem
{ public void itemSelected()

{ // do whatever you'd do when the item is selected.
}

}

This approach has two difficulties:

• You have to derive a class from BadJMenuItem for every menu item in the system,
perhaps requiring hundreds of classes, all of which could be fragile.

• When a menu item is selected, you can notify only objects in the visual subsystem (in
other words, BadJMenuItem derivatives). More often than not, the object that needs to
be notified is some “business object” in the program, however. (In the case of Life, the
Clock object needs to be notified when the user selects a new clock speed.) Passing the

JMenuItem

+JMenuItem(label: String)

+add

JMenuBar

+add(item: Jmenu): void

ActionListener «interface»

+actionPerformed(:ActionEvent)

notifies>

«anonymous»

+actionPerformed(:ActionEvent)

Client

submenus *

1

menus *

1

AbstractButton
«abstract»

JComponent

«property» name
«property» text

+setName(name: String): void
+getName (): String
+setText (text: String): void
+getText (): String
+addActionListener (subscriber: ActionListener);
+removeActionListener (subscriber: ActionListener)

Composite

Component

Leaf

Observer

Subject

Concrete
Observer

Concrete
Subject

Concrete
Subject +

Composite

Observer

JMenu

(submenu: JMenuItem): void

CHAPTER 3 ■ THE GAME OF L IFE 87

388x_Ch03_CMP3 8/17/04 9:29 PM Page 87

notification through a visual object to get it to the party that’s actually interested is
needless work, and the unnecessary complexity of the intermediary class creates a
maintenance problem. I’ll discuss this issue further in a moment.

Observer—the pattern the real JMenuItem uses for notification—decouples the object
interested in the event (the Observer) from the object that sends the notification (the Notifier,
called the Subject by the Gang of Four for reasons that are completely mysterious to me). This
pattern is also called Publish/Subscribe, which is a convenient metaphor for what happens. A
publisher sends publications to a list of subscribers. Subscribers must subscribe to the publi-
cations by sending a message to the publisher, and subscribers can cancel their subscription
at any time.

In the reification of Observer in Figure 3-3, the JComponent (or one of its derivatives) is the
Subject/Publisher. That is, JMenuItem or JMenu can both take on the Subject (or Publisher) role.
The ActionListener interface has the role of Observer (or Subscriber), and the implementing
class has the role of Concrete Observer/Subscriber.

A Subject publishes notifications by sending them to Concrete Observers as an argument
to some method of the Observer interface. Concretely, a JComponent publishes actionEvents
by sending them to ActionListeners as an argument to the actionPerformed(...) method.

Here’s the code that sets up a simple Observer that’s notified of menu-item selections:

class Subscriber implements ActionListener
{ public void actionPerformed(ActionEvent e)

{ // do whatever you do when the menu item is selected.
}

}

You “subscribe” like this:

JMenuItem lineItem = new JMenuItem("Foo");
//...
lineItem.addActionListener(new Subscriber());

JMenuBar menuBar = new JMenuBar(); // add the item to the menu bar
menuBar.add(lineItem);

Thereafter, when the user selects the menu item, the Subject notifies the Concrete
Observer by calling one or more of the methods in the Observer interface. In concrete terms,
the JComponent (the publisher) sends notifications to the its ActionListeners (the subscribers)
by sending each of them an actionPerformed() message. It’s important to note that the menu
bar on which the menu item resides is not involved in the notification process. Notifications
go directly from the publisher to the subscriber. This way you don’t need to create and main-
tain intermediary “mediator” objects that do nothing but relay messages.

The current JMenuItem subscriber is little more than a Command object (discussed in
Chapter 2) that’s passed into the Publisher, which invokes the methods of the Observer inter-
face to send an event to a subscriber. The code that actually notifies the subscribers is encap-
sulated in the Command object.

The JComponent class implements the publication mechanism by keeping a list of
subscribers. (Other reifications may implement the subscription mechanism in the Concrete

CHAPTER 3 ■ THE GAME OF L IFE88

388x_Ch03_CMP3 8/17/04 9:29 PM Page 88

Subject, in which case JComponent could look more like the classic Gang-of-Four reification
where the Subject is an interface.)

A more realistic example of Observer uses an anonymous inner class as the Concrete
Subject/Subscriber.

class Client
{ volatile boolean menuItemSelected = false;

public Client(JMenu topMenu)
{ // Add an item to the topMenu, and arrange to be notified when it

// is selected:

JMenuItem myItem = new JMenuItem("Hello");
myItem.addActionListener
(new ActionListener()

{ public void actionPerformed(ActionEvent e)
{ menuItemSelected = true; // process selection
}

}
);

topMenu.add(myItem);
}

}

This anonymous-inner-class version seemed, at first, pretty strange to me. Once I got
used to the weird syntax, I came to prefer the anonymous-inner-class style because it lets me
put all three parts of the Observer pattern (the publisher reference, the subscriber reference,
and the activity to perform on publication) in one place. It’s rather like a for statement, which
lets you put all the parameters of loop control in one place.

Observer simplifies the code by passing the notification directly to the interested client,
rather than through some visual intermediary.

Now let’s apply the Observer pattern to Life. The Clock class, shown in Listing 3-1, uses
Observer to notify a subscriber (the Universe object) of clock-tick events. The Clock has the
role of Subject/Publisher. The Concrete Observer/Subscriber role is filled by any class that
implements the Listener (Observer) interface (Listing 3-1, line 93). In this example, the
Observer interface defines only one method (void tick()), but the pattern doesn’t prohibit
more complex interfaces.

The Universe object (the Concrete Observer/Subscriber) subscribes to the “tick” event
like this:

Clock.instance().addClockListener
(new Clock.Listener()

{ public void tick()
{ // code to handle a clock tick goes here
}

}
);

CHAPTER 3 ■ THE GAME OF L IFE 89

388x_Ch03_CMP3 8/17/04 9:29 PM Page 89

Clock is a Singleton, a reference to which is fetched by Clock.instance(). (The complete
code from which the previous snippet is extracted is in Listing 3-7, which I’ll discuss later in
the chapter. If you want to skip ahead, the previous code is on line 140 of Listing 3-7, p. 142.)

The anonymous Clock.Listener derivative has the role of Concrete Observer/Subscriber.
(In Figure 3-1, this anonymous Clock.Listener derivative is the one immediately to the left of
the Clock class—the one that’s connected to the Neighborhood indirectly via the Universe.)

It’s actually arguable whether the Universe is the Concrete Observer or the anonymous
inner class that actually receives the message is the Concrete Observer. Conceptually, it’s the
Universe, but physically, it’s the inner-class object. In the UML, the inner-class-ness of the
declaration is indicated by the circle with the plus in it, and the arrow indicates that messages
are sent from the event handler object to the Universe object in the course of handling the tick.

As an aside, notice in the earlier code that Clock is a “classic” Gang-of-Four Singleton—
only one instance of it exists, and it’s accessed through a static accessor method that creates
the instance (Clock.instance()). The private constructor (Listing 3-1, line 21) guarantees
uniqueness, and the accessor method is declared on line 27. This Singleton can’t be reified
using the everything-is-static or the make-the-instance-reference-static mechanism
because the clock constructor modifies the look of the menu bar, and the constructor cannot
do that until the menu bar exists. When I tried to use one of the simpler reifications, I found
that the Clock Singleton was being created too early, so the menu wasn’t being set up properly.
A “classic” Singleton solves the problem.

The Concrete Observer/Subscriber (the Universe instance) registers itself with the
Publisher by calling addClockListener() (Listing 3-1, line 89), which delegates to an object
of class Publisher, which we’ll look at momentarily. The Universe object starts the clock by
calling Clock.instance().startTicking(), and thereafter, the listener is notified at periodic
intervals. (The tick() method of the registered listener is called.)

The tick management is handled by a java.util.Timer object declared on Listing 3-1,
line 14. This is yet another example of Observer. The startTicking method on line 39 passes
a scheduleAtFixedRate() message to a TimerTask object, whose run() method is called every
time the timer “expires.” This particular timer is set up to be recurrent, so it expires (and calls
run()) at periodic intervals determined by the millisecondsBetweenTicks argument.

Listing 3-1. Clock.java: The Clock Class

1 package com.holub.life;
2
3 import java.awt.*;
4 import java.awt.event.*;
5 import javax.swing.*;
6 import java.util.*;
7 import java.util.Timer; // overrides java.awt.timer
8 import com.holub.ui.MenuSite;
9 import com.holub.tools.Publisher;
10
11 /**...*/
12
13 public class Clock
14 { private Timer clock = new Timer();

CHAPTER 3 ■ THE GAME OF L IFE90

388x_Ch03_FINAL.qxd 1/12/05 12:23 PM Page 90

15 private TimerTask tick = null;
16
17 // The clock can't be an everything-is-static Singleton because
18 // it creates a menu, and it can't do that until the menus
19 // are established.
20 //
21 private Clock()
22 { createMenus();
23 }
24
25 private static Clock instance;
26
27 public synchronized static Clock instance()
28 { if(instance == null)
29 instance = new Clock();
30 return instance;
31 }
32
33 /** Start up the clock.
34 * @param millisecondsBetweenTicks The number of milliseconds between
35 * ticks. A value of 0 indicates that
36 * the clock should be stopped.
37 */
38
39 public void startTicking(int millisecondsBetweenTicks)
40 { if(tick != null)
41 { tick.cancel();
42 tick=null;
43 }
44
45 if(millisecondsBetweenTicks > 0)
46 { tick = new TimerTask()
47 { public void run(){ tick(); }
48 };
49 clock.scheduleAtFixedRate(tick, 0, millisecondsBetweenTicks);
50 }
51 }
52
53 public void stop()
54 { startTicking(0);
55 }
56
57 private void createMenus()
58 {
59 // First set up a single listener that will handle all the
60 // menu-selection events except "Exit"
61

CHAPTER 3 ■ THE GAME OF L IFE 91

388x_Ch03_CMP3 8/17/04 9:29 PM Page 91

62 ActionListener modifier =
63 new ActionListener()
64 { public void actionPerformed(ActionEvent e)
65 {
66 String name = ((JMenuItem)e.getSource()).getName();
67 char toDo = name.charAt(0);
68
69 if(toDo=='T')
70 tick(); // single tick
71 else
72 startTicking(toDo=='A' ? 500: // agonizing
73 toDo=='S' ? 150: // slow
74 toDo=='M' ? 70 : // medium
75 toDo=='F' ? 30 : 0); // fast
76 }
77 };
78
79 MenuSite.addLine(this,"Go","Halt", modifier);
80 MenuSite.addLine(this,"Go","Tick (Single Step)",modifier);
81 MenuSite.addLine(this,"Go","Agonizing", modifier);
82 MenuSite.addLine(this,"Go","Slow", modifier);
83 MenuSite.addLine(this,"Go","Medium", modifier);
84 MenuSite.addLine(this,"Go","Fast", modifier);
85 }
86
87 private Publisher publisher = new Publisher();
88
89 public void addClockListener(Listener observer)
90 { publisher.subscribe(observer);
91 }
92
93 public interface Listener
94 { void tick();
95 }
96
97 public void tick()
98 { publisher.publish
99 (new Publisher.Distributor()
100 { public void deliverTo(Object subscriber)
101 { ((Listener)subscriber).tick();
102 }
103 }
104);
105 }
106 }

CHAPTER 3 ■ THE GAME OF L IFE92

388x_Ch03_CMP3 8/17/04 9:29 PM Page 92

Implementing Observer: The Publisher Class
It turns out that Observer can be surprisingly difficult to implement, particularly in an envi-
ronment such as Swing, where several threads may interact.

Swing notifications, such as menu-selection events, are processed on an “event” thread
that’s created by the Swing subsystem. Many Swing applications are single threaded in that
main() does nothing but create a few windows and then terminate. All actual processing is
done on the Swing event thread in response to some user input action. Nonetheless, I’ve
worked on several systems where the main object model was running on the main thread
(among others) and creating Swing user-interface elements on the fly. Since the Swing notifi-
cations are issued from the Swing event thread, Swing sends lots of asynchronous messages
to the main object model at unpredictable times. Since the Swing code on the event-handler
thread and the code on the main thread can access the same objects simultaneously, a colli-
sion is unavoidable unless you synchronize properly.

The Swing event thread is not directly accessible to you, so unless you add or remove
subscribers in event handlers (possible but unlikely), it’s possible for the subscriber list to be
modified on a user thread while notifications are in progress on the Swing event thread. Since
both threads are accessing the same subscriber list, you’re in trouble.

Unfortunately, a publisher implementation such as the following just won’t work in this
environment.

class Publisher1
{ ArrayList subscribers = new ArrayList();

public synchronized void subscribe(Runnable subscriber)
{ subscribers.add(subscriber);
}

public synchronized void cancelSubscription(Runnable subscriber)
{ subscribers.remove(subscriber);
}

private synchronized void fireEvent() // notify all subscribers
{ for(int i = 0; i < subscribers.size(); ++i)

((Runnable) subscribers.get(i)).run();
}

}

It’s reasonable that the subscriber list be modified during notification, and the notifica-
tion cycle could take some time. You don’t know how long it will take for run() to run, since
that code is provided by the client class. Locking the subscribe() method during the entire
notification period may “starve” the thread that’s trying to subscribe because notifications
could happen one after the other, and the subscribing thread may never be able to get in.

If you remove the synchronization from fireEvent() to eliminate the “starvation,” then
you introduce an equally nasty problem. The fireEvent() method can execute on one thread
while the subscribe() or cancel() method executes on a different thread. Without synchro-
nization, it’s possible for the list to be accessed in the middle of a modification, corrupting the
subscribers list as a consequence.

CHAPTER 3 ■ THE GAME OF L IFE 93

388x_Ch03_CMP3 8/17/04 9:29 PM Page 93

Turning the tables, again, there’s something to be said in favor of synchronizing every-
thing. In an unsynchronized situation, if the subscribers you add while notifications are in
progress are tacked onto the end of the list, the subscriber can be notified of an event that
happened before it subscribed! The event happens, notifications start and are preempted,
the new subscriber is added, and then the subscriber is notified. The synchronized version
of fireEvent() doesn’t have this problem.

So what’s a mother to do? You have several approaches. The first is to use the Collection
interface rather than a concrete-class name (which I had to do earlier to be able to call get())
and use an Iterator to traverse the list.

class Publisher2
{ private Collection subscribers = new LinkedList();

public synchronized void subscribe(Runnable subscriber)
{ subscribers.add(subscriber);
}

public synchronized void cancelSubscription(Runnable subscriber)
{ subscribers.remove(subscriber);
}

private void fireEvent()
{ for(Iterator i = subscribers.iterator(); i.hasNext();)

((Runnable) i.next()).run();
}

}

I’m leveraging the fact that add(...) and remove(...) throw an exception if they’re called
while an iterations in progress. Therefore, attempts to register a listener while notifications are
going on will result in an exception toss, and the thread that attempted to add the listener will
have to try again later. This solution is obviously not ideal: it dumps too much work on the
shoulders of the calling object.

Another approach uses copying.

class Publisher3
{ private Collection subscribers = new LinkedList();

public synchronized void subscribe(Runnable subscriber)
{ subscribers.add(subscriber);
}

public synchronized void cancelSubscription(Runnable subscriber)
{ subscribers.remove(subscriber);
}

private void fireEvent()
{ Collection localCopy;

CHAPTER 3 ■ THE GAME OF L IFE94

388x_Ch03_CMP3 8/17/04 9:29 PM Page 94

synchronized(this)
{ localCopy = localCopy.clone();
}

for(Iterator i = subscribers.iterator(); i.hasNext();)
((Runnable) i.next()).run();

}
}

I’ve used clone() to make a copy of the subscriber list. (I must synchronize while
copying.) Then I notify the subscribers from the copy. Since the original list isn’t used during
notification, I can now modify that list without impacting the notification process. This
approach solves the problems I’ve been discussing, but it introduces a few new ones.

First, it’s possible for the publisher to notify a subscriber after the subscriber has canceled
its subscription (because notifications are being made from the copy). This problem exists in
all the Swing observers and is a problem with Observer generally. In practice, observers are
rarely removed, so this problem is probably not worth solving. If you know that a notification
can arrive after removal, then you can write the code defensively.

The second copying-related problem is worth putting some effort into. It’s just unaccept-
able to make a copy every time an event is fired, which can be frequently. It’s better to make
copies only when subscribers cancel their subscriptions, which happens rarely in practice.

The Publisher class (Listing 3-3, later) solves the too-much-copying problem elegantly
(if I do say so myself). Listing 3-2 shows an excerpt from the Clock class that shows you how
it handles Observer. The addClockListener(...) method just delegates to the Publisher. The
tick() method, which is called every time the clock “ticks,” notifies all the observers. It does
this by passing a Command object that actually does the notification to the Publisher. That is,
the Publisher calls the Distributor() derivative’s deliverTo() method multiple times, passing
it a different subscriber on the list each time.

Because the Command object encapsulates the knowledge of how to notify an Observer,
the Publisher can delegate the mechanics of notification to the Command object. The
Publisher doesn’t need to know how to actually notify subscribers.

The subscriber-specific information is in the Command object, not the Publisher. The
Publisher manages the list of subscribers, and it knows that Distributor derivatives know how
to notify subscribers, so the Publisher can delegate the notification process to the Distributor.
This way, the Publisher doesn’t need to know anything about the Clock.Listener interface.

Listing 3-2. Implementing Observer with a Publisher Object

1 private Publisher publisher = new Publisher();
2
3 public interface Listener
4 { void tick();
5 }
6
7 public void addClockListener(Listener l)
8 { publisher.subscribe(l);
9 }
10

CHAPTER 3 ■ THE GAME OF L IFE 95

388x_Ch03_FINAL.qxd 1/12/05 11:33 AM Page 95

11 public void tick()
12 { publisher.publish
13 (new Publisher.Distributor()
14 { public void deliverTo(Object subscriber)
15 { ((Listener)subscriber).tick();
16 }
17 }
18);
19 }

Turning to Listing 3-3, the Publisher object maintains a linked list of subscribers. (The
head-of-list reference is declared on line 117.) I’ve implemented the linked list myself rather
than using the LinkedList class, primarily because LinkedList doesn’t support operations I
need (appending a list segment to another list, for example). My original implementation was
actually built around LinkedList, but the implementation was large, messy, and hard to main-
tain. A singly linked list is trivial to implement in any event, and I saw no point in writing bad
code solely to support an existing data-structure class.

Each node in the list is represented by an instance of the Node class (Listing 3-3, line 92),
which holds references to the subscriber and the next Node in the list. The constructor both
creates a new node and links that node into the list, at its head. I pass the constructor refer-
ences to both the new subscriber and the current head-of-list pointer. The node puts itself at
the head of the list by initializing its next reference to the old head reference. The subscribe()
method (Listing 3-3, line 133) sets the head-of-list reference to the newly created Node object.
All the fields of Node are final, so the Node is an “immutable” object. It cannot change once it’s
created. Consequently, it’s safe for multiple threads to access a given Node object simultane-
ously with no need for synchronization.

The top part of Figure 3-4 shows the message flow (I’ll discuss the bottom part of this
figure in the “Implementing Observer: The Publisher Class” section). When an event occurs,
the client class calls the publish() method on line 128. The publish() method just traverses
the list from head to tail, asking each subscriber to “accept” the deliveryAgent Command
object that was passed as an argument to publish(...).

Looking at the Node’s accept(...) method (Listing 3-3, line 112), you’ll see that all
accept() does is ask the deliveryAgent to actually do the work of notification (by calling
deliverTo(...)). The deliveryAgent actually notifies the subscriber that the event occurred.
By using a Command object to hide the notification mechanics, I move those mechanics out
of the Publisher itself, making it much more flexible. I’ll have more to say on this issue in the
next section.

As a design aside, since the Node class is an inner class of Publisher, you could argue
reasonably that I should dispense with the accept() method entirely and modify the
publish(...) method to invoke deliverTo directly, as follows:

public void publish(Distributor deliveryAgent)
{ for(Node cursor = subscribers; cursor != null; cursor = cursor.next)

deliveryAgent.deliverTo(cursor.subscriber);
}

CHAPTER 3 ■ THE GAME OF L IFE96

388x_Ch03_CMP3 8/17/04 9:29 PM Page 96

This change would simplify the code, but when I put on my designer hat, I don’t like
it that the Publisher object accesses a private field of Node (subscriber) as if it were public.
Simply because Java permits this sort of back-door access of inner classes does not mean that
it’s a good thing—it strengthens the coupling relationships between the two classes unneces-
sarily. I like to treat inner classes such as Node as if they were top-level classes with respect to
access. If you do let an outer-class method violate the inner-class’s declared access privilege,
at least do it with your eyes open, knowing that you’re trading off a bit of maintainability to
trivially simplify the code. (Sometimes—when the inner class is effectively a C-like struct
with no methods—direct access is reasonable. I’ll permit myself to do this only when the
inner class is declared private, however.)

Getting back to the publication process, remember from a few paragraphs back that
Node objects are immutable—they can’t be modified after creation—and new Node objects are
inserted at the head of the list. The ramifications of this add-to-head-of-list strategy are signif-
icant when notifications are in progress. Figure 3-5 shows the situation that occurs when one
thread calls subscribe(d) just after another thread calls publish(...). The list is being modi-
fied while notifications are in progress. The new node (in gray) was not in the list when publi-
cation begins, so the first subscriber to be notified is c. All subscribers to the right of c are also
notified as the Publisher traverses the list, but d may as well not be in the list, at least for the
purposes of this particular notification. It’s perfectly safe, then, to add nodes to the list while
publication is in progress, and I haven’t had to copy the list (or synchronize anything) to
achieve this safety.

CHAPTER 3 ■ THE GAME OF L IFE 97

Figure 3-4. The dynamic behavior of Visitor

388x_Ch03_FINAL.qxd 1/14/05 3:46 PM Page 97

Figure 3-5. Adding a subscriber while notifications are in progress

The removal process is a bit more involved, primarily because I’m using a recursive algo-
rithm. Many programmers seem to think recursive algorithms are inherently “bad” (opaque
and inefficient), but in this case, the use is appropriate. Recursive algorithms are indeed hard
to understand at times, but the inefficiency argument is often bogus. For example, because
the list in the present code is singly linked, I would have to keep a stack of references to all the
nodes that I have visited because once I find the node to delete, I’ll need a list of that node’s
predecessors. Keeping this list is trivial in a recursive implementation—the list elements are
just local variables in each recursive call. Doing the same thing manually with some sort of
stack would use roughly the same memory as the recursive solution and make the code larger
and more complex. I saw no point in using a mechanism that was more complex and no more
efficient (at least in terms of space) than the recursive one simply to eliminate the recursion.
I could also have solved the need-to-know-your-predecessor’s-problem by making the list
doubly linked, but that would also have added a bunch of unnecessary complexity. Figure 3-6
shows “before” and “after” pictures of the removal process. In the “before” image, I am removing
node b (in gray). The bottom image shows what things look like after the remove. Interestingly,
I have added two nodes but haven’t actually removed anything. Any traversals that were in
progress in the original list will continue as if nothing had happened, because nothing has
happened to the original list. I’ve also moved the head pointer to the newly added far-left node.
New traversals will begin at the new head-of-list reference, so they will not include the node I
removed. Once any ongoing traversals complete, there will be no external references to any of
the nodes in the dashed box, so they will all be garbage collected.

Figure 3-6. Removing a subscriber while notifications are in progress

CHAPTER 3 ■ THE GAME OF L IFE98

388x_Ch03_FINAL.qxd 1/12/05 12:26 PM Page 98

CHAPTER 3 ■ THE GAME OF L IFE 99

Looking at the code, the recursion simplifies the code at the expense of clarity. The
cancelSubscription() method (Listing 3-3, line 137) just delegates to the head-of-list node’s
remove() method (Listing 3-3, line 101). This recursive method first traverses down to the node
to delete. It then starts returning back up to the original call. It does nothing with the node to
delete, but as it returns it creates the new nodes for everything to the left of the deleted one
and initializes the new nodes to point at the original subscribers.

Listing 3-3. Publisher.java: A Subscription Manager

1 package com.holub.tools;
2
3 /***
4 * This class replaces the Multicaster class that's described in
5 * <i>Taming Java Threads</i>. It's better in almost every way
6 * (It's smaller, simpler, faster, etc.). The primary difference
7 * between this class and the original is that I've based
8 * it on a linked-list, and I've used a Strategy object to
9 * define how to notify listeners, thereby making the interface
10 * much more flexible.
11 * <p>
12 * Publisher class provides an efficient thread-safe means of
13 * notifying listeners of an event. The list of listeners can be
14 * modified while notifications are in progress, but all listeners
15 * that are registered at the time the event occurs are notified (and
16 * only those listeners are notified). The ideas in this class are taken
17 * from the Java's AWTEventMulticaster class, but I use an (iterative)
18 * linked-list structure rather than a (recursive) tree-based structure
19 * for my implementation. The observers are notified in the opposite
20 * order that they were added.
21 * <p>
22 * Here's an example of how you might use it:
23 * <PRE>
24 * class EventGenerator
25 * { interface Listener
26 * { notify(String why);
27 * }
28 *
29 * private Publisher publisher = new Publisher();
30 *
31 * public void addEventListener(Listener l)
32 * { publisher.subscribe(l);
33 * }
34 *
35 * public void removeEventListener (Listener l)
36 * { publisher.cancelSubscription(l);
37 * }
38 * public void someEventHasHappend(final String reason)

388x_Ch03_CMP3 8/17/04 9:29 PM Page 99

39 * { publisher.publish
40 * (new Publisher.Distributor()
41 * { public void deliverTo(Object subscriber)
42 * { ((Listener)subscriber).notify(reason);
43 * }
44 * }
45 *);
46 * }
47 * }
48 * </PRE>
49 * Since you're specifying what a notification looks like
50 * by defining a Listener interface, and then also defining
51 * the message passing symantics (inside the Distributor derivative),
52 * you have complete control over what the interface looks like.
53

. . .
74 */
75
76 public class Publisher
77 {
78 public interface Distributor
79 { void deliverTo(Object subscriber); // the Visitor pattern's
80 } // "visit" method.
81
82 // The Node class is immutable. Once it's created, it can't
83 // be modified. Immutable classes have the property that, in
84 // a multithreaded system, access does not have to be
85 // synchronized, because they're read-only.
86 //
87 // This particular class is really a struct so I'm allowing direct
88 // access to the fields. Since it's private, I can play
89 // fast and loose with the encapsulation without significantly
90 // impacting the maintainability of the code.
91
92 private class Node
93 { public final Object subscriber;
94 public final Node next;
95
96 private Node(Object subscriber, Node next)
97 { this.subscriber = subscriber;
98 this.next = next;
99 }
100
101 public Node remove(Object target)
102 { if(target == subscriber)
103 return next;
104

CHAPTER 3 ■ THE GAME OF L IFE100

388x_Ch03_CMP3 8/17/04 9:29 PM Page 100

105 if(next == null) // target is not in list
106 throw new java.util.NoSuchElementException
107 (target.toString());
108
109 return new Node(subscriber, next.remove(target));
110 }
111
112 public void accept(Distributor deliveryAgent) // deliveryAgent is
113 { deliveryAgent.deliverTo(subscriber); // a "visitor"
114 }
115 }
116
117 private volatile Node subscribers = null;
118
119 /** Publish an event using the deliveryAgent. Note that this
120 * method isn't synchronized (and doesn't have to be). Those
121 * subscribers that are on the list at the time the publish
122 * operation is initiated will be notified. (So, in theory,
123 * it's possible for an object that cancels its subscription
124 * to nonetheless be notified.) There's no universally "good"
125 * solution to this problem.
126 */
127
128 public void publish(Distributor deliveryAgent)
129 { for(Node cursor = subscribers; cursor != null; cursor = cursor.next)
130 cursor.accept(deliveryAgent);
131 }
132
133 public void subscribe(Object subscriber)
134 { subscribers = new Node(subscriber, subscribers);
135 }
136
137 public void cancelSubscription(Object subscriber)
138 { subscribers = subscribers.remove(subscriber);
139 }
140
141 //--
142 private static class Test
143 {
144 static final StringBuffer actualResults = new StringBuffer();
145 static final StringBuffer expectedResults = new StringBuffer();
146
147 interface Observer
148 { void notify(String arg);
149 }
150
151 static class Notifier

CHAPTER 3 ■ THE GAME OF L IFE 101

388x_Ch03_CMP3 8/17/04 9:29 PM Page 101

152 { private Publisher publisher = new Publisher();
153
154 public void addObserver(Observer l)
155 { publisher.subscribe(l);
156 }
157
158 public void removeObserver (Observer l)
159 { publisher.cancelSubscription(l);
160 }
161
162 public void fire(final String arg)
163 { publisher.publish
164 (new Publisher.Distributor()
165 { public void deliverTo(Object subscriber)
166 { ((Observer)subscriber).notify(arg);
167 }
168 }
169);
170 }
171 }
172
173 public static void main(String[] args)
174 {
175 Notifier source = new Notifier();
176 int errors = 0;
177
178 Observer listener1 =
179 new Observer()
180 { public void notify(String arg)
181 { actualResults.append("1[" + arg + "]");
182 }
183 };
184
185 Observer listener2 =
186 new Observer()
187 { public void notify(String arg)
188 { actualResults.append("2[" + arg + "]");
189 }
190 };
191
192 source.addObserver(listener1);
193 source.addObserver(listener2);
194
195 source.fire("a");
196 source.fire("b");
197
198 expectedResults.append("2[a]");

CHAPTER 3 ■ THE GAME OF L IFE102

388x_Ch03_CMP3 8/17/04 9:29 PM Page 102

199 expectedResults.append("1[a]");
200 expectedResults.append("2[b]");
201 expectedResults.append("1[b]");
202
203 source.removeObserver(listener1);
204
205 try
206 { source.removeObserver(listener1);
207 System.err.print("Removed nonexistent node!");
208 ++errors;
209 }
210 catch(java.util.NoSuchElementException e)
211 { // should throw an exception, which we'll catch
212 // (and ignore) here.
213 }
214
215 expectedResults.append("2[c]");
216 source.fire("c");
217
218 if(!expectedResults.toString().equals(actualResults.toString()))
219 {
220 System.err.print("add/remove/fire failure.\n");
221 System.err.print("Expected:[");
222 System.err.print(expectedResults.toString());
223 System.err.print("]\nActual: [");
224 System.err.print(actualResults.toString());
225 System.err.print("]");
226 ++errors;
227 }
228
229 source.removeObserver(listener2);
230 source.fire("Hello World");
231 try
232 { source.removeObserver(listener2);
233 System.err.println("Undetected illegal removal.");
234 ++errors;
235 }
236 catch(Exception e) { /*everything's okay, do nothing*/ }
237
238 if(errors == 0)
239 System.err.println("com.holub.tools.Publisher: OKAY");
240 System.exit(errors);
241 }
242 }
243 }

CHAPTER 3 ■ THE GAME OF L IFE 103

388x_Ch03_CMP3 8/17/04 9:29 PM Page 103

The Clock Subsystem: The Visitor Pattern
Now let’s refocus on the Publisher from the design-pattern perspective. The notion of passing
to every node of some data structure a Command object that either uses or modifies that node
is immortalized in the Visitor pattern.

Here are the roles that the various Life classes take on within the pattern:

• Clock is the Client.

• Publisher is the Object Structure.

• Distributor is the Visitor interface.

• Node is the contained Element.

• Node.accept() is the “accept” request.

• deliverTo() is the “visit” request.

• An anonymous Distributor derivative created by Clock is the Concrete Visitor.

Figure 3-4, which you looked at earlier, shows the UML for both the actual reification
and the “classic” Gang-of-Four reification of Visitor. In the Publisher reification at the top
of the Figure, an external “client” (the Clock) does something to or with the objects in some
container (the Publisher) by passing a Visitor object (a class that implements Distributor) to
that container. The container handles the traversal, asking each object to “accept” the visitor.
The object then turns around and passes a “visit” method to each visitor, passing it an inter-
face to itself or equivalent.

This reification has only one difference between it and the “classic” Gang-of-Four reifica-
tion: The Visitor object in the “classic” version is passed a reference to the accepting Element,
and the visitor then turns around and performs some operation on that Element. In other
words, the visitor is passed a reference to the Element that it must access. Otherwise, the
Visitor wouldn’t know how to send messages to the Element. (If you can remember back that
far, the Car-and-Map example in Chapter 1 uses the same strategy. In fact, a car is a Visitor to
the Road Element.) In the Publisher reification, however, the Node Element exposes one of its
fields (the subscriber reference) to the DistributorVisitor by passing it as an argument to the
Visitor’s deliverTo(...) method.

One other reification of Visitor needs mentioning. Instead of passing the Visitor a refer-
ence to the Element itself or passing the Visitor one or more fields of Element, you can pass
the Visitor a reference to an interface that provides restricted access to the Element. In other
words, the interface in the Element role can represent a subset of the interface to the actual
object. This way the Element object can tightly control what the Visitor can do to it.

Another common extension involves heterogeneous lists. The Publisher class’s Visitor
interface (Distributor) is trivial, having only one method. If the Object Structure is heteroge-
neous, it’s reasonable for the Visitor interface to implement several versions of the “visit”
request, one for each Element type. It’s also reasonable for the Element (the Node) to imple-
ment some interface so that the traversal code can be decoupled from the actual element
type. For example:

CHAPTER 3 ■ THE GAME OF L IFE104

388x_Ch03_CMP3 8/17/04 9:29 PM Page 104

interface Visitor
{ public visit(NodeType aNode);

public visit(AnotherNodeType aNode);
public visit(YetAnotherNodeType aNode);

}

This way the Concrete Visitor doesn’t have to guess which possible node type it’s dealing
with.

Whew! That’s pretty complicated. Fortunately, Visitor is as hard as it gets. Visitor is one of
the most complicated—and hardest to understand—Gang-of-Four patterns, but it’s pretty
useful when applied correctly. Now that you, I hope, understand the mechanics, let’s look at
why I used Visitor at all.

Java has a class called AWTEventMulticaster that works a lot like the Publisher class. Using
it, you can make a list of literally any listener that’s supported by AWT. Here’s how you’d imple-
ment a list of ActionListener objects:

public myComponent extends Component
{

ActionListener subscribers = null;

public synchronized void addActionListener(ActionListener subscriber)
{ subscribers = AWTEventMulticaster.add(subscribers, subscriber);
}

public synchronized void removeActionListener(ActionListener subscriber)
{ subscribers = AWTEventMulticaster.remove(subscribers, subscriber);
}

public void fire()
{ if (subscribers != null)

subscribers.actionPerformed(new ActionEvent(/*...*/));
}

}

Here's how you'd implement a list of TextListener objects:

public myComponent extends Component
{

TextListener subscribers = null;

public synchronized void addTextListener(TextListener subscriber)
{ subscribers = AWTEventMulticaster.add(subscribers, subscriber);
}

public synchronized void removeTextListener(TextListener subscriber)
{ subscribers = AWTEventMulticaster.remove(subscribers, subscriber);
}

CHAPTER 3 ■ THE GAME OF L IFE 105

388x_Ch03_CMP3 8/17/04 9:29 PM Page 105

public void fire()
{ if (subscribers != null)

subscribers.textValueChanged(new TextEvent(/*...*/));
}

}

The chameleon-like adaptability comes from AWTEventMulticaster implementing literally
every listener interface supported by AWT and of course, implementing all the methods of
every listener interface. That’s a lot of work, it’s hard to maintain, and the class carries around
the baggage of implementing dozens of methods, only one of which is typically used in a
given application.

The general problem that AWTEventMulticaster is trying to solve is how to implement a
generalized event publisher where the various event handlers take arbitrary arguments and
return arbitrary values. AWTEventMulticaster solves the problem by implementing all the
event handlers that the designers could imagine, but that’s a lot of work and requires modifi-
cation of the original class if you need to add a handler that you didn’t imagine.

Returning your thoughts to the Publisher, I am solving the same problem as the designers
of AWTEventMulticaster. I want to be able to publish arbitrary events to arbitrary subscribers.
I could apply the same kitchen-sink mentality to the Publisher by supporting a few generic
interfaces. Here’s one possibility that can handle three types of subscribers, each of which can
handle a different number of arguments in the event-notification method:

class BruteForcePublisher
{

Node head = null;

interface Subscriber0
{ public void eventFired();
}
interface Subscriber1
{ public void eventFired(Object arg1);
}
interface Subscriber2
{ public void eventFired(Object arg1, Object arg2);
}

class Node
{ //...

private Object subscriber;
private Node next;

public void fire()
{ ((Subscriber0)subscriber).eventFired();
}

public void fire(Object arg1)
{ ((Subscriber1)subscriber).eventFired(arg1);
}

CHAPTER 3 ■ THE GAME OF L IFE106

388x_Ch03_CMP3 8/17/04 9:29 PM Page 106

public void fire(Object arg1, Object arg2)
{ ((Subscriber2)subscriber).eventFired(arg1,arg2);
}

}

public void fire()
{ for(Node current = head; current != null; current = current.next)

current.fire();
}

public void fire(Object arg1)
{ for(Node current = head; current != null; current = current.next)

current.fire(arg1);
}

public void fire(Object arg1, Object arg2)
{ for(Node current = head; current != null; current = current.next)

current.fire(arg1, arg2);
}

}

Even if you can stomach that all the arguments have to be declared as Object so can’t be
type checked, this solution has a lot of problems. What if I want to add a subscriber whose
interface requires two methods? I’d have to add the following to my class definition:

class BruteForcePublisherV2
{

//...

interface Subscriber1x2
{ public void event1Fired(Object arg1, Object arg2);

public void event2Fired(Object arg1, Object arg2);
}

class Node
{ //...

public void fire2(Object e1Arg1, Object e1Arg2,
Object e2Arg1, Object e2Arg2)

{ ((Subscriber2)subscriber).event1Fired(e1Arg1, e1Arg2);
((Subscriber2)subscriber).event2Fired(e2Arg1, e2Arg2);

}
}

//...

public void fire(Object e1Arg1, Object e1Arg2,
Object e2Arg1, Object e2Arg2)

CHAPTER 3 ■ THE GAME OF L IFE 107

388x_Ch03_CMP3 8/17/04 9:29 PM Page 107

{ for(Node current = head; current != null; current = current.next)
current.fire(e1Arg1, e1Arg2, e2Arg1, e2Arg2);

}
}

In fact, every time I need to add another event type, I need to add a new interface and two
methods to the class. This is way too much work.

To the rescue comes the Visitor pattern. The basic idea is that you often traverse collections
of objects passing messages to the object that comprise the collection. In the current example,
I’m traversing a list of subscribers, passing event notifications to each subscriber. The problem
with this naive implementation is that I need to add a method to the data-structure element
(the Node) every time I add a new event type to the system, but the odds of calling that particular
method in a given chunk of code is small.

Visitor solves the problem with a Command object. The idea is to pass the Node a Command
object (the Visitor) that understands how to notify a particular kind of listener. This way the Node
doesn’t have to support every possible listener type. You saw this process earlier in Listing 3-2.

The main downside of Visitor, other than its obvious complexity, is that the Visitor is
external to the Node but nonetheless can modify or otherwise accesses what would normally
be private components of the Node. This violation of encapsulation flies in the face of one of
the central precepts of OO systems: data abstraction. A Visitor can access the Element strictly
through a public interface, however, and I strongly recommend you do that whenever
possible.

It’s also difficult to maintain Visitor-based systems because changes to the Nodes require
parallel changes in the Visitor interface and all its derivatives. It’s exactly this rippling effect of
a change that OO systems are designed to avoid. Use Visitor only when the interface is
expected to be stable.

The Menuing Subsystem: Composite
Now let’s move to the menuing subsystem in the lower-left corner of Figures 3-1 and 3-2 on
pages 84 and 85.

The first pattern of interest in the menuing system is Composite. I’ll explain how Composite
is used now. You’ll see how it’s implemented in Life later.

Composite simplifies the management of a hierarchy of similar objects by letting a
container treat everything that it contains identically, even if the contained objects are actu-
ally instances of different classes. If you look at a containment hierarchy as a kind of tree, the
containers are the interior nodes.

Composite is used extensively in the current Life implementation, but Java’s menuing
system provides a scaled-down example, so let’s start there. Figure 3-7 and Figure 3-8 show
the two menus that my Life implementation supports, and Figure 3-9 shows the containment
hierarchy for these menus. (Figure 3-9 also shows—in gray at the bottom—how you can hook
a submenu into the system.)

CHAPTER 3 ■ THE GAME OF L IFE108

388x_Ch03_CMP3 8/17/04 9:29 PM Page 108

Figure 3-7. Life’s Go menu Figure 3-8. Life’s Grid menu

Figure 3-9. The menu containment hierarchy

CHAPTER 3 ■ THE GAME OF L IFE 109

388x_Ch03_FINAL.qxd 1/14/05 3:50 PM Page 109

Here are the characteristics of Composite:

• An object hierarchy is split up into two main classes of objects, both of which typically
implement the same interface.

• The common interface serves the role of Component.

• One or more of the classes of objects in the hierarchy serve in the role of Leaf—objects
of these classes form the leaves (terminate the branches) of the object tree. They don’t
contain anything.

• Another of the classes of objects in the hierarchy serve in the role of Composite—
objects of these classes contain objects that implement the same interface as do the
Composite objects.

• When you write the code for the Composite, you don’t need to know whether a contained
object is a Leaf or another Composite because you can access them through the interface
they both implement. The code is much simpler to write as a consequence.

The following translates the general description to the menuing system:

• The menu hierarchy consists of JMenuItem and JMenu objects.

• The JMenuItem serves in the role of Leaf.

• The JMenu serves in the role of Composite. JMenu extends JMenuItem, so a JMenu is a
JMenuItem.

• The programmers who wrote the code to handle menus don’t need to know whether
a menu item is a Leaf (a JMenuItem) or a Composite (a JMenu representing a submenu)
because the two can be treated identically. That is, a menu can contain both JMenu and
JMenuItem objects, but the JMenu can be treated as a JMenuItem.

This example differs from the “classic” Gang-of-Four example in that JMenuItem serves
in two roles. It acts simultaneously as the Component interface and a Leaf node. In a “classic”
reification, JMenuItem and JMenu would implement a common interface, and JMenu would not
extend JMenuItem. Neither architecture is superior to the other; both are legitimate reifications
of the pattern—two different ways to accomplish the same objective.

You’ll notice that the AWT Component/Container hierarchy also satisfies these requirements
so reifies Composite. Figure 3-10 shows the UML. A Container is a Component, as are all the leaf
nodes, such as Button, that don’t contain anything. A container can lay out its subcomponents
without regard to their actual class, since all the subcomponents implement the (effective)
Component interface.

CHAPTER 3 ■ THE GAME OF L IFE110

388x_Ch03_CMP3 8/17/04 9:29 PM Page 110

Figure 3-10. The AWT component-container system

A directory system is another a natural example of Composite. (A directory is a file that
contains other files, including subdirectories. In Unix/Linux systems, a directory is literally a
file, in fact. You can open it, read its contents, and so on.

SimpleFile

+open()
+close()
+print()

Directory

+print()
+add(content: File)
+remove(Content: File)
+contents(): Iterator

contents 0..*
1

public void print()
{ for(int i = 0; i < contents.length; ++i)

contents[i].print();
}

Composite
Leaf and Component

Composite

Component

+doLayout ()
contents

0..* 1

public void doLayout()
{ for(every Component in contents)
 doLayout();
}

Component

Composite
Etc.

Leaf

Leaf

Frame

Window

Dialog

Composite

Composite

Composite

Container

+doLayout ()
+add (subelement :Component)

public void doLayout()
{ /* empty */
}

Composite

Button

Checkbox

Choice

Leaf

CHAPTER 3 ■ THE GAME OF L IFE 111

388x_Ch03_CMP3 8/17/04 9:29 PM Page 111

In this simple example, the SimpleFile class serves in both the Component and the Leaf
roles. (In the “classic” Gang-of-Four example, the classes in the Leaf and Composite roles both
implement a common Component interface.)

One common source of confusion with Composite is really obvious in the UML for a
Directory at the bottom of the previous page. The structure of the object hierarchy inverts the
class-hierarchy structure. When drawing the object hierarchy, a root node is a container, typi-
cally shown at the top of the tree, with the leaf nodes below it. In composite, however, this root
node is a subclass, typically shown beneath the leaf-node class in the UML diagrams.

The important characteristic of the pattern is that when you’re traversing a directory
system, you don’t need to know whether the subdirectories are files or subdirectories. The
code shown in the comment, previously, just sends a print() message to the object. If it’s a
SimpleFile, then the single filename is printed. If it’s a Directory, then its contents are printed.
Because both sorts of components can be treated uniformly, the methods of the class in the
Composite role are easy to write.

I’ll come back to Composite in the context of Life in a bit, but let’s continue exploring the
menuing subsystem. Listing 3-4 demonstrates how you’d have to build the menuing system
using the raw APIs. A lot of things can wrong with this code, the most obvious of which is that
it’s way too long. None of the code is particularly complicated, but there’s a lot of it. Moreover,
building a menu is a repetitive task, and when you build menus by hand all over the place, you
have lots of repetitive code. ProtoUniverse.addMenus(...) and ProtoClock.addMenus(...) are
almost identical. I’m also not happy with the clutter. I really don’t want to be worrying about
the details of the menu APIs when I’m working on “business” classes (classes that implement
key design abstractions).

A more serious problem, from a design point of view, is that a ProtoUniverse is what’s
called a key abstraction of the design (a “business” object). Its characteristics are determined
by the problem definition, and it’s part of the user’s mental model of the problem. ProtoClock
and Neighborhood are also key abstractions. To say that a Neigborhood is a Frame or a Menu
Contributor is nonsensical. You don’t talk about your next-door “framers” (unless they’re in the
construction trade). You talk about your neighbors. Similarly, you don’t say you live in a nice
Menu Contributor; you live in a nice neighborhood. For derivation to make sense in a design,
the subclass must be the same thing as the superclass, though it might behave a little differently.

The basic drill for adding a menu item is as follows:

JMenuItem item = new JMenuItem("Visible Text");
item.setName("someInternalName");
item.addActionListener(handlerToCallWhenItemSelected)
containingMenu.add(item);

The “name” you establish with setName is an arbitrary string that’s stored internally in the
JComponent. (All JComponents have one.) The name is not visible to the user at all. (The visible
label—called the text—is either passed into the constructor, as shown here, or set with a call to
setText()). The point of an internal “name” is that the visible text could change over time, but
the internal name won’t. I use the internal name, not the visible label, when I decide which
menu item was selected (in the switch statement on line 65 of Listing 3-4, for example).

One thorny problem emerges when you look at the code in Listing 3-4 really closely.
That cast on line 20 is ugly. I want to be able to create a UI at this level using the Composite
pattern. A JFrame is a JComponent that holds other JComponents: I want to be able to treat all

CHAPTER 3 ■ THE GAME OF L IFE112

388x_Ch03_CMP3 8/17/04 9:29 PM Page 112

subwindows as JComponent objects. I need that cast to exercise the MenuContributor abilities
of the ProtoUniverse, however. You should avoid casts generally—they’re a source of runtime
errors. Were JComponent an interface rather than a class, I could neatly solve the problem by
changing the ProtoUniverse declaration to read as follows:

class ProtoUniverse extends JPanel
implements Cell, JComponent, MenuContributor

But JComponent isn’t an interface, so I’m stuck. I can’t change the source code for AWT
and Swing. This difficulty demonstrates why it’s a good idea to use interfaces from Day One.

Another “solution” to the cast problem also doesn’t work: Make MenuContributor an
abstract class that extends JComponent to add a few methods, and then define all my references
as references to this new class. The ProtoClock contributes to the menu but doesn’t display a
UI, however. I don’t want a ProtoClock to carry around the literal and metaphorical baggage of
a JComponent, so deriving it from JComponent is inappropriate.

Short of a major refactor of AWT/Swing, no ideal solution exists to this problem, so I’ll
just let the cast stand for now.

Listing 3-4. Building a Menuing System with the Raw APIs

1 import javax.swing.*;
2 import java.awt.*;
3 import java.awt.event.*;
4
5 interface MenuContributor
6 { void addMenus(JMenuBar menuBar);
7 }
8
9 class Menus extends JFrame
10 {
11 public Menus()
12 {
13
14 JComponent theUniverse = new ProtoUniverse();
15 MenuContributor theClock = new ProtoClock();
16 //...
17
18 JMenuBar menuBar = new JMenuBar();
19 theClock. addMenus(menuBar);
20 ((MenuContributor)theUniverse).addMenus(menuBar);
21
22 JMenuItem exit = new JMenuItem("Exit");
23 exit.addActionListener
24 (new ActionListener()
25 { public void actionPerformed(ActionEvent e)
26 { System.exit(0);
27 }
28 }

CHAPTER 3 ■ THE GAME OF L IFE 113

388x_Ch03_CMP3 8/17/04 9:29 PM Page 113

29);
30 menuBar.add(exit);
31
32 menuBar.setVisible(true);
33 setJMenuBar(menuBar);
34
35 getContentPane().add(theUniverse);
36 setDefaultCloseOperation(EXIT_ON_CLOSE);
37 pack();
38 setSize(200, 200);
39 show();
40 }
41
42 public static void main(String[] args)
43 { new Menus();
44 }
45 }
46
47 class ProtoClock implements MenuContributor
48 { //...
49
50 public void addMenus(JMenuBar menuBar)
51 {
52 JMenuItem halt = new JMenuItem("Halt");
53 JMenuItem slow = new JMenuItem("Slow");
54 JMenuItem fast = new JMenuItem("Fast");
55 //...
56
57 halt.setName("halt");
58 slow.setName("slow");
59 fast.setName("fast");
60
61 ActionListener handler =
62 new ActionListener()
63 { public void actionPerformed(ActionEvent e)44
64 { String name = ((JMenuItem)e.getSource()).getName();
65 switch(name.charAt(0))
66 {
67 case 'h': setClockSpeed(0); break;
68 case 'f': setClockSpeed(500); break;
69 case 's': setClockSpeed(250); break;
70 }
71 }
72 };
73
74 halt.addActionListener(handler);
75 slow.addActionListener(handler);

CHAPTER 3 ■ THE GAME OF L IFE114

388x_Ch03_CMP3 8/17/04 9:29 PM Page 114

76 fast.addActionListener(handler);
77
78 JMenu go = new JMenu("Go");
79 go.add(halt);
80 go.add(slow);
81 go.add(fast);
82
83 menuBar.add(go);
84 }
85
86 private void setClockSpeed(int speed)
87 { System.out.println("Changing speed to " + speed);
88 }
89 }
90
91 class ProtoUniverse extends JPanel implements Cell, MenuContributor
92 { //...
93 public void addMenus(JMenuBar menuBar)
94 {
95 JMenuItem clear = new JMenuItem("Clear");
96 JMenuItem load = new JMenuItem("Load");
97 JMenuItem store = new JMenuItem("Store");
98 //...
99
100 clear.setName("clear");
101 load.setName("load");
102 store.setName("store");
103
104 ActionListener handler =
105 new ActionListener()
106 { public void actionPerformed(ActionEvent e)
107 { String name = ((JMenuItem)e.getSource()).getName();
108 switch(name.charAt(0))
109 {
110 case 'c': clearGrid(); break;
111 case 'l': loadGrid(); break;
112 case 's': storeGrid(); break;
113 }
114 }
115 };
116
117 clear.addActionListener(handler);
118 load.addActionListener (handler);
119 store.addActionListener(handler);
120
121 JMenu grid = new JMenu("Grid");
122 grid.add(clear);

CHAPTER 3 ■ THE GAME OF L IFE 115

388x_Ch03_CMP3 8/17/04 9:29 PM Page 115

123 grid.add(load);
124 grid.add(store);
125
126 menuBar.add(grid);
127
128 }
129
130 // stubs:
131
132 private void clearGrid(){ System.out.println("clear"); }
133 private void loadGrid() { System.out.println("load"); }
134 private void storeGrid(){ System.out.println("store"); }
135 }
136
137 interface Cell
138 { //...
139 }
140

The Menuing Subsystem: Facade and Bridge
Now that you know how the underlying menuing system works, you’re ready to look at the
actual code (MenuSite.java in Listing 3-6, on page 123).

The MenuSite is an example of the Facade design pattern. The point of Facade is to make it
easier to access a complex system via a simple one. The main problem with the raw menuing
APIs I just discussed is that it’s just too complicated to build a menuing system. You need to
create lots of classes, nest them together properly, and hook up listeners. All this work does
nothing but clutter up the code unnecessarily and make the code hard to maintain. The main
point of the MenuSite Facade is to hide this complexity and let you build a menu with a few
simple method calls.

This particular Facade also nicely solves a few OO-design issues. You’ll remember (I hope)
from Chapter 1 that it’s best for objects to create their own user interfaces so as not to expose
implementation information to a UI-builder object. Put another way, a screen in an object-
oriented user interface is typically an aggregate of smaller user interfaces that individual
objects in the system provide. This way, when you change an object’s structure, you also
change the way that it presents itself. If both the business and presentation logic are in the
same class definition, then the scope of your change is limited to that class definition. You
don’t have to go out and find all the screen-builder classes and change them too.

Implementing this aggregate-UI structure can be vexing with any menuing system, which
are typically treated procedurally as a monolithic object. It’s reasonable, however, for an object
to want to add menu items that are related to itself to the main menu bar. For example, Life’s
Clock class needs to add a menu that handles changes in clock speed. Nothing else in the
system is particularly interested in that menu, so the Clock should create (and install) it.1

CHAPTER 3 ■ THE GAME OF L IFE116

1. This user-interface architecture, by the way, is not Model/View/Controller. It’s called Presentation/
Action/Control and is discussed in the book A System of Patterns: Pattern-Oriented Software Architec-
ture by Buschmann, et. al. (John Wiley & Sons, 1996).

388x_Ch03_CMP3 8/17/04 9:29 PM Page 116

A great example of this sort of object structure is in Microsoft’s Object-Linking-and-
Embedding In-Place-Activation system. (I’m not particularly happy with the way that Microsoft
implemented their architecture, but the concepts are solid.) When you want to put a numeric
table into a Microsoft Word document, you select Insert:Object:Microsoft Excel Worksheet from
the main menu. Word launches Excel, and the two programs negotiate how to share a common
user interface. Word gives Excel a portion of the screen to work with (into which Excel puts its
spreadsheet UI) and Excel puts menu items onto the main Word menu bar. While you’re working
on the spreadsheet, you’re actually talking to the “Excel” object through a user interface created
by that object. Excel also pops up various toolbars and other UI elements.

When you click outside Excel’s window, the Excel object shuts down. Excel removes all its
pop-up windows, removes from the menu bar any items that it added, and returns to Word an
image to display in place of the Excel-generated user interface. Finally, Excel returns a “blob”
of data to Word—a byte array that Word keeps for Excel until the next activation.

This “blob” of data is an example of the Memento pattern, which I’ll discuss in greater
depth later in this chapter. The data blob is the Memento, Excel is the Originator, and Word
is the Caretaker. The point of Memento is that the Caretaker (Word) has no idea what’s in the
Memento—Word certainly can’t manipulate the stored spreadsheet. The Caretaker (Word)
just holds onto the Memento until the Originator (Excel) needs it again.

Returning to the UI issues, the Excel object creates its own user interface but integrates
this UI into an existing framework UI managed by Word. OLE activation is a great example
of object-oriented structure. Some high-level object owns the application’s main frame and
menu bar, but the actual UI is an aggregation of smaller user interfaces contributed by various
objects in the system. The point of this structure is to isolate the objects’ implementations
from the rest of the system. When Microsoft comes out with a new version of Excel that has
new UI requirements, it does not have to modify Word at all. The UI changes are concentrated
in Excel itself. The same reasoning applies to smaller objects; when you need to make a struc-
tural change to the object that impacts the UI (such as adding a new clock speed), all the
changes are concentrated in a single class definition (the Clock), and you don’t need to
change anything in the encapsulating program.

The MenuSite
The current Life implementation solves the menuing problem by using a class (MenuSite)
that allows you to approach the menuing system in an object-oriented way. The point of the
MenuSite class is twofold: to simplify the interface to the menuing system and to make it easy
for objects to contribute to a shared menu bar. The notion of talking to an entire subsystem (or
at least a group of related classes) through a single simple interface is embodied in the Facade
design pattern. Facade provides a simple way to perform some task that would otherwise be
complicated. It’s perfectly reasonable to make a Facade that simplifies one aspect of what a
subsystem does, but elsewhere in your code, you’d talk to the subsystem directly, without using
the Facade. A Facade doesn’t necessarily isolate you from changes to subsystem. Nonetheless, a
Facade can provide this isolation if you’re careful to access subsystem classes through only the

CHAPTER 3 ■ THE GAME OF L IFE 117

388x_Ch03_CMP3 8/17/04 9:29 PM Page 117

Facade. The Bridge design pattern (discussed in a subsequent chapter) can force subsystem
isolation by prohibiting direct access to subsystem classes. That is, a Facade provides assistance
with a subsystem while a Bridge isolates you from that subsystem completely.

Since the MenuSite interface is key, let’s look at how to use it. You must first “bind” it to
a top-level frame window. The Life class (Listing 3-5) does it on line 26 with the following
method call:

MenuSite.establish(this);

The Life object does only two things: It creates the main frame and installs the MenuSite
into it, and (on line 30) it creates the game board (the Universe) and installs it in the frame.
It’s often the case that an OO system’s main() does nothing but create a few high-level objects,
hook them together, and terminate. Remember, an OO system is a network of cooperating
objects. There’s no spider in the middle of the web pulling the strands. Put another way,
there’s no “god” class that controls the workings of the program.

Listing 3-5. Life.java

1 package com.holub.life;
2
3 import java.awt.*;
4 import javax.swing.*;
5 import com.holub.ui.MenuSite;
6
7 /***
8 * An implementation of Conway's Game of Life.
9 * @author Allen I. Holub
10 */
11
12 public final class Life extends JFrame
13 {
14 private static JComponent universe;
15
16 public static void main(String[] arguments)
17 { new Life();
18 }
19
20 private Life()
21 { super("The Game of Life. "
22 +"©2003 Allen I. Holub <http://www.holub.com>");
23
24 // Must establish the MenuSite very early in case
25 // a subcomponent puts menus on it.
26 MenuSite.establish(this);
27
28 setDefaultCloseOperation (EXIT_ON_CLOSE);
29 getContentPane().setLayout (new BorderLayout());
30 getContentPane().add(Universe.instance(), BorderLayout.CENTER);

CHAPTER 3 ■ THE GAME OF L IFE118

388x_Ch03_CMP3 8/17/04 9:29 PM Page 118

http://www.holub.com

31
32 pack();
33 setVisible(true);
34 }
35 }

The MenuSite object is an everything-is-static Singleton. That means you can have only
one menu bar in a program. I thought about allowing multiple menu bars, but the problem of
finding a particular menu site turned out to be pretty complicated, so I took the easy way out.
I’m willing to concede the point if you think my decision was too limiting.

Once the site is established, any object can add or remove menus by calling static methods.
The Clock class’s createMenus method (Listing 3-1, line 57, on page 91) sets up the menus for the
Clock object to use. The method starts by creating a single ActionListener object—a Concrete
Observer that is shared by most of the line items on the menu. This particular observer starts up
a java.util.Timer object at the speed indicated by the selected item:

ActionListener modifier =
new ActionListener()
{ public void actionPerformed(ActionEvent e)

{
String name = ((JMenuItem)e.getSource()).getName();
char toDo = name.charAt(0);

if(toDo=='T')
tick(); // single tick

else
startTicking(toDo=='A' ? 500: // agonizing

toDo=='S' ? 150: // slow
toDo=='M' ? 70 : // medium
toDo=='F' ? 30 : 0); // fast

}
};

The method then sets up the menus by calling MenuSite.addLine(...) several times
(reproduced next). The first argument identifies the object that “owns” the menu item. The
second argument specifies the menu to which the item is added. In this case, it’s added to the
Go menu on the main menu bar. Since no Go menu exists, The MenuSite automatically creates
the new Menu and places it on the menu bar. The third argument is the “name” of this partic-
ular line item. (Menu items, like all Components, have both an invisible “name” and a visible
“text” attribute. By default, the MenuSite uses the same string for both purposes.) The final
argument is the Observer to notify when a user selects this menu item.

MenuSite.addLine(this,"Go","Halt", modifier);
MenuSite.addLine(this,"Go","Tick (Single Step)",modifier);
MenuSite.addLine(this,"Go","Agonizing", modifier);
MenuSite.addLine(this,"Go","Slow", modifier);
MenuSite.addLine(this,"Go","Medium", modifier);
MenuSite.addLine(this,"Go","Fast", modifier);

CHAPTER 3 ■ THE GAME OF L IFE 119

388x_Ch03_FINAL.qxd 1/12/05 11:05 AM Page 119

It’s not done here, but if the Clock object wanted to remove all the menu items that it
added, it could call this:

MenuSite.removeMyMenus(this);

Similarly, the Clock can disable all the menu items it adds by calling this:

MenuSite.setEnable(this, false);

The point of this structure, again, is that it makes it easy for a particular object to manage
only those menu items that it’s interested in and for the rest of the system to not care about
how a given object is using the menu. Table 3-1 shows the remainder of the documentation
for MenuSite.

Listing 3-6 shows the entire source code for MenuSite. The implementation of this Facade
doesn’t have any design patterns, so I won’t spend any time on it. (This isn’t a book on GUI
building, after all.) The main point of including the entire listing in this book is to demonstrate
how much complexity the Facade is hiding. This complex mess would be in the midst of your
code were the Facade not there. You’ll find several pages of code that demonstrates how to use
a MenuSite in the MenuSite.Test.main(...) method, starting on line 548 of Listing 3-6. If you
want to skip the listing, turn to page 139.

Table 3-1. MenuSite Documentation

public static void establish(JFrame container): Establishes a JFrame as the program’s
menu site. This method must be called before any of the other menu-site methods may be
called. (Most of these will throw a NullPointerException if you try.)

public static void addMenu(Object requester, String menuSpecifier): Creates and adds
an empty menu to the menu bar. Menus are generally created by addLine(...). This method
is provided for situations where one requester creates a menu structure and other requesters
add line items to this structure. The requesters that added the line items can remove those
items without removing the menu that contained the items.

Menus are inserted on the menu bar just to the left of the Help menu. (The “help” menu
[a menu whose name is the string help—case is ignored] is special in that it always appears on
the far right of the menu bar.) Use addLine(...) to add line items to the menu. This method
does the name-to-label substitution described in addLine(...)as well. As in addLine(...),
the name string also defines the (visible) label if no mapping is found.

If the requested menu already exists, this method silently does nothing.

Parameters:
requester: The object that “owns” this menu. All menus (and line items) added by a
specific requester are removed by a single removeMyMenus(...) call. The requester need
not be the actual object that adds the menu—there may not be a single one—it is simply
used to identify a group of menu items that will be removed in bulk. All items that have
the same requester object are removed at once.

CHAPTER 3 ■ THE GAME OF L IFE120

388x_Ch03_CMP3 8/17/04 9:29 PM Page 120

menuSpecifier: The menu to create. A simple specifier (with no colons in it) creates an
item on the menu bar itself. Submenus are specified using the syntax main:sub. For
example, the following call creates a New submenu under the File menu:

addMenu(this, "File:New")

If the supermenu (in this example, File) doesn’t exist, it’s created. You can have more than
one colon if you want to go down more than one level (for example, Edit:Text:Size). Up
to six levels below the menu bar (six colons) are supported. (If you have more than that,
you should seriously reconsider your menu structure.) Intermediate menus are added as
necessary.

public static void addLine(Object requester, String toThisMenu, String name, Action-
Listener observer): Adds a line item to a menu. The menu is created if it does not already
exist. This method is the preferred way to both create menus and add line items to existing
menus. See addMenu(...) for the rules of menu creation.

The name parameter is used for both the name and visible text, but you can specify text
different from the name by calling addMapping(...) (which can also be used to define shortcuts).

Parameters:
requester: The object that requested that this line item be added.

name: The (hidden) name text for this item. When there’s no name map (see addMapping(...)),
the same string is used for both the name and the label; otherwise the name argument
specifies the name only, and the associated label (and shortcut) is taken from the map.

Use the name "-" to place a separator into a menu. The listener argument is not used in
this case and can be null.

toThisMenu: The specifier of the menu to which you’re adding the line item. (See addMenu(...)
for a discussion of specifiers.) The specified menu is created if it doesn’t already exist.

listener: The ActionListener to notify when the menu item is selected.

public static void removeMyMenus(Object requester): Removes all items that were added by
this requester. For the time being, the case of “foreign” items being placed on a menu created
by another requester is not handled. Consider a program in which two objects both add an
item to the File menu. The first object to add an item will be the official “owner” of the menu,
since it created the menu. When you call removeMyMenus() for this first object, you want to
remove the line item it added to the File menu, but you don’t want to remove the File menu
itself because it’s not empty. Right now, the only solution to this problem is for a third
requester to create the menu itself using addMenu(...)

continues

CHAPTER 3 ■ THE GAME OF L IFE 121

388x_Ch03_CMP3 8/17/04 9:29 PM Page 121

public static void setEnable(Object requester, boolean enable): Disables or enables all
menus and menu items added by a specific requester. You can disable a single menu item by
using this:

MenuSite.getMyMenuItem(requester,"parent:spec","name").setEnabled(false);

Parameters:

enable: Set this to true to enable all the requester’s menu items.

public static JMenuItem getMyMenuItem(Object requester, String menuSpecifier,
String name): Gets a menu item for external modification.

Parameters:
requester: The object that inserted the menu or item.

menuSpecifier: The menu specifier passed to the original addMenu(...) or addLine(...) call.

name: The name passed to addLine(...); should be null if you want a menu rather than a
line item within the menu.

Returns:

The underlying JMenu or JMenuItem. Returns null if the item doesn’t exist.

public static void mapNames(URL table) throws IOException: Establishes a “map” of (hidden)
names to (visible) labels and shortcuts. Establishing a map changes the behavior of addLine(...)
and addMenu(...) in that the specified (“text”) label and shortcut are installed automatically
for all names specified in the table. A map must be specified before the item named in the
map are added to the menu site. You may call this method multiple times to load multiple
maps, but the “name” component of each entry must be unique across all maps.

Parameters:
table: A Properties-style file that maps named keys to labels, along with an optional
shortcut. The general form is as follows:

name1 = label One; C
name2 = label Two; Alt X

You can specify the shortcut in one of two ways. If it’s a single character, as in the first
example, the platform-default modifier is used. For example, in the first example,
the shortcut will be a Ctrl+C in Windows, Command+C on the Mac, and so on.
Otherwise, the shortcut specifier must take the form described in
javax.swing.KeyStroke.getKeyStroke(String). For example:

• F1 • alt shift released X

• control DELETE • alt shift X

• typed a

CHAPTER 3 ■ THE GAME OF L IFE122

388x_Ch03_CMP3 8/17/04 9:29 PM Page 122

Names such as DELETE and F1 are shorthand for VK_DELETE and VK_F1. (You can find the
complete set of VK_X constants in the java.awt.event.KeyEvent class.) You can use any of
these “virtual” keys simply by removing the VK_.

F10 is hard-mapped to display the main menu (so that you can navigate the menus with
the arrow keys, I assume). You could probably defeat this behavior with a key binding, but it’s
easier to just accept it as a fait accompli and not try to define F10 as a keyboard shortcut.

The input file is a standard Properties file, which is assumed to be ISO 8859-1 (not Unicode)
encoded. ASCII works just fine, but see Properties.load(java.io.InputStream) for a full descrip-
tion of the file format.

public static void addMapping(String name, String label, String shortcut): Adds a
name-to-label mapping manually. A mapping must be specified before the item is added to
the menu site.

Parameters:
name: The menu-item name passed to addMenu(...) or addLine(...).

label: The visible label for that item.

shortcut: The shortcut, if any. Should be an empty string ("") if no shortcut is required.
See mapNames(java.net.URL) for information on how to form this string.

Listing 3-6. MenuSite.java

1 package com.holub.ui;
2
3 import java.io.*;
4 import java.util.*;
5 import java.util.logging.*;
6 import java.util.regex.*;
7 import java.net.*;
8 import java.awt.*;
9 import java.awt.event.*;
10 import javax.swing.*;
11
12 /**...*/
13
14 public final class MenuSite
15 {
16 private static JFrame menuFrame = null;
17 private static JMenuBar menuBar = null;
18
19 /**...*/
20 private static Map requesters = new HashMap();
21
22 /**...*/

CHAPTER 3 ■ THE GAME OF L IFE 123

388x_Ch03_CMP3 8/17/04 9:29 PM Page 123

23 private static Properties nameMap;
24
25 /**...*/
26 private static Pattern shortcutExtractor =
27 Pattern.compile(
28 "\\s*([^;]+?)\\s*" // value
29 +"(;\\s*([^\\s].*?))?\\s*$"); // ; shortcut
30
31 /**...*/
32 private static Pattern submenuExtractor =
33 Pattern.compile("(.*?)(?::(.*?))?"
34 + "(?::(.*?))?"
35 + "(?::(.*?))?"
36 + "(?::(.*?))?"
37 + "(?::(.*?))?"
38 + "(?::(.*?))?");
39
40 /**...*/
41
42 private static final LinkedList menuBarContents =
43 new LinkedList();
44
45 /**...*/
46 private MenuSite()
47
48 /**...*/
49
50 private static boolean valid()
51 { assert menuFrame != null : "MenuSite not established";
52 assert menuBar != null : "MenuSite not established";
53 return true;
54 }
55
56 /**...*/
57 public synchronized static void establish(JFrame container)
58 {
59 assert container != null;
60 assert menuFrame == null:
61 "Tried to establish more than one MenuSite";
62
63 menuFrame = container;
64 menuFrame.setJMenuBar(menuBar = new JMenuBar());
65
66 assert valid();
67 }
68
69 /**...*/

CHAPTER 3 ■ THE GAME OF L IFE124

388x_Ch03_CMP3 8/17/04 9:29 PM Page 124

70 public static void addMenu(Object requester, String menuSpecifier)
71 { createSubmenuByName(requester, menuSpecifier);
72 }
73
74 /**...*/
75 public static void addLine(Object requester,
76 String toThisMenu,
77 String name,
78 ActionListener listener)
79 {
80 assert requester != null: "null requester" ;
81 assert name != null: "null item" ;
82 assert toThisMenu != null: "null toThisMenu";
83 assert valid();
84
85 // The "element" field is here only so that we don't create
86 // a menu if the assertion in the else clause fires.
87 // Otherwise, we could just create the items in the
88 // if and else clauses.
89
90 Component element;
91
92 if(name.equals("-"))
93 element = new JSeparator();
94 else
95 { assert listener != null: "null listener";
96
97 JMenuItem lineItem = new JMenuItem(name);
98 lineItem.setName(name);
99 lineItem.addActionListener(listener);
100 setLabelAndShortcut(lineItem);
101
102 element = lineItem;
103 }
104
105 JMenu found = createSubmenuByName(requester, toThisMenu);
106 if(found==null)
107 throw new IllegalArgumentException(
108 "addLine() can't find menu ("+ toThisMenu +")");
109
110 Item item = new Item(element, found, toThisMenu);
111 menusAddedBy(requester).add(item);
112 item.attachYourselfToYourParent();
113 }
114
115 /**...*/
116

CHAPTER 3 ■ THE GAME OF L IFE 125

388x_Ch03_CMP3 8/17/04 9:29 PM Page 125

117 public static void removeMyMenus(Object requester)
118 {
119 assert requester != null;
120 assert valid();
121
122 Collection allItems=(Collection)(requesters.remove(requester));
123
124 if(allItems != null)
125 { Iterator i = allItems.iterator();
126 while(i.hasNext())
127 { Item current = (Item) i.next();
128 current.detachYourselfFromYourParent();
129 }
130 }
131 }
132
133 /**...*/
134 public static void setEnable(Object requester, boolean enable)
135 {
136 assert requester != null;
137 assert valid();
138
139 Collection allItems = (Collection)(requesters.get(requester));
140
141 if(allItems != null)
142 {
143 Iterator i = allItems.iterator();
144 while(i.hasNext())
145 { Item current = (Item) i.next();
146 current.setEnableAttribute(enable);
147 }
148 }
149 }
150
151 /**...*/
152
153 public static JMenuItem getMyMenuItem(Object requester,
154 String menuSpecifier, String name)
155 {
156 assert requester != null;
157 assert menuSpecifier != null;
158 assert valid();
159
160 Collection allItems = (Collection)(requesters.get(requester));
161
162 if(allItems != null)
163 { Iterator i = allItems.iterator();

CHAPTER 3 ■ THE GAME OF L IFE126

388x_Ch03_CMP3 8/17/04 9:29 PM Page 126

164 while(i.hasNext())
165 { Item current = (Item) i.next();
166 if(current.specifiedBy(menuSpecifier))
167 { if(current.item() instanceof JSeparator)
168 continue;
169
170 if(name==null && current.item() instanceof JMenu)
171 return (JMenu)(current.item());
172
173 if(((JMenuItem)current.item()).getName().equals(name))
174 return (JMenuItem) current.item();
175 }
176 }
177 }
178 return null;
179 }
180
181
182 //===
183 // Private support methods and classes |
184 //===
185
186 /**...*/
187 private static JMenu createSubmenuByName(Object requester,
188 String menuSpecifier)
189 {
190 assert requester != null;
191 assert menuSpecifier != null;
192 assert valid();
193
194 Matcher m = submenuExtractor.matcher(menuSpecifier);
195 if(!m.matches())
196 throw new IllegalArgumentException(
197 "Malformed menu specifier.");
198
199 // If it's null, then start the search at the menu bar;
200 // otherwise start the search at the menu addressed by "parent"
201
202 JMenuItem child = null;
203 MenuElement parent = menuBar;
204 String childName;
205
206 for(int i=1; (childName = m.group(i++)) != null; parent=child)
207 {
208 child = getSubmenuByName(childName,parent.getSubElements());
209
210 if(child != null)

CHAPTER 3 ■ THE GAME OF L IFE 127

388x_Ch03_CMP3 8/17/04 9:29 PM Page 127

211 { if(!(child instanceof JMenu)) // it's a line item!
212 throw new IllegalArgumentException(
213 "Specifier identifes line item, not menu.");
214 }
215 else // it doesn't exist, create it
216 {
217 child = new JMenu (childName);
218 child.setName (childName);
219 setLabelAndShortcut (child);
220
221 Item item = new Item(child, parent, menuSpecifier);
222 menusAddedBy(requester).add(item);
223 item.attachYourselfToYourParent();
224 }
225 }
226
227 return (JMenu)child; // the earlier instanceof guarantees safety
228 }
229
230 /**...*/
231
232 private static JMenuItem getSubmenuByName(String name,
233 MenuElement[] contents)
234 {
235 JMenuItem found = null;
236 for(int i = 0; found==null && i < contents.length ; ++i)
237 {
238 // This is not documented, but the system creates internal
239 // pop-up menus for empty submenus. If we come across one of
240 // these, then look for "name" in the pop-up's contents. This
241 // would be a lot easier if PopupMenu and JMenuItem
242 // implemented a common interface, but they don't.
243 // I can't use a class adapter to make them appear to
244 // implement a common interface because the JPopupWindows
245 // are manufactured by Swing, not by me.
246
247 if(contents[i] instanceof JPopupMenu)
248 found = getSubmenuByName(name,
249 ((JPopupMenu)contents[i]).getSubElements());
250
251 else if(((JMenuItem) contents[i]).getName().equals(name))
252 found = (JMenuItem) contents[i];
253 }
254 return found;
255 }
256
257 /**...*/

CHAPTER 3 ■ THE GAME OF L IFE128

388x_Ch03_CMP3 8/17/04 9:29 PM Page 128

258
259 public static void mapNames(URL table) throws IOException
260 { if(nameMap == null)
261 nameMap = new Properties();
262 nameMap.load(table.openStream());
263 }
264
265 /**...*/
266
267 public static void addMapping(String name, String label,
268 String shortcut)
269 { if(nameMap == null)
270 nameMap = new Properties();
271 nameMap.put(name, label + ";" + shortcut);
272 }
273
274 /**...*/
275 private static void setLabelAndShortcut(JMenuItem item)
276 { String name = item.getName();
277 if(name == null)
278 return;
279
280 String label;
281 if(nameMap != null
282 && (label= (String)(nameMap.get(name))) != null)
283 {
284 Matcher m = shortcutExtractor.matcher(label);
285 if(!m.matches()) // Malformed input line
286 {
287 item.setText(name);
288 Logger.getLogger("com.holub.ui").warning
289 (
290 "Bad "
291 +"name-to-label map entry:"
292 + "\n\tinput=[" + name + "=" + label + "]"
293 + "\n\tSetting label to " + name
294);
295 }
296 else
297 { item.setText(m.group(1));
298
299 String shortcut = m.group(3);
300
301 if(shortcut != null)
302 { if(shortcut.length() == 1)
303 { item.setAccelerator
304 (KeyStroke.getKeyStroke

CHAPTER 3 ■ THE GAME OF L IFE 129

388x_Ch03_CMP3 8/17/04 9:29 PM Page 129

305 (shortcut.toUpperCase().charAt(0),
306 Toolkit.getDefaultToolkit().
307 getMenuShortcutKeyMask(),
308 false
309)
310);
311 }
312 else
313 { KeyStroke key=KeyStroke.getKeyStroke(shortcut);
314 if(key != null)
315 item.setAccelerator(key);
316 else
317 { Logger.getLogger("com.holub.ui").warning
318 ("Malformed shortcut parent specification "
319 + "in MenuSite map file: "
320 + shortcut
321);
322 }
323 }
324 }
325 }
326 }
327 }
328
329 /**...*/
330 private static Collection menusAddedBy(Object requester)
331 {
332 assert requester != null: "Bad argument" ;
333 assert requesters != null: "No requesters" ;
334 assert valid();
335
336 Collection menus = (Collection)(requesters.get(requester));
337 if(menus == null)
338 { menus = new LinkedList();
339 requesters.put(requester, menus);
340 }
341 return menus;
342 }
343
344 /**...*/
345 private static final class Item
346 {
347 // private JMenuItem item;
348 private Component item;
349
350 private String parentSpecification; // of JMenu or of
351 // JMenuItem's parent

CHAPTER 3 ■ THE GAME OF L IFE130

388x_Ch03_CMP3 8/17/04 9:29 PM Page 130

352 private MenuElement parent; // JMenu or JMenuBar
353 private boolean isHelpMenu;
354
355 public String toString()
356 { StringBuffer b = new StringBuffer(parentSpecification);
357 if(item instanceof JMenuItem)
358 { JMenuItem i = (JMenuItem)item;
359 b.append(":");
360 b.append(i.getName());
361 b.append(" (");
362 b.append(i.getText());
363 b.append(")");
364 }
365 return b.toString();
366 }
367
368 /*--*/
369
370 private boolean valid()
371 { assert item != null : "item is null" ;
372 assert parent != null : "parent is null" ;
373 return true;
374 }
375
376 /**...*/
377
378 public Item(Component item, MenuElement parent,
379 String parentSpecification)
380 { assert parent != null;
381 assert parent instanceof JMenu || parent instanceof JMenuBar
382 : "Parent must be JMenu or JMenuBar";
383
384 this.item = item;
385 this.parent = parent;
386 this.parentSpecification = parentSpecification;
387 this.isHelpMenu =
388 (item instanceof JMenuItem)
389 && (item.getName().compareToIgnoreCase("help")==0);
390
391 assert valid();
392 }
393
394 public boolean specifiedBy(String specifier)
395 { return parentSpecification.equals(specifier);
396 }
397
398 public Component item()

CHAPTER 3 ■ THE GAME OF L IFE 131

388x_Ch03_CMP3 8/17/04 9:29 PM Page 131

399 { return item;
400 }
401
402 /**...*/
403
404 public final void attachYourselfToYourParent()
405 { assert valid();
406
407 if(parent instanceof JMenu)
408 { ((JMenu)parent).add(item);
409 }
410 else if(menuBarContents.size() <= 0)
411 { menuBarContents.add(this);
412 ((JMenuBar)parent).add(item);
413 }
414 else
415 { Item last = (Item)(menuBarContents.getLast());
416 if(!last.isHelpMenu)
417 {
418 menuBarContents.addLast(this);
419 ((JMenuBar)parent).add(item);
420 }
421 else // remove the help menu, add the new
422 { // item, then put the help menu back
423 // (following the new item).
424
425 menuBarContents.removeLast();
426 menuBarContents.add(this);
427 menuBarContents.add(last);
428
429 if(parent == menuBar)
430 parent = regenerateMenuBar();
431 }
432 }
433 }
434
435 /**...*/
436 public void detachYourselfFromYourParent()
437 { assert valid();
438
439 if(parent instanceof JMenu)
440 { ((JMenu)parent).remove(item);
441 }
442 else // the parent's the menu bar.
443 {
444 menuBar.remove(item);
445 menuBarContents.remove(this);

CHAPTER 3 ■ THE GAME OF L IFE132

388x_Ch03_CMP3 8/17/04 9:29 PM Page 132

446 regenerateMenuBar(); // without me on it
447
448 parent = null;
449 }
450 }
451
452 /**...*/
453
454 public void setEnableAttribute(boolean on)
455 { if(item instanceof JMenuItem)
456 { JMenuItem item = (JMenuItem) this.item;
457 item.setEnabled(on);
458 }
459 }
460
461 /**...*/
462 private JMenuBar regenerateMenuBar()
463 { assert valid();
464
465 // Create the new menu bar and populate it from
466 // the current content's list.
467
468 menuBar = new JMenuBar();
469 ListIterator i = menuBarContents.listIterator(0);
470 while(i.hasNext())
471 menuBar.add(((Item)(i.next())).item);
472
473 // Replace the old menu bar with the new one.
474 // Calling setVisible causes the menu bar to be
475 // redrawn with a minimum amount of flicker. Without
476 // it, the redraw doesn't happen at all.
477
478 menuFrame.setJMenuBar(menuBar);
479 menuFrame.setVisible(true);
480 return menuBar;
481 }
482 }
483
484 /**...*/
485
486 private static class Debug
487 {
488 public interface Visitor
489 { public void visit(JMenu e,int depth);
490 }
491
492 private static int traversalDepth = -1;

CHAPTER 3 ■ THE GAME OF L IFE 133

388x_Ch03_CMP3 8/17/04 9:29 PM Page 133

493
494 /**...*/
495
496 public static void visitPostorder(MenuElement me, Visitor v)
497 {
498 // If it's actually a JMenuItem (as compared to a
499 // JMenuItem derivative such as a JMenu), then it's
500 // a leaf node and has no children.
501
502 if(me.getClass() != JMenuItem.class)
503 { MenuElement[] contents = me.getSubElements();
504 for(int i=0; i < contents.length; ++i)
505 {
506 if(contents[i].getClass() != JMenuItem.class)
507 { ++traversalDepth;
508 visitPostorder(contents[i], v);
509 if(!(contents[i] instanceof JPopupMenu))
510 v.visit((JMenu)contents[i], traversalDepth);
511 --traversalDepth;
512 }
513
514 }
515 }
516 }
517 }
518
519 /**...*/
520 public static class Test extends JFrame
521 {
522 static Test instance; // = new Test();
523 static boolean isDisabled1 = false;
524 static boolean isDisabled2 = false;
525
526 Test()
527 {
528 setSize(400, 200);
529 addWindowListener
530 (new WindowAdapter()
531 { public void windowClosing(WindowEvent e)
532 { System.exit(1);
533 }
534 }
535);
536 MenuSite.establish(this);
537 show();
538 }
539

CHAPTER 3 ■ THE GAME OF L IFE134

388x_Ch03_CMP3 8/17/04 9:29 PM Page 134

540 //--
541 static class RemoveListener implements ActionListener
542 { public void actionPerformed(ActionEvent e)
543 { MenuSite.removeMyMenus(instance);
544 }
545 }
546 //--
547
548 static public void main(String[] args) throws Exception
549 {
550 com.holub.tools.Log.toScreen("com.holub.ui");
551 UIManager.setLookAndFeel(
552 UIManager.getSystemLookAndFeelClassName());
553
554 instance = new Test();
555
556 // Create a generic reporter.
557
558 ActionListener reportIt =
559 new ActionListener()
560 { public void actionPerformed(ActionEvent e)
561 { JMenuItem item = (JMenuItem)(e.getSource());
562 System.out.println(item.getText());
563 }
564 };
565
566
567 // Create the File menu first.
568
569 ActionListener terminator =
570 new ActionListener()
571 { public void actionPerformed(ActionEvent e)
572 { System.exit(0);
573 }
574 };
575
576 // Make the file menu with its own ID so that the removal
577 // test in the main menu doesn't remove it.
578
579 Object fileId = new Object();
580 MenuSite.addMenu(fileId, "File");
581 MenuSite.addLine(fileId, "File", "Quit", terminator);
582 MenuSite.addLine(fileId, "File", "Bye", terminator);
583
584 // Now, make a few more menus.
585
586 MenuSite.addMenu(instance, "Main");

CHAPTER 3 ■ THE GAME OF L IFE 135

388x_Ch03_CMP3 8/17/04 9:29 PM Page 135

587 MenuSite.addLine
588 (instance, "Main", "Add Line Item to Menu",
589 new ActionListener()
590 { public void actionPerformed(ActionEvent e)
591 { MenuSite.addLine(instance, "Main",
592 "Remove Main and Help menus",
593 new ActionListener()
594 { public void actionPerformed(ActionEvent e)
595 { MenuSite.removeMyMenus(instance);
596 }
597 }
598);
599 }
600 }
601);
602
603 //---
604 MenuSite.addLine(instance, "Main", "-", null);
605 //---
606 final Object disable1 = new Object();
607
608 MenuSite.addLine(instance, "Main", "Toggle1",
609 new ActionListener()
610 { public void actionPerformed(ActionEvent e)
611 { isDisabled1 = !isDisabled1;
612 MenuSite.setEnable(disable1, !isDisabled1);
613 MenuSite.getMyMenuItem(instance,
614 "Main", "Toggle1").
615 setText
616 (isDisabled1 ? "Enable following Item"
617 : "Disable following Item"
618);
619
620 }
621 }
622);
623 MenuSite.getMyMenuItem(instance, "Main", "Toggle1").
624 setText("Disable following Item");
625
626 MenuSite.addLine(disable1, "Main", "Disableable", reportIt);
627
628 // -
629 final Object disable2 = new Object();
630
631 MenuSite.addLine(instance, "Main", "Toggle2",
632 new ActionListener()
633 { public void actionPerformed(ActionEvent e)

CHAPTER 3 ■ THE GAME OF L IFE136

388x_Ch03_CMP3 8/17/04 9:29 PM Page 136

634 { isDisabled2 = !isDisabled2;
635 MenuSite.setEnable(disable2, !isDisabled2);
636 MenuSite.getMyMenuItem(instance,
637 "Main", "Toggle2").
638 setText
639 (isDisabled2 ? "Enable following Item"
640 : "Disable following Item"
641);
642 }
643 }
644);
645 MenuSite.getMyMenuItem(instance, "Main", "Toggle2").
646 setText("Disable following Item");
647 MenuSite.addLine(disable2, "Main", "Disableable", reportIt);
648
649 //--
650
651 // Check that a single line item can be removed
652
653 final Object id = new Object();
654
655 MenuSite.addLine(id, "Main", "-", null);
656 MenuSite.addLine
657 (id, "Main", "Remove this item & separator line",
658 new ActionListener()
659 { public void actionPerformed(ActionEvent e)
660 { MenuSite.removeMyMenus(id);
661 }
662 }
663);
664
665 // Check out submenus. Create two of them, one in two
666 // steps and the other in a single step. Then add items
667 // that remove the submenus to make sure that removal works
668 // correctly.
669
670 MenuSite.addLine(instance,"Main", "-", null);
671 MenuSite.addLine(instance,
672 "Main:Submenu1", "Submenu One Item", reportIt);
673 MenuSite.addLine(instance,
674 "Main:Submenu2", "Submenu Two Item", reportIt);
675 MenuSite.addLine(instance,
676 "Main:Submenu3", "Submenu Three Item", reportIt);
677 MenuSite.addLine(instance,
678 "Main:Submenu2:SubSubmenu2",
679 "Sub-Submenu Two Item", reportIt);
680

CHAPTER 3 ■ THE GAME OF L IFE 137

388x_Ch03_CMP3 8/17/04 9:29 PM Page 137

681 MenuSite.addLine(instance,
682 "Main:Submenu3:SubSubmenu3",
683 "Sub-Submenu Three Item", reportIt);
684
685 MenuSite.addLine(instance,
686 "Main:Submenu3:SubSubmenu3:SubSubSubmenu3",
687 "Sub-Sub-Submenu Three Item", reportIt);
688
689 MenuSite.addLine(instance, "Main", "-", null);
690
691 // Check that the map file works correctly.
692 // Items 5 and 6 are deliberately malformed in the map
693 // file and will cause an error to be logged.
694 // item.7 doesn't exist in the file.
695
696 MenuSite.mapNames(
697 new URL("file://c:/src/com/holub/ui/test/menu.map.txt"));
698
699 MenuSite.addLine(instance, "Main", "item.1", reportIt);
700 MenuSite.addLine(instance, "Main", "item.2", reportIt);
701 MenuSite.addLine(instance, "Main", "item.3", reportIt);
702 MenuSite.addLine(instance, "Main", "item.4", reportIt);
703 MenuSite.addLine(instance, "Main", "item.5", reportIt);
704 MenuSite.addLine(instance, "Main", "item.6", reportIt);
705 MenuSite.addLine(instance, "Main", "item.7", reportIt);
706
707 // Create a help menu. Do it in the middle of things
708 // to make sure that it ends up on the far right.
709 // Use all three mechanisms for adding menu items directly
710 // using the menu's "name," and using the menu's "text").
711
712 MenuSite.addLine(instance, "Help", "Get Help", reportIt);
713
714 // Create a second "requester" and have it add a Removal
715 // menu with the name RemovalMenu. Picking that menu
716 // will remove only the menu for the current requester.
717 // Do this after doing the help menu to make sure that
718 // it's inserted in the right place.
719
720 final Object x = new Object();
721 MenuSite.addLine
722 (x,
723 "Removal", "Select to Remove Removal menu",
724 new ActionListener()
725 { public void actionPerformed(ActionEvent e)
726 { MenuSite.removeMyMenus(x);
727 }
728 }

CHAPTER 3 ■ THE GAME OF L IFE138

388x_Ch03_CMP3 8/17/04 9:29 PM Page 138

file://c:/src/com/holub/ui/test/menu.map.txt

729);
730 }
731 }
732 }
733

The Core Classes
This section contains four listings that I’ll be presenting in depth in the next few sections.
The classes in these listings all participate in the same set of patterns, so it’s best to put them
together in one place. I don’t expect you to read them now, however. Bookmark the subsec-
tions and refer to them later, then skip ahead to page 161.

This section really shows you one of the significant disadvantages of a hard-core design-
pattern approach. My implementation of Life is probably the most complicated implementa-
tion of life ever written—way too complicated, given what it does. (“If it’s that complicated, it
must be wrong!”) If you go nuts with the patterns and lose track of what you’re actually trying
to accomplish, you can introduce so much complexity into the code as to render it almost
useless.

My goal in writing this code was as much to demonstrate design patterns as it was to
build an optimal Life implementation, however. The SQL interpreter in the next chapter
does not have this problem—it is production code.

The Universe Class
Listing 3-7 shows Universe.java.

Listing 3-7. Universe.java

1 package com.holub.life;
2
3 import java.io.*;
4
5 import java.awt.*;
6 import javax.swing.*;
7 import java.awt.event.*;
8
9 import com.holub.io.Files;
10 import com.holub.ui.MenuSite;
11
12 import com.holub.life.Cell;
13 import com.holub.life.Storable;
14 import com.holub.life.Clock;
15 import com.holub.life.Neighborhood;
16 import com.holub.life.Resident;
17
18 /**
19 * The Universe is a mediator that sits between the Swing

CHAPTER 3 ■ THE GAME OF L IFE 139

388x_Ch03_CMP3 8/17/04 9:29 PM Page 139

20 * event model and the Life classes. It is also a Singleton,
21 * accessed via Universe.instance(). It handles all
22 * Swing events and translates them into requests to the
23 * outermost Neighborhood. It also creates the Composite
24 * Neighborhood.
25 */
26
27 public class Universe extends JPanel
28 { private final Cell outermostCell;
29 private static final Universe theInstance = new Universe();
30
31 /** The default height and width of a Neighborhood in cells.
32 * If it's too big, you'll run too slowly because
33 * you have to update the entire block as a unit, so there's more
34 * to do. If it's too small, you have too many blocks to check.
35 * I've found that 8 is a good compromise.
36 */
37 private static final int DEFAULT_GRID_SIZE = 8;
38
39 /** The size of the smallest "atomic" cell—a Resident object.
40 * This size is extrinsic to a Resident (It's passed into the
41 * Resident's "draw yourself" method.
42 */
43 private static final int DEFAULT_CELL_SIZE = 8;
44
45 // The constructor is private so that the universe can be created
46 // only by an outer-class method [Neighborhood.createUniverse()].
47
48 private Universe()
49 { // Create the nested Cells that comprise the "universe." A bug
50 // in the current implementation causes the program to fail
51 // miserably if the overall size of the grid is too big to fit
52 // on the screen.
53
54 outermostCell = new Neighborhood
55 (DEFAULT_GRID_SIZE,
56 new Neighborhood
57 (DEFAULT_GRID_SIZE,
58 new Resident()
59)
60);
61
62 final Dimension PREFERRED_SIZE =
63 new Dimension
64 (outermostCell.widthInCells() * DEFAULT_CELL_SIZE,
65 outermostCell.widthInCells() * DEFAULT_CELL_SIZE
66);
67

CHAPTER 3 ■ THE GAME OF L IFE140

388x_Ch03_CMP3 8/17/04 9:29 PM Page 140

68 addComponentListener
69 (new ComponentAdapter()
70 { public void componentResized(ComponentEvent e)
71 {
72 // Make sure that the cells fit evenly into the
73 // total grid size so that each cell will be the
74 // same size. For example, in a 64x64 grid, the
75 // total size must be an even multiple of 63.
76
77 Rectangle bounds = getBounds();
78 bounds.height /= outermostCell.widthInCells();
79 bounds.height *= outermostCell.widthInCells();
80 bounds.width = bounds.height;
81 setBounds(bounds);
82 }
83 }
84);
85
86 setBackground (Color.white);
87 setPreferredSize(PREFERRED_SIZE);
88 setMaximumSize (PREFERRED_SIZE);
89 setMinimumSize (PREFERRED_SIZE);
90 setOpaque (true);
91
92 addMouseListener
93 (new MouseAdapter()
94 { public void mousePressed(MouseEvent e)
95 { Rectangle bounds = getBounds();
96 bounds.x = 0;
97 bounds.y = 0;
98 outermostCell.userClicked(e.getPoint(),bounds);
99 repaint();
100 }
101 }
102);
103
104 MenuSite.addLine(this, "Grid", "Clear",
105 new ActionListener()
106 { public void actionPerformed(ActionEvent e)
107 { outermostCell.clear();
108 repaint();
109 }
110 }
111);
112
113 MenuSite.addLine
114 (this, "Grid", "Load",

CHAPTER 3 ■ THE GAME OF L IFE 141

388x_Ch03_CMP3 8/17/04 9:29 PM Page 141

115 new ActionListener()
116 { public void actionPerformed(ActionEvent e)
117 { doLoad();
118 }
119 }
120);
121
122 MenuSite.addLine
123 (this, "Grid", "Store",
124 new ActionListener()
125 { public void actionPerformed(ActionEvent e)
126 { doStore();
127 }
128 }
129);
130
131 MenuSite.addLine
132 (this, "Grid", "Exit",
133 new ActionListener()
134 { public void actionPerformed(ActionEvent e)
135 { System.exit(0);
136 }
137 }
138);
139
140 Clock.instance().addClockListener
141 (new Clock.Listener()
142 { public void tick()
143 { if(outermostCell.figureNextState
144 (Cell.DUMMY,Cell.DUMMY,Cell.DUMMY,Cell.DUMMY,
145 Cell.DUMMY,Cell.DUMMY,Cell.DUMMY,Cell.DUMMY
146)
147)
148 { if(outermostCell.transition())
149 refreshNow();
150 }
151 }
152 }
153);
154 }
155
156 /** Singleton Accessor. The Universe object itself is manufactured
157 * in Neighborhood.createUniverse()
158 */
159
160 public static Universe instance()
161 { return theInstance;

CHAPTER 3 ■ THE GAME OF L IFE142

388x_Ch03_CMP3 8/17/04 9:29 PM Page 142

162 }
163
164 private void doLoad()
165 { try
166 {
167 FileInputStream in = new FileInputStream(
168 Files.userSelected(".",".life","Life File","Load"));
169
170 Clock.instance().stop(); // stop the game and
171 outermostCell.clear(); // clear the board.
172
173 Storable memento = outermostCell.createMemento();
174 memento.load(in);
175 outermostCell.transfer(memento, new Point(0,0), Cell.LOAD);
176
177 in.close();
178 }
179 catch(IOException theException)
180 { JOptionPane.showMessageDialog(null, "Read Failed!",
181 "The Game of Life", JOptionPane.ERROR_MESSAGE);
182 }
183 repaint();
184 }
185
186 private void doStore()
187 { try
188 {
189 FileOutputStream out = new FileOutputStream(
190 Files.userSelected(".",".life","Life File","Write"));
191
192 Clock.instance().stop(); // stop the game
193
194 Storable memento = outermostCell.createMemento();
195 outermostCell.transfer(memento, new Point(0,0), Cell.STORE);
196 memento.flush(out);
197
198 out.close();
199 }
200 catch(IOException theException)
201 { JOptionPane.showMessageDialog(null, "Write Failed!",
202 "The Game of Life", JOptionPane.ERROR_MESSAGE);
203 }
204 }
205
206 /** Override paint to ask the outermost Neighborhood
207 * (and any subcells) to draw themselves recursively.
208 * All knowledge of screen size is also encapsulated.

CHAPTER 3 ■ THE GAME OF L IFE 143

388x_Ch03_CMP3 8/17/04 9:29 PM Page 143

209 * (The size is passed into the outermost <code>Cell</code>.)
210 */
211
212 public void paint(Graphics g)
213 {
214 Rectangle panelBounds = getBounds();
215 Rectangle clipBounds = g.getClipBounds();
216
217 // The panel bounds is relative to the upper-left
218 // corner of the screen. Pretend that it's at (0,0)
219 panelBounds.x = 0;
220 panelBounds.y = 0;
221 outermostCell.redraw(g, panelBounds, true);
222 }
223
224 /** Force a screen refresh by queuing a request on
225 * the Swing event queue. This is an example of the
226 * Active Object pattern (not covered by the Gang of Four).
227 * This method is called on every clock tick. Note that
228 * the redraw() method on a given <code>Cell</code>
229 * does nothing if the <code>Cell</code> doesn't
230 * have to be refreshed.
231 */
232
233 private void refreshNow()
234 { SwingUtilities.invokeLater
235 (new Runnable()
236 { public void run()
237 { Graphics g = getGraphics();
238 if(g == null) // Universe not displayable
239 return;
240 try
241 {
242 Rectangle panelBounds = getBounds();
243 panelBounds.x = 0;
244 panelBounds.y = 0;
245 outermostCell.redraw(g, panelBounds, false);
246 }
247 finally
248 { g.dispose();
249 }
250 }
251 }
252);
253 }
254 }

CHAPTER 3 ■ THE GAME OF L IFE144

388x_Ch03_CMP3 8/17/04 9:29 PM Page 144

The Cell Interface
Listing 3-8 shows Cell.java.

Listing 3-8. Cell.java

1 package com.holub.life;
2 import java.awt.*;
3
4 import com.holub.life.Storable;
5
6 /**...*/
7
8 public interface Cell
9 {
10 /** Figure out the next state of the cell, given the specified
11 * neighbors.
12 * @return true if the cell is unstable (changed state).
13 */
14 boolean figureNextState(Cell north, Cell south,
15 Cell east, Cell west,
16 Cell northeast, Cell northwest,
17 Cell southeast, Cell southwest);
18
19 /** Access a specific contained cell located at the edge of the
20 * composite cell.
21 * @param row The requested row. Must be on the edge of
22 * the block.
23 * @param column The requested column. Must be on the edge
24 * of the block.
25 * @return true if the state changed.
26 */
27 Cell edge(int row, int column);
28
29 /** Transition to the state computed by the most recent call to
30 * {@link #figureNextState}
31 * @return true if a changed of state happened during the transition.
32 */
33 boolean transition();
34
35 /** Redraw yourself in the indicated
36 * rectangle on the indicated Graphics object if necessary. This
37 * method is meant for a conditional redraw, where some of the
38 * cells might not be refreshed (if they haven't changed state,
39 * for example).
40 * @param g redraw using this graphics,
41 * @param here a rectangle that describes the bounds of the
42 * current cell.

CHAPTER 3 ■ THE GAME OF L IFE 145

388x_Ch03_CMP3 8/17/04 9:29 PM Page 145

43 * @parem drawAll if true, draw an entire compound cell;
44 * otherwise, draw only the subcells that need to be redrawn.
45 */
46
47 void redraw(Graphics g, Rectangle here, boolean drawAll);
48
49 /** A user has clicked somewhere within you.
50 * @param here The position of the click relative to the bounding
51 * rectangle of the current Cell.
52 */
53
54 void userClicked(Point here, Rectangle surface);
55
56 /** Return true if this cell or any subcells are alive.
57 */
58 boolean isAlive();
59
60 /** Return the specified width plus the current cell's width
61 */
62 int widthInCells();
63
64 /** Return a fresh (newly created) object identical to yourself
65 * in content.
66 */
67 Cell create();
68
69 /** Returns a Direction indicated the directions of the cells
70 * that have changed state.
71 * @return A Direction object that indicates the edge or edges
72 * on which a change has occurred.
73 */
74
75 Direction isDisruptiveTo();
76
77 /** Set the cell and all subcells into a "dead" state.
78 */
79
80 void clear();
81
82 /**
83 * The Memento interface stores the state
84 * of a cell and all its subcells for future restoration.
85 */
86
87 interface Memento extends Storable
88 { /** On creation of the memento, indicate that a cell is
89 * alive.

CHAPTER 3 ■ THE GAME OF L IFE146

388x_Ch03_CMP3 8/17/04 9:29 PM Page 146

90 */
91 void markAsAlive (Point location);
92
93 /** On restoration of a cell from a memento, indicate that
94 * a cell is alive.
95 */
96 boolean isAlive (Point location);
97 }
98
99 /** This method is used internally to save or restore the state
100 * of a cell from a memento.
101 * @return true if this cell was modified by the transfer.
102 */
103 boolean transfer(Storable memento, Point upperLeftCorner,
104 boolean doLoad);
105
106 /** Possible value for the "load" argument to transfer() */
107 public static boolean STORE = false;
108
109 /** Possible value for the "load" argument to transfer() */
110 public static boolean LOAD = true;
111
112 /** This method is used by container of the outermost cell.
113 * It is not used internally. It need be implemented only by
114 * whatever class defines the outermost cell in the universe.
115 * Other cell implementations should throw an
116 * UnsupportedOperationException when this method is called.
117 */
118 Storable createMemento();
119
120 /** The DUMMY Singleton represents a permanently dead (thus stable)
121 * cell. It's used for the edges of the grid. It's a Singleton.
122 * The Dummy class is private, but it is accessed through
123 * the public DUMMY field, declared below. I'd like this
124 * class to be private, but the JLS doesn't allow private
125 * members in an interface.
126 */
127
128 public static final Cell DUMMY = new Cell()
129 {
130 public boolean figureNextState(Cell n, Cell s, Cell e, Cell w,
131 Cell ne, Cell nw, Cell se, Cell sw)
132 {return true; }
133
134 public Cell edge(int r, int c) {return this; }
135 public boolean isAlive() {return false; }
136 public Cell create() {return this; }

CHAPTER 3 ■ THE GAME OF L IFE 147

388x_Ch03_CMP3 8/17/04 9:29 PM Page 147

137 public Direction isDisruptiveTo() {return Direction.NONE; }
138 public void clear() { }
139 public int widthInCells() {return 0; }
140 public boolean transition() {return false; }
141
142 public void userClicked(Point h, Rectangle s)
143 public void redraw (Graphics g, Rectangle here,
144 boolean drawAll)
145
146 public boolean transfer(Storable m, Point ul, boolean load)
147 { return false;
148 }
149
150 public Storable createMemento()
151 { throw new UnsupportedOperationException(
152 "Cannot create memento of dummy block");
153 }
154 };
155 }

The Resident Class
Listing 3-9 Shows Resident.java.

Listing 3-9. Resident.java

1 package com.holub.life;
2
3 import java.awt.*;
4 import javax.swing.*;
5 import com.holub.ui.Colors; // Contains constants specifying various
6 // colors not defined in java.awt.Color.
7 import com.holub.life.Cell;
8 import com.holub.life.Storable;
9 import com.holub.life.Direction;
10 import com.holub.life.Neighborhood;
11 import com.holub.life.Universe;
12
13 /**...*/
14
15 public final class Resident implements Cell
16 {
17 private static final Color BORDER_COLOR = Colors.DARK_YELLOW;
18 private static final Color LIVE_COLOR = Color.RED;
19 private static final Color DEAD_COLOR = Colors.LIGHT_YELLOW;
20
21 private boolean amAlive = false;
22 private boolean willBeAlive = false;

CHAPTER 3 ■ THE GAME OF L IFE148

388x_Ch03_CMP3 8/17/04 9:29 PM Page 148

23
24 private boolean isStable(){return amAlive == willBeAlive; }
25
26 /** figure the next state.
27 * @return true if the cell is not stable (will change state on the
28 * next transition().
29 */
30 public boolean figureNextState(
31 Cell north, Cell south,
32 Cell east, Cell west,
33 Cell northeast, Cell northwest,
34 Cell southeast, Cell southwest)
35 {
36 verify(north, "north");
37 verify(south, "south");
38 verify(east, "east");
39 verify(west, "west");
40 verify(northeast, "northeast");
41 verify(northwest, "northwest");
42 verify(southeast, "southeast");
43 verify(southwest, "southwest");
44
45 int neighbors = 0;
46
47 if(north. isAlive()) ++neighbors;
48 if(south. isAlive()) ++neighbors;
49 if(east. isAlive()) ++neighbors;
50 if(west. isAlive()) ++neighbors;
51 if(northeast.isAlive()) ++neighbors;
52 if(northwest.isAlive()) ++neighbors;
53 if(southeast.isAlive()) ++neighbors;
54 if(southwest.isAlive()) ++neighbors;
55
56 willBeAlive = (neighbors==3 || (amAlive && neighbors==2));
57 return !isStable();
58 }
59
60 private void verify(Cell c, String direction)
61 { assert (c instanceof Resident) || (c == Cell.DUMMY)
62 : "incorrect type for " + direction + ": " +
63 c.getClass().getName();
64 }
65
66 /** This cell is monetary, so it's at every edge of itself. It's
67 * an internal error for any position except for (0,0) to be
68 * requsted since the width is 1.
69 */

CHAPTER 3 ■ THE GAME OF L IFE 149

388x_Ch03_CMP3 8/17/04 9:29 PM Page 149

70 public Cell edge(int row, int column)
71 { assert row==0 && column==0;
72 return this;
73 }
74
75 public boolean transition()
76 { boolean changed = isStable();
77 amAlive = willBeAlive;
78 return changed;
79 }
80
81 public void redraw(Graphics g, Rectangle here, boolean drawAll)
82 { g = g.create();
83 g.setColor(amAlive ? LIVE_COLOR : DEAD_COLOR);
84 g.fillRect(here.x+1, here.y+1, here.width-1, here.height-1);
85
86 // Doesn't draw a line on the far right and bottom of the
87 // grid, but that's life, so to speak. It's not worth the
88 // code for the special case.
89
90 g.setColor(BORDER_COLOR);
91 g.drawLine(here.x, here.y, here.x, here.y + here.height);
92 g.drawLine(here.x, here.y, here.x + here.width, here.y);
93 g.dispose();
94 }
95
96 public void userClicked(Point here, Rectangle surface)
97 { amAlive = !amAlive;
98 }
99
100 public void clear() {amAlive = willBeAlive = false; }
101 public boolean isAlive() {return amAlive; }
102 public Cell create() {return new Resident(); }
103 public int widthInCells() {return 1;}
104
105 public Direction isDisruptiveTo()
106 { return isStable() ? Direction.NONE : Direction.ALL ;
107 }
108
109 public boolean transfer(Storable blob,Point upperLeft,boolean doLoad)
110 {
111 Memento memento = (Memento)blob;
112 if(doLoad)
113 { if(amAlive = willBeAlive = memento.isAlive(upperLeft))
114 return true;
115 }
116 else if(amAlive) // store only live cells

CHAPTER 3 ■ THE GAME OF L IFE150

388x_Ch03_CMP3 8/17/04 9:29 PM Page 150

117 memento.markAsAlive(upperLeft);
118
119 return false;
120 }
121
122 /** Mementos must be created by Neighborhood objects. Throw an
123 * exception if anybody tries to do it here.
124 */
125 public Storable createMemento()
126 { throw new UnsupportedOperationException(
127 "May not create memento of a unitary cell");
128 }
129 }

The Neighborhood Class
Listing 3-10 shows Neighborhood.java.

Listing 3-10. Neighborhood.java

1 package com.holub.life;
2
3 import java.awt.*;
4 import java.awt.event.*;
5 import java.util.*;
6 import java.io.*;
7 import javax.swing.*;
8
9 import com.holub.io.Files;
10 import com.holub.life.Cell;
11 import com.holub.ui.MenuSite;
12 import com.holub.ui.Colors;
13 import com.holub.asynch.ConditionVariable;
14
15 import com.holub.life.Cell;
16 import com.holub.life.Clock;
17 import com.holub.life.Direction;
18 import com.holub.life.Storable;
19
20
21
22 /**...*/
23
24 public final class Neighborhood implements Cell
25 {
26 /** Block if reading is not permitted because the grid is
27 * transitioning to the next state. Only one lock is
28 * used (for the outermost neighborhood) since all updates
29 * must be requested through the outermost neighborhood.

CHAPTER 3 ■ THE GAME OF L IFE 151

388x_Ch03_FINAL.qxd 1/12/05 11:38 AM Page 151

30 */
31 private static final ConditionVariable readingPermitted =
32 new ConditionVariable(true);
33
34 /** Returns true only if none of the cells in the Neighborhood
35 * changed state during the last transition.
36 */
37
38 private boolean amActive = false;
39
40 /** The actual grid of Cells contained within this neighborhood. */
41 private final Cell[][] grid;
42
43 /** The neighborhood is square, so gridSize is both the horizontal
44 * and vertical size.
45 */
46 private final int gridSize;
47
48 /** Create a new Neigborhood containing gridSize-by-gridSize
49 * clones of the prototype. The Prototype is deliberately
50 * not put into the grid.
51 */
52
53 public Neighborhood(int gridSize, Cell prototype)
54 {
55 this.gridSize = gridSize;
56 this.grid = new Cell[gridSize][gridSize];
57
58 for(int row = 0; row < gridSize; ++row)
59 for(int column = 0; column < gridSize; ++column)
60 grid[row][column] = prototype.create();
61 }
62
63 /** The "clone" method used to create copies of the current
64 * neighborhood. This method is called from the containing
65 * neighborhood's constructor. (The current neighborhood
66 * is passed into the containing-neighborhood constructor
67 * as the "prototype" argument.
68 */
69
70 public Cell create()
71 { return new Neighborhood(gridSize, grid[0][0]);
72 }
73
74 /** Became stable on the last clock tick. One more refresh is
75 * required.
76 */
77
78 private boolean oneLastRefreshRequired = false;

CHAPTER 3 ■ THE GAME OF L IFE152

388x_Ch03_CMP3 8/17/04 9:29 PM Page 152

79
80 /** Shows the direction of the cells along the edge of the block
81 * that will change state in the next transition. For example,
82 * if the upper-left corner has changed, then the current
83 * Cell is disruptive in the NORTH, WEST, and NORTHWEST directions.
84 * If this is the case, the neighboring
85 * cells may need to be updated, even if they were previously
86 * stable.
87 */
88 public Direction isDisruptiveTo(){ return activeEdges; }
89 private Direction activeEdges = new Direction(Direction.NONE);
90
91 /** Figures the next state of the current neighborhood and the
92 * contained neighborhoods (or cells). Does not transition to the
93 * next state, however. Note that the neighboring cells are passed
94 * in as arguments rather than being stored internally—an
95 * example of the Flyweight pattern.
96 *
97 * @see #transition
98 * @param north The neighbor to our north
99 * @param south The neighbor to our south
100 * @param east The neighbor to our east
101 * @param west The neighbor to our west
102 * @param northeast The neighbor to our northeast
103 * @param northwest The neighbor to our northwest
104 * @param southeast The neighbor to our southeast
105 * @param southwest The neighbor to our southwest
106 *
107 * @return true if this neighborhood (i.e. any of it's cells)
108 * will change state in the next transition.
109 */
110
111 public boolean figureNextState(Cell north, Cell south,
112 Cell east, Cell west,
113 Cell northeast, Cell northwest,
114 Cell southeast, Cell southwest)
115 {
116 boolean nothingHappened = true;
117
118 // Is some ajacent neighborhood active on the edge
119 // that ajoins me?
120
121 if(amActive
122 || north .isDisruptiveTo().the(Direction.SOUTH)
123 || south .isDisruptiveTo().the(Direction.NORTH)
124 || east .isDisruptiveTo().the(Direction.WEST)
125 || west .isDisruptiveTo().the(Direction.EAST)
126 || northeast.isDisruptiveTo().the(Direction.SOUTHWEST)
127 || northwest.isDisruptiveTo().the(Direction.SOUTHEAST)

CHAPTER 3 ■ THE GAME OF L IFE 153

388x_Ch03_CMP3 8/17/04 9:29 PM Page 153

128 || southeast.isDisruptiveTo().the(Direction.NORTHWEST)
129 || southwest.isDisruptiveTo().the(Direction.NORTHEAST)
130)
131 {
132 Cell northCell, southCell,
133 eastCell, westCell,
134 northeastCell, northwestCell,
135 southeastCell, southwestCell;
136
137 activeEdges.clear();
138
139 for(int row = 0; row < gridSize; ++row)
140 { for(int column = 0; column < gridSize; ++column)
141 {
142 // Get the current cell's eight neighbors
143
144 if(row == 0)
145 { northwestCell = (column==0)
146 ? northwest.edge(gridSize-1,gridSize-1)
147 : north.edge (gridSize-1,column-1)
148 ;
149
150 northCell= north.edge(gridSize-1,column);
151
152 northeastCell = (column == gridSize-1)
153 ? northeast.edge (gridSize-1, 0)
154 : north.edge (gridSize-1, column+1)
155 ;
156 }
157 else
158 { northwestCell = (column == 0)
159 ? west.edge(row-1, gridSize-1)
160 : grid[row-1][column-1]
161 ;
162
163 northCell = grid[row-1][column];
164
165 northeastCell = (column == gridSize-1)
166 ? east.edge(row-1, 0)
167 : grid[row-1][column+1]
168 ;
169 }
170
171 westCell = (column == 0)
172 ? west.edge(row, gridSize-1)
173 : grid[row][column-1]
174 ;
175
176 eastCell = (column == gridSize-1)

CHAPTER 3 ■ THE GAME OF L IFE154

388x_Ch03_CMP3 8/17/04 9:29 PM Page 154

177 ? east.edge(row, 0)
178 : grid[row][column+1]
179 ;
180
181 if(row == gridSize-1)
182 { southwestCell = (column==0)
183 ? southwest.edge(0,gridSize-1)
184 : south.edge(0,column-1)
185 ;
186
187 southCell = south.edge(0,column);
188
189 southeastCell = (column == gridSize-1)
190 ? southeast.edge(0,0)
191 : south.edge(0, column+1)
192 ;
193 }
194 else
195 { southwestCell = (column == 0)
196 ? west.edge(row+1, gridSize-1)
197 : grid[row+1][column-1]
198 ;
199
200 southCell = grid[row+1][column];
201
202 southeastCell = (column == gridSize-1)
203 ? east.edge(row+1, 0)
204 : grid[row+1][column+1]
205 ;
206 }
207
208 // Tell the cell to change its state. If
209 // the cell changed (the figureNextState request
210 // returned false), then mark the current block as
211 // unstable. Also, if the unstable cell is on the
212 // edge of the block modify activeEdges to
213 // indicate which edge or edges changed.
214
215 if(grid[row][column].figureNextState
216 (northCell, southCell,
217 eastCell, westCell,
218 northeastCell, northwestCell,
219 southeastCell, southwestCell
220)
221)
222 { nothingHappened = false;
223 }
224 }
225 }

CHAPTER 3 ■ THE GAME OF L IFE 155

388x_Ch03_CMP3 8/17/04 9:29 PM Page 155

226 }
227
228 if(amActive && nothingHappened)
229 oneLastRefreshRequired = true;
230
231 amActive = !nothingHappened;
232 return amActive;
233 }
234
235
236 /** Transition the neighborhood to the previously-computed
237 * state.
238 * @return true if the transition actually changed anything.
239 * @see #figureNextState
240 */
241 public boolean transition()
242 {
243 // The condition variable is set and reset only by the
244 // outermost neighborhood. It's actually incorrect
245 // for an inner block to touch it because the whole
246 // board has to be locked for edge cells in a subblock
247 // to compute their next state correctly. There's no
248 // race condition since the only place that transition()
249 // is called is from the clock tick, and recursively
250 // from here. As long as the recompute time is less
251 // than the tick interval, everything's copasetic.
252
253 boolean someSubcellChangedState = false;
254
255 if(++nestingLevel == 0)
256 readingPermitted.set(false);
257
258 for(int row = 0; row < gridSize; ++row)
259 for(int column = 0; column < gridSize; ++column)
260 if(grid[row][column].transition())
261 { rememberThatCellAtEdgeChangedState(row, column);
262 someSubcellChangedState = true;
263 }
264
265 if(nestingLevel-- == 0)
266 readingPermitted.set(true);
267
268 return someSubcellChangedState;
269 }
270 // The following variable is used only by the transition()
271 // method. Since Java doesn't support static local variables,
272 // I am forced to declare it in class scope, but I deliberately
273 // don't put it up at the top of the class definition because
274 // it's not really an attribute of the class—it's just

CHAPTER 3 ■ THE GAME OF L IFE156

388x_Ch03_CMP3 8/17/04 9:29 PM Page 156

275 // an implemenation detail of the immediately preceding
276 // method.
277 //
278 private static int nestingLevel = -1;
279
280
281 /** Modifies activeEdges to indicate whether the addition
282 * of the cell at (row,column) makes an edge active.
283 */
284 private void rememberThatCellAtEdgeChangedState(int row,int column)
285 {
286 if(row == 0)
287 { activeEdges.add(Direction.NORTH);
288
289 if(column==0)
290 activeEdges.add(Direction.NORTHWEST);
291 else if(column==gridSize-1)
292 activeEdges.add(Direction.NORTHEAST);
293 }
294 else if(row == gridSize-1)
295 { activeEdges.add(Direction.SOUTH);
296
297 if(column==0)
298 activeEdges.add(Direction.SOUTHWEST);
299 else if(column==gridSize-1)
300 activeEdges.add(Direction.SOUTHEAST);
301 }
302
303 if(column == 0)
304 { activeEdges.add(Direction.WEST);
305 }
306 else if(column == gridSize-1)
307 { activeEdges.add(Direction.EAST);
308 }
309 // else it's an internal cell. Do nothing.
310 }
311
312 /** Redraw the current neighborhood only if necessary (something
313 * changed in the last transition).
314 *
315 * @param g Draw onto this graphics.
316 * @param here Bounding rectangle for current Neighborhood.
317 * @param drawAll force a redraw, even if nothing has changed.
318 * @see #transition
319 */
320
321 public void redraw(Graphics g, Rectangle here, boolean drawAll)
322 {
323 // If the current neighborhood is stable (nothing changed

CHAPTER 3 ■ THE GAME OF L IFE 157

388x_Ch03_CMP3 8/17/04 9:29 PM Page 157

324 // in the last transition stage), then there's nothing
325 // to do. Just return. Otherwise, update the current block
326 // and all sub-blocks. Since this algorithm is applied
327 // recursively to subblocks, only those blocks that actually
328 // need to update will actually do so.
329
330
331 if(!amActive && !oneLastRefreshRequired && !drawAll)
332 return;
333 try
334 {
335 oneLastRefreshRequired = false;
336 int compoundWidth = here.width;
337 Rectangle subcell = new Rectangle(here.x, here.y,
338 here.width / gridSize,
339 here.height / gridSize);
340
341 // Check to see if we can paint. If not, just return. If
342 // so, actually wait for permission (in case there's
343 // a race condition, then paint.
344
345 if(!readingPermitted.isTrue())
346 return;
347
348 readingPermitted.waitForTrue();
349
350 for(int row = 0; row < gridSize; ++row)
351 { for(int column = 0; column < gridSize; ++column)
352 { grid[row][column].redraw(g, subcell, drawAll);
353 subcell.translate(subcell.width, 0);
354 }
355 subcell.translate(-compoundWidth, subcell.height);
356 }
357
358 g = g.create();
359 g.setColor(Colors.LIGHT_ORANGE);
360 g.drawRect(here.x, here.y, here.width, here.height);
361
362 if(amActive)
363 { g.setColor(Color.BLUE);
364 g.drawRect(here.x+1, here.y+1,
365 here.width-2, here.height-2);
366 }
367
368 g.dispose();
369 }
370 catch(InterruptedException e)
371 { // thrown from waitForTrue. Just
372 // ignore it, since not printing is a

CHAPTER 3 ■ THE GAME OF L IFE158

388x_Ch03_CMP3 8/17/04 9:29 PM Page 158

373 // reasonable reaction to an interrupt.
374 }
375 }
376
377 /** Return the edge cell in the indicated row and column.
378 */
379 public Cell edge(int row, int column)
380 { assert (row == 0 || row == gridSize-1)
381 || (column == 0 || column == gridSize-1)
382 : "central cell requested from edge()";
383
384 return grid[row][column];
385 }
386
387 /** Notification of a mouse click. The point is relative to the
388 * upper-left corner of the surface.
389 */
390 public void userClicked(Point here, Rectangle surface)
391 {
392 int pixelsPerCell = surface.width / gridSize ;
393 int row = here.y / pixelsPerCell ;
394 int column = here.x / pixelsPerCell ;
395 int rowOffset = here.y % pixelsPerCell ;
396 int columnOffset = here.x % pixelsPerCell ;
397
398 Point position = new Point(columnOffset, rowOffset);
399 Rectangle subcell = new Rectangle(0, 0, pixelsPerCell,
400 pixelsPerCell);
401
402 grid[row][column].userClicked(position, subcell);
403 amActive = true;
404 rememberThatCellAtEdgeChangedState(row, column);
405 }
406
407 public boolean isAlive()
408 { return true;
409 }
410
411 public int widthInCells()
412 { return gridSize * grid[0][0].widthInCells();
413 }
414
415 public void clear()
416 { activeEdges.clear();
417
418 for(int row = 0; row < gridSize; ++row)
419 for(int column = 0; column < gridSize; ++column)
420 grid[row][column].clear();
421

CHAPTER 3 ■ THE GAME OF L IFE 159

388x_Ch03_CMP3 8/17/04 9:29 PM Page 159

422 amActive = false;
423 }
424
425 public boolean transfer(Storable memento, Point corner,
426 boolean load)
427 { int subcellWidth = grid[0][0].widthInCells();
428 int myWidth = widthInCells();
429 Point upperLeft = new Point(corner);
430
431 for(int row = 0; row < gridSize; ++row)
432 { for(int column = 0; column < gridSize; ++column)
433 { if(grid[row][column].transfer(memento,upperLeft,load))
434 amActive = true;
435
436 Direction d =
437 grid[row][column].isDisruptiveTo();
438
439 if(!d.equals(Direction.NONE))
440 activeEdges.add(d);
441
442 upperLeft.translate(subcellWidth, 0);
443 }
444 upperLeft.translate(-myWidth, subcellWidth);
445 }
446 return amActive;
447 }
448
449 public Storable createMemento()
450 { Memento m = new NeighborhoodState();
451 transfer(m, new Point(0,0), Cell.STORE);
452 return m;
453 }
454
455 /**
456 * The NeighborhoodState stores the state of this neighborhood
457 * and all its sub-neighborhoods. For the moment, I'm storing
458 * state with serialization, but a future modification might
459 * rewrite load() and flush() to use XML.
460 */
461
462 private static class NeighborhoodState implements Cell.Memento
463 { Collection liveCells = new LinkedList();
464
465 public NeighborhoodState(InputStream in) throws IOException
466 { load(in); }
467 public NeighborhoodState(){ }
468
469 public void load(InputStream in) throws IOException
470 { try
471 { ObjectInputStream source = new ObjectInputStream(in);

CHAPTER 3 ■ THE GAME OF L IFE160

388x_Ch03_CMP3 8/17/04 9:29 PM Page 160

472 liveCells = (Collection)(source.readObject());
473 }
474 catch(ClassNotFoundException e)
475 { // This exception shouldn't be rethrown as
476 // a ClassNotFoundException because the
477 // outside world shouldn't know (or care) that we're
478 // using serialization to load the object. Nothing
479 // wrong with treating it as an I/O error, however.
480
481 throw new IOException(
482 "Internal Error: Class not found on load");
483 }
484 }
485
486 public void flush(OutputStream out) throws IOException
487 { ObjectOutputStream sink = new ObjectOutputStream(out);
488 sink.writeObject(liveCells);
489 }
490
491 public void markAsAlive(Point location)
492 { liveCells.add(new Point(location));
493 }
494
495 public boolean isAlive(Point location)
496 { return liveCells.contains(location);
497 }
498
499 public String toString()
500 { StringBuffer b = new StringBuffer();
501
502 b.append("NeighborhoodState:\n");
503 for(Iterator i = liveCells.iterator(); i.hasNext() ;)
504 b.append(((Point) i.next()).toString() + "\n");
505 return b.toString();
506 }
507 }
508 }

Mediator
The Life object instantiates only one Life-related class: the Universe. The instantiation
(Listing 3-7 line 30) looks like this:

getContentPane().add(Universe.instance(), BorderLayout.CENTER);

As far as the Life class is concerned, the Universe is just a JComponent of some sort. The
Life class has a single responsibility: main-frame creation. The only thing it cares about is that
the Universe can be added to a JFrame. Since the Universe class extends JComponent, Life can
just treat it as a JComponent. This way I can completely rework the user interface without
impacting the code in the Life class.

CHAPTER 3 ■ THE GAME OF L IFE 161

388x_Ch03_CMP3 8/17/04 9:29 PM Page 161

The Universe class was declared in Listing 3-7. It’s a Singleton with a private constructor
that uses the declare-the-instance-as-static reification of the pattern. (The instance reference
is declared on line 29, and the instance() method on line 160 returns this reference.) This
method is called from only one place (the Life-class constructor), so it could be replaced by
a simple constructor, but then the one-of-a-kind nature of the Universe object wouldn’t be
guaranteed.

The main purpose of the Universe is to serve as in intermediary between the Swing
subsystem and the Life subsystem. As such, the Universe is an example of the Mediator
pattern. (“Intermediary” would have been a better choice of pattern name.)

The main intent of Mediator is to coordinate the interaction between two different subsys-
tems so that these subsystems don’t have to interact directly with each other. Mediator also helps
isolate subsystems—I may want swap out Swing to run Life on the Palm Pilot, for example—but
the main responsibility of Mediator is to mediate a complex message flow.

A Mediator does not need to encapsulate all subsystem interaction, but the more interaction
it encapsulates, the better the isolation between subsystems (at the cost of heavier coupling to
the mediator subsystem, of course). If all interaction is through the mediator, then you can swap
out an entire subsystem without affecting any of the other collaborators. In Life, I chose for the
Universe to encapsulate all interaction with Swing except painting. The Resident and Neighbor-
hood object paint themselves on the screen using Java’s Graphics class, which is effectively a Medi-
ator in its own right (sitting between your program and the underlying operating-system objects
such as the Windows “device context”). The Universe mediator encapsulates all event manage-
ment: It intercepts all UI events that come out of Swing and translates them into messages that
the Life subsystem understands. For example, the Universe sets itself up to receive mouse-click
messages on line 92 of Listing 3-7. It translates these into mouseClicked(...) messages, which
are sent to the outermost cell. The only events Universe doesn’t handle are the menuing events
fielded by the clock subsystem, which, as you saw earlier, is built as a stand-alone subsystem so
handles its own menuing, and so on.

The mediator is bidirectional (it passes messages from Life to Swing as well as the other
way around). For example, a clock tick causes the Universe to ask Swing to refresh the screen
if any of the cells changed state.

The Universe also controls a user interface of its own. It sets up and manages the single
JPanel on which all the cells are drawn. So the Life classes are isolated from window mainte-
nance and sizing as well. The Universe also sets up and manages the Grid menu that clears
the game board and loads previously stored game states.

People often confuse Mediator with Facade. One way to tell the difference is that the users
of a Mediator don’t know anything about the other subsystems to which the Mediator talks
(the “Colleagues”). The Life classes don’t know or care that the Universe is talking to Swing.
They get messages from the mediator but are unaware of the stimulus that causes the medi-
ator to send the message. The MenuSite facade, on the other hand, doesn’t hide that you’re
talking to the menuing subsystem; all it does is hide the complexity of that communication.
Mediator may or may not simplify anything—that’s not its main purpose; rather, Mediator
effectively hides the existence of the other subsystem. Mediators are very active, hiding
complex interactions such as event handling. Facades tend to be more passive, expanding a
single message into the multiple messages required for some piece of work. Mediators are
usually bidirectional, with messages flowing in both directions from the Colleagues. Facades
tend to be one-directional: messages flow from the Clients into the Facade, but not in the
other direction.

CHAPTER 3 ■ THE GAME OF L IFE162

388x_Ch03_FINAL.qxd 1/12/05 12:03 PM Page 162

Composite Revisited
Now let’s examine the classes that comprise the Life subsystem. Most of the real work happens
in the Cell interface and Neighborhood and Resident classes, which reify several design patterns.
Since you’ve already looked at Composite, let’s start there.

The Cell interface (Listing 3-8) has the role of Component in the Composite pattern.
Objects of the Resident class (Listing 3-9) comprise the Leaves in the pattern. They represent
individual cells in the game. Objects of the Neighborhood class (Listing 3-10) comprise the
Composites in the pattern. They comprise the interior nodes of the hierarchy.

The Neighborhood objects hold a two-dimensional array (8×8 in the current version) of
Cells, declared as follows on line 41 of Listing 3-10:

private final Cell[][] grid;

Since the array is declared in terms of the Cell interface, it can hold both Resident and
Neighborhood objects. Life’s user interface makes this structure visible. Figure 3-11 shows the
object hierarchy, and Figure 3-12 shows the UI for the entire Life “universe” (the entire grid of
cells), seeded with a glider in the upper-right corner. A Neighborhood object (whose UI is the
entire window) contains an 8×8 grid of Neighborhood objects (delimited on the UI by darker
lines), each of which holds an 8×8 grid of Resident objects. I could nest even further to make
a larger grid (a Neighborhood of Neighborhoods of Neighborhoods of Residents, for example).

What the Composite structure gives you is the ability to write the Neighborhood class in such
a way that it doesn’t care whether it contains a grid of Neighborhood objects or a grid of Resident
objects. They all implement the Cell interface, so they can be treated identically using that inter-
face. For example, when you ask a Neighborhood to draw itself, it asks the contained Cells to
draw themselves, and then the Neighborhood draws a darker line around the entire grid of Cells.
This process goes on recursively through any sub-Neighborhood objects, until you get down to
the Resident, which draws itself as a yellow square with a border on two adjacent sides. If you
were looking only at the drawing mechanism, this organization seems overly complex, but we’ll
look at other advantages shortly.

Figure 3-11. The object hierarchy of Life

CHAPTER 3 ■ THE GAME OF L IFE 163

388x_Ch03_FINAL.qxd 1/14/05 3:51 PM Page 163

Figure 3-12. The game board seeded with a glider

The grid (deliberately) looks like a piece of graph paper so that you can see the object
structure. The smallest squares are each drawn by a single Cell derivative called a Resident.
The Resident has the Leaf role in the Composite pattern. (Leaves don’t contain anything but
their own state.) The Neighborhood, which holds an 8×8 array of Cell objects, draws itself with
a darker border so that you can see its boundary.

The reason I’m using Composite at all is to get more efficient updates. You’ll have noticed
in Figure 3-12, that the Neighborhood that holds the glider is outlined in a darker color than the
other Neighborhoods. Every Cell has a notion of “stability” associated with it. A Cell is stable if
it will not change state on the next clock tick. A Neighborhood is stable if none of its contained
Cells will change state on the next clock tick. A Neighborhood that is not stable displays itself
with a dark-blue border. Stable Neighborhood objects display themselves with lighter borders.
Only the unstable Cells are updated during clock ticks, which saves you a vast amount of
work, since most Cells are dormant.

Figure 3-13 shows this process in action (each image is one clock tick). You can see Neigh-
borhood objects become unstable as the glider moves into them. Interestingly, not every
Neighborhood that contains a live cell is unstable; you’re just interested in whether the Cells
will change state, not whether they’re in the “alive” state.

CHAPTER 3 ■ THE GAME OF L IFE164

388x_Ch03_CMP3 8/17/04 9:29 PM Page 164

Figure 3-13. Board behavior as glider moves

01. 05. 09.

02. 06. 10.

03. 07. 11.

04. 08. 12.

CHAPTER 3 ■ THE GAME OF L IFE 165

388x_Ch03_CMP3 8/17/04 9:29 PM Page 165

Prototype
You can see Composite in action in Neighborhood.java by following a clock tick through the
system. I’ll start by looking at how the Composite grid is created. The Universe constructor
(Listing 3-7, line 48) uses the following code to create the nested system of Cells that
comprises the life universe:

outermostCell = new Neighborhood
(DEFAULT_GRID_SIZE,

new Neighborhood
(DEFAULT_GRID_SIZE,

new Resident()
)

);

To see what’s going on here, you have to look at the Neighborhood constructor, but let’s
analyze the problem first. The Neighborhood doesn’t know exactly what it contains (beyond
that it contains Cell objects). Some Neighborhood objects will hold other Neighborhood objects,
but others will hold Resident objects. The Neighborhood nonetheless has to manufacture the
contained objects, because information that’s needed to do the manufacturing (for example,
the number of objects to create) is internal to the Neighborhood.

Two solutions spring to mind. The first is to combine the Command and Abstract Factory
patterns; you pass the Neighborhood an Abstract Factory that knows how to create cells. The
code is shown below. The Abstract Factory is also a Strategy object, since it encapsulates a
creation strategy. This approach to object creation is effectively the Strategy-based approach
I discussed in Chapter 2.

class Neighborhood
{

interface CellFactory // Abstract Factory Interface
{ Cell create();
}

//...

public Neighborhood(int gridSize, CellFactory factory)
{ //...

for(int row = 0; row < gridSize; ++row)
for(int column = 0; column < gridSize; ++column)

grid[row][column] = factory.create();
}

}

//...

class Universe
{ //...

CHAPTER 3 ■ THE GAME OF L IFE166

388x_Ch03_FINAL.qxd 1/12/05 12:05 PM Page 166

// Pass the Neighborhood constructor an anonymous-inner-class
// Concrete Factory that produces a <nobr><code>Cell</code></nobr> derivative.
// (Cell is the Abstract product and either Neighborhood
// or Resident is the Concrete Product).

outermostCell = new Neighborhood
(DEFAULT_GRID_SIZE,

new Creator()
{ public Cell create()

{ return new Neighborhood
(DEFAULT_GRID_SIZE,

new Creator()
{ public Cell create()

{ return new Resident();
}

}
)

}
}

);
}

The main problem with this approach is that it’s too complicated. You need an unneces-
sary interface (CellFactory), and the initialization of outermostCell is hideous.

The second problem is that the object you need to create may not be in a default, newly
constructed state. For example, consider a runtime-customizable user interface. You can store
a list of all the changes that a user has made from the default UI-object state. When you create
every UI object, though, you’ll have to first manufacture it and then modify its state to reflect
the user preferences. You can sometimes do this modification in a constructor, but UI widgets
are often provided by a third party (or by Sun as part of Java), and you don’t have the option of
hacking up the source code to support user customization. The create-then-modify strategy
can also be quite time consuming, and the after-the-fact modifications complicates the code
considerably. (A Factory is pretty much mandatory, for example.)

Here’s another example: I have a generic server-side socket handler (written before the
SocketFactory was added to Java—nowadays I’d use a SocketFactory). My socket handler
listens on the main socket, and when a client connects, it creates a ClientConnection
Command object to handle the actual communication with the client. Using a Command
object means I don’t have to use implementation inheritance to change the way the socket
handler works. I just pass it an instance of some class that implements the ClientConnection
interface. The problem is that the socket handler has to manufacture a ClientConnection
object every time a client connects. (It actually makes a pool of ClientConnection objects and
reuses them, but that’s just an implementation detail.) I could solve this problem by passing in
a ClientConnectionFactory object, but that approach has the same problems as the earlier
example.

To the rescue comes the Prototype pattern: when all you have is a reference to an inter-
face, and you need to make many instances of the referenced object, then clone them.

CHAPTER 3 ■ THE GAME OF L IFE 167

388x_Ch03_FINAL.qxd 1/12/05 12:08 PM Page 167

To solve the UI problem using Prototype, you’d serialize a user-customized version of
a UI component to the disk. The next time you ran the program, you’d reload the serialized
version and then make copies of that prototype object rather than calling new.

To solve the socket-connection problem, you’d pass the socket-handler constructor a
prototype ClientConnection object. The socket handler will just clone the prototype on an
as-needed basis.

The Neighborhood constructor uses Prototype to create subcells, using the following code:

public Neighborhood(int gridSize, Cell prototype)
{

this.gridSize = gridSize;
this.grid = new Cell[gridSize][gridSize];

for(int row = 0; row < gridSize; ++row)
for(int column = 0; column < gridSize; ++column)

grid[row][column] = prototype.create();
}

Prototype lets you remove all knowledge of the concrete Cell-derivative type from the
Neighborhood: it’s passed a prototype Cell, which in practice is either a Resident or another
Neighborhood, and it populates itself with clones of the prototype.

I opted to use a create() method rather than a clone() override to get type safety; clone()
returns Object, so you have to cast its return value. A call to clone() works just fine if you don’t
mind the cast.

Composite Redux
Moving back to Composite, having populated the Neighborhood, you now need to pass
messages to the cells. I’ll use the clock-tick activities as an example. Figure 3-14 shows the
clock-tick-initiated message flow. (The remainder of this section explains the diagram.)

The Universe Mediator translates clock ticks into the messages that cause the board
to update. It subscribes to the clock-tick message as follows (Listing 3-7, line 140):

Clock.instance().addClockListener
(new Clock.Listener()

{ public void tick()
{ if(outermostCell.figureNextState

(Cell.DUMMY,Cell.DUMMY,Cell.DUMMY,Cell.DUMMY,
Cell.DUMMY,Cell.DUMMY,Cell.DUMMY,Cell.DUMMY

)
)

{ if(outermostCell.transition())
refreshNow();

}
}

}
);

CHAPTER 3 ■ THE GAME OF L IFE168

388x_Ch03_FINAL.qxd 1/12/05 11:07 AM Page 168

CHAPTER 3 ■ THE GAME OF L IFE 169

Figure 3-14. The messages that follow a clock tick

The message handler (tick()) passes a figureNextState() message to the outermost cell. If
any of the contained cells think they may need to change state in the next pass, figureNextState()
returns true, and the tick handler sends transition() message to the outermost cell to force a
transition to the next state. Finally, refreshNow() is called to force a screen refresh if any of the
contained cells actually changed state.

Starting with the Resident, the figureNextState() method (Listing 3-9, line 30) is passed
references to its neighbors (more on these references later); it counts the number of live
neighbors, and it determines its next state based on the neighbor count. In the second pass,
the transition() method (Listing 3-9, line 75) just moves to that state. The transition()
method also remembers whether it changed state for reasons that will become clear in a
moment.

At the Composite level, I’ll explain transition() first because it’s simpler. Bear in mind as
you read the following that the main Composite-related issue is that the Neighborhood doesn’t
have to know whether it contains other Neighborhood objects or whether it contains Resident
objects. The high-level behavior (Listing 3-10, line 241) is identical. The Neighborhood just
relays the message to its contained cells.

for(int row = 0; row < gridSize; ++row)
for(int column = 0; column < gridSize; ++column)

if(grid[row][column].transition())
{ rememberThatCellAtEdgeChangedState(row, column);

someSubcellChangedState = true;
}

:Clock

tick()

«anonymous»
:Clock.Listener

tick()

outermostCell
:Neighborhood

All Neighborhood and
Resident objects
accessed through
Cell References

transition()

refreshNow()

figureNextState(...)

8x8 grid of cells in
outermost
neighborhood

grid[0..63]
:Neighborhoodl

grid[0..63]
:Neighborhoodl

8x8 grid of cells,
each of which is a
Cell in the grid of
the outermost
neighborhood

*figureNextState(...)

*figureNextState(...)

Observer, registered in
Universe constructor.

grid[0..63]
:Resident

8x grid of Cells in
the each of the
mid-level
neighborhoods

*figureNextState(...)

[this cell or its
neighbors are active] [this cell or its

neighbors are active]
[this cell or its
neighbors are active]

state has changed

state has changed

state has changed[state has changed]

transition()
transition()

transition()

subcell changed

subcell changed

subcell changed

subcell changed

[state has changed]
[state has changed]

:Universe

388x_Ch03_CMP3 8/17/04 9:29 PM Page 169

If the subcell changed state, then the Neighborhood object remembers this fact and
reports it to the caller.

The Neighborhood also keeps track of whether any cells at the edge of this Neighborhood
have changed state, but unlike the Resident, the Neighborhood needs to keep track of which
edges of the neighborhood are active. (A Resident doesn’t bother because, if it changes state,
all the edges are active.) Adjacent Neighborhoods need the active-edge information because
the states of subcells at the adjacent-Neighborhood’s edges may need to change state if cells in
this Neighborhood are actively changing. Figure 3-15 illustrates the issues. A change in cell C,
for example, affects three adjacent neighborhoods (shown in grey): when cell C changes state,
the cell in the southwest corner of the northeast neighborhood may need to change state
as well.

Figure 3-15. Edge activity affects other neighborhoods

The rememberThatCellAtEdgeChangedState() method (Listing 3-10, line 284) keeps track of
things in a Direction object called activeEdges.

The Direction class (Listing 3-11) defines a simple wrapper around a bit map. The add()
method sets a bit. The has() method tests that a bit is set. The oddly named the() method
works just like has(). It’s there so that the following call reads like English.

northNeighbor.isDisruptiveTo().the(Direction.SOUTH);

The isDisruptiveTo method (Listing 3-10, line 88) returns the activeEdges Direction you
saw earlier—the one that’s modified during the transition process to identify the edges of the
Neighborhood that contains cells that have changed state in the current transition.

Listing 3-11. Direction.java

1 package com.holub.life;
2
3 /**...*/
4

CHAPTER 3 ■ THE GAME OF L IFE170

388x_Ch03_FINAL.qxd 1/12/05 11:10 AM Page 170

5 public class Direction
6 { private int map = BITS_NONE;
7
8 private static final int BITS_NORTH = 0x0001;
9 private static final int BITS_SOUTH = 0x0002;
10 private static final int BITS_EAST = 0x0004;
11 private static final int BITS_WEST = 0x0008;
12 private static final int BITS_NORTHEAST = 0x0010;
13 private static final int BITS_NORTHWEST = 0x0020;
14 private static final int BITS_SOUTHEAST = 0x0040;
15 private static final int BITS_SOUTHWEST = 0x0080;
16 private static final int BITS_ALL = 0x00ff;
17 private static final int BITS_NONE = 0x0000;
18
19 // Various directions. Note that since we're talking
20 // about the edges of a grid, NORTH | WEST and NORTHWEST are
21 // different things. NORTH means that anything along the NORTH
22 // edge is active; ditto for WEST and the west edge. NORTHWEST
23 // means that the cell in the NORTHWEST corner is active.
24 // If the NORTHWEST corner is active, the NORTH and WEST
25 // edges will also be active, but the converse is not true.
26
27 public static final Direction NORTH = new Immutable(BITS_NORTH);
28 public static final Direction SOUTH = new Immutable(BITS_SOUTH);
29 public static final Direction EAST = new Immutable(BITS_EAST);
30 public static final Direction WEST = new Immutable(BITS_WEST);
31 public static final Direction NORTHEAST = new Immutable(BITS_NORTHEAST);
32 public static final Direction NORTHWEST = new Immutable(BITS_NORTHWEST);
33 public static final Direction SOUTHEAST = new Immutable(BITS_SOUTHEAST);
34 public static final Direction SOUTHWEST = new Immutable(BITS_SOUTHWEST);
35 public static final Direction ALL = new Immutable(BITS_ALL);
36 public static final Direction NONE = new Immutable(BITS_NONE);
37
38 public Direction() { }
39 public Direction(Direction d){ map = d.map; }
40 private Direction(int bits){ map = bits; }
41
42 public boolean equals(Direction d){ return d.map == map; }
43 public void clear (){ map = BITS_NONE; }
44 public void add (Direction d){ map |= d.map; }
45 public boolean has (Direction d){ return the(d); }
46 public boolean the (Direction d){ return (map & d.map)==d.map; }
47
48 private static final class Immutable extends Direction
49 {
50 private static final String message =
51 "May not modify Direction constant (Direction.NORTH, etc.)";
52

CHAPTER 3 ■ THE GAME OF L IFE 171

388x_Ch03_CMP3 8/17/04 9:29 PM Page 171

53 private Immutable(int bits){ super(bits); }
54
55 public void clear()
56 { throw new UnsupportedOperationException(message);
57 }
58
59 public void add(Direction d)
60 { throw new UnsupportedOperationException(message);
61 }
62 }
63 }

The Direction implementation has a couple of other issues. Note that the bit values
declared at the top of the class definition are not exposed to the outside world. The add()
method, for example, takes a Direction argument, not an int that holds a bit mask. If I
allowed an int argument, it would be possible for a careless programmer to pass a nonsense
value into add(). Passing a Direction makes it impossible to pass add() a bad value.

The other interesting facet of the Direction class is the Immutable variant (Listing 3-11,
line 48). Immutable extends Direction, overriding all methods that can modify a Direction
object to throw exceptions. The prebuilt Direction objects (NORTH, SOUTH, and so on) are all
instances of Immutable because a user of these objects shouldn’t be modifying them. By using
Immutable, I guarantee that the object can’t be modified rather than leaving it up to the good-
will of the programmer. (Design note: It’s been argued that I got things backward here—that a
subclass shouldn’t refuse to do something that the base-class contract says that it can do. It’s
a reasonable point, but I don’t see how inverting things changes the situation.)

The Immutable class is also an example of a situation where a design-pattern solution
would add more complexity than it’s worth. You could implement immutability with the
Decorator pattern, described in Chapter Four, but the subclass is an inner class of the class
that it’s extending, and it is a trivial extension to boot, so problems such as fragile base classes
are immaterial.

Also note that Direction is not a Singleton because there will be many instances of it, and
you can create a Direction using new. On the other hand, the eight predefined directions are
very Singleton-like in their behavior. In his book Pattern Hatching (Addison-Wesley, 1998),
John Vlissides—one of the Gang of Four—pointed out that a Singleton doesn’t actually have to
be limited to a single instance, as long as the number of instances is constrained. It is reason-
able for a Singleton reification to manage a constrained set of instances rather than a single
instance, in the same way that Direction manages a set of eight predefined Direction objects.
Nonetheless, it’s difficult to tell whether Direction is a Singleton simply by looking only at its
structure. The public constructor is the only clue to its non-Singleton-ness.

Flyweight
The obvious way to implement Life would be to make each Cell a JButton derivative. That way,
when you were setting up a pattern on the grid, you could bring a cell to life simply by clicking
on it, the normal button-press mechanism can be leveraged to handle the change of appear-
ance and state. You could arrange the buttons that represented the cells using a large JFrame

CHAPTER 3 ■ THE GAME OF L IFE172

388x_Ch03_FINAL.qxd 1/12/05 12:18 PM Page 172

and a GridLayout object. In this naive implementation, each button would also hold refer-
ences to all eight neighbors. Though this approach is by far the easiest to implement, it’s
impractical. Swing components are “lightweight” only in the sense that there’s no underlying
OS window backing them. Looking at the JSDK 1.4.1 sources

• The JButton class holds two nonstatic fields.

• The AbstractButton superclass holds 28 nonstatic fields.

• The JComponent superclass holds 23 nonstatic fields.

• The Container superclass holds 23 nonstatic fields.

• The Component superclass holds 48 nonstatic fields.

That’s 124 fields total—496 bytes. About half of these fields are references to other objects
that are also good sized and hold references to even more objects. Let’s guess conservatively
and assume that each of these referenced objects requires 50 bytes, yielding another 3,100
bytes. You also need to add 8 pointers to the Cell’s neighbors and a boolean to remember the
current cell state (36 bytes). So, the grand total is 3,632 bytes per button. To make the math
easy, let’s assume that the life “Universe” is a 1024×1024 grid of cells. That’s an even 1,048,576
cells. Multiplying by the cell size, you get 3.6 gigabytes (3,632MB) of memory required to hold
the grid. Odds are, you don’t have that much core memory in your machine, which means that
the array will have to be stored in virtual memory and paged into core as the program runs.
This paging is an extremely time-consuming process. The net result would be excruciatingly
slow performance.

Obviously, the obvious approach won’t work.
I’ve solved the problem by combining Composite with another design pattern, Flyweight.
The notion of a flyweight is tied closely to the definition of an object. If you’ve read some-

where that an object is a bundle of data and a set of “method” functions that access the data,
then you’ve been misled. This sort of description is typical of a procedural programmer who’s
new to objects, but it’s fundamentally incorrect. An object is defined primarily by what it does,
by the messages that it can handle. The object will typically have some sort of internal state
represented by a set of fields, but the way in which this state is implemented internally has
absolutely nothing to do with what the object is. All that should matter are the methods.

Don’t be confused here by the notion of “attributes.” At the risk of repeating something I
said in Chapter 1, an attribute is a characteristic of an object that serves to distinguish a class
of objects from another class of objects. A “salary” attribute, for example, distinguishes one
class of people (employee) from other classes of people (volunteer, consultant, former dot-
com-er, and so on). The most important attributes of the object are the methods—the set of
messages that the object can handle. Other attributes serve as a design aid that tells you
whether a method makes sense. (Asking a volunteer to printYourSalary() won’t do anything
useful since a volunteer doesn’t have a salary attribute.)

Simply because an object has an attribute does not mean that it has an associated field.
Synthesized attributes are computed at runtime, not stored in the object, for example. A salary
attribute, may be inferred from a pay grade, a title, years of employment, or some other measure
that was stored as a field. It may be computed from a complex formula that involved fields,
method calls, and database lookups.

CHAPTER 3 ■ THE GAME OF L IFE 173

388x_Ch03_CMP3 8/17/04 9:29 PM Page 173

The attribute-related issue that concerns the Flyweight pattern is that all the attributes
of some class of object may be synthesized. The fact that the class has no fields in it does not
impact its “object-ness” in any way, as long as it has responsibilities (and the methods needed
to exercise those responsibilities). Moreover, it’s often debatable where a particular attribute
should be stored. Take the Neighborhood and Resident as a case in point. It’s reasonable for a
Resident to know its size and position on the screen. By the same token, it’s equally reason-
able for a Neighborhood to know the size and positions of all the Cells it contains. Generally,
you’d put this information into the Resident class because it would be easier for a Resident
object to draw itself. It’s not “wrong,” however, for a Neighborhood object to synthesize a Cell’s
size and position and pass that information to a contained Cell. If done properly (by accessing
subcells through an interface), a design that moves the size and location of an element into the
container doesn’t tighten the coupling at all.

When a class of objects allows a container class to hold data that could just as easily
be stored in the contained object, then the data is called extrinsic data. For example, the
figureNextState() method of the Cell interface you looked at earlier is passed references to
the Cell’s eight neighbors. The neighbor references could be contained inside the Cell, but
that would take too much space at runtime. By the same token, it’s perfectly reasonable that
a container such as a Neighborhood would be able to synthesize the eight neighbor references
when it asks a subcell to figure its next state. Since they’re external to a Resident, the neighbor
references are considered extrinsic. The Cell’s size and location information are also synthe-
sized by the surrounding Cell, so they are also extrinsic. In fact, only two fields of the Resident
class are not extrinsic: the amAlive and willBeAlive fields (declared on lines 21 and 22 of
Listing 3-9). The current implementation stores this information in boolean fields, but I could
save even more space by setting and clearing bits in a byte instead of using two booleans.

The Cell, then, is a Flyweight. (Flyweight is a term for a boxer who weighs less than 112
pounds.) Most of a Flyweight’s state information is extrinsic. You can see how the extrinsic
data in a flyweight works by following a mouse click from the Universe (which manages the
only window in the system) to the Resident that has to service the click. Figure 3-16, explained
shortly, shows how the messages propagate when the mouse is clicked from the position
shown in Figure 3-17 (ten cells from both the top and left edge of the universe).

A Resident isn’t a window because of the memory requirements, and its size and location
are extrinsic for the same reason. The mouse-click handler in the Universe class (Listing 3-7,
line 92) sends the outermost cell a userClicked() message, passing as arguments the window-
relative position of the mouse “hot spot” and a bounding rectangle—a Rectangle whose hori-
zontal and vertical size is the size of the window and whose upper-left corner is at position
(0,0). The outermost cell is actually being passed the size of itself (the outermost cell is as big
as the whole window) and the location within itself of the mouse click.

Since the outermost cell is a Neighborhood, this call gets you to the userClicked() override
in the Neighborhood class (Listing 3-10, line 390). This override relays the message to its subcells.
First it figures out which subcell contains the click position. pixelsPerCell holds the number of
pixels in a subcell (the container cell width divided by the number of cells.) Using this informa-
tion and the click location, the override determines which subcell needs to be informed of the
click and relays the message to that subcell only.

The important thing to notice is that the calling method passes the subcell a rectangle
that identifies the subcell’s size (the number of pixels in a single subcell), and the calling
method modifies the click position to be relative to the subcell’s bounding rectangle.

CHAPTER 3 ■ THE GAME OF L IFE174

388x_Ch03_CMP3 8/17/04 9:29 PM Page 174

Figure 3-16. The messages that follow a mouse click

Figure 3-17. Mouse position for scenario in Figure 3-16

Since the outermost Neighborhood contains other Neighborhood objects, this first call to
userClicked(...) (on line 402) is actually recursive. It’s received by the contained Neighbor-
hood object. This contained object, then, does the same work, scaling the size of the rectangle
down even further and moving the position to be relative to its subcell’s bounding rectangle.
The method calls userClicked(...) again, but this time the contained Cell is a Resident, so
you end up in the override in Listing 3-9, line 96. The Resident doesn’t care where, within
itself, the click occurred, so the Resident version of userClicked(...) ignores its arguments.
The method just inverts its amAlive state.

:Universe
outermostCell
:Neighborhood

grid[1][1]
:Neighborhood

grid[1][1]
:Resident

mousePressed()
userClicked(...)

userClicked(...)
userClicked(...)

here =(77,77)
surface =(0, 0, 512, 512)

here =(13,13)
surface =(0, 0, 64, 64)

here =(5,5)
surface =(0, 0, 8, 8)

 The here argument is the cell-relative
mouse position.

 The surface argument is a rectangle
that’s the size of the current cell.

CHAPTER 3 ■ THE GAME OF L IFE 175

388x_Ch03_CMP3 8/17/04 9:29 PM Page 175

Screen painting happens in a similar way. The Universe sends redraw(...) messages to
the outermost cell on lines 221 and 245 of Listing 3-7, getting you to the Neighborhood override
in Listing 3-10, line 321. This override scales down the rectangle and relays it to the subcell (on
line 352), which eventually gets you to the Resident override (Listing 3-9, line 81), which draws
one cell in yellow or red, depending on whether it’s alive.

You should note two other things in this code. A Neighborhood draws a darker-than-usual
border around itself when it’s not stable. This is the code that generated the moving outlines you
looked at earlier as the glider flew across the universe. This last example is another example of
why it’s a good thing for an object to display its own UI. It would be a lot harder to do this
“outlining” in an external rendering class.

Also, the Neighborhood’s redraw(...) override (Listing 3-10, line 321) doesn’t do anything
if the test at the top succeeds. That is, if the current Neighborhood is stable, then the version
on the screen is just fine, so the Neighborhood doesn’t redraw itself. This same logic applies to
the figureNextState() (Listing 3-10, line 111). If the Neighborhood is stable, it doesn’t ask the
contained cells to figure their states. This way, you don’t waste machine cycles updating cells
that don’t need to be updated.

To finish with this aspect of Flyweight, you can see the dark underbelly of the pattern in
the Neighborhood class’s implementation of figureNextState() (Listing 3-10, line 111). This
method is made hideously complicated by the fact that the neighbors of cells on the edge of a
Neighborhood are in a different Neighborhood object. All that nasty code after line 144 of Listing
3-10 is just figuring out which neighborhood holds the adjacent cell. None of this complexity
would be necessary if the cells held their own neighbor pointers, but getting rid of this excess
baggage was the whole point of using Flyweight to begin with.

The figureNextState() method makes many calls to edge(...), which returns a cell on
the edge of an adjacent Neighborhood. The edge() method looks an awful lot like one of the
getters I disparaged earlier in this chapter, so some explanation is in order. Remember, the
basic argument against getters is that they expose implementation details and negatively
impact maintainability. Here, however, the cells are a fundamental attribute of a Neighborhood.
The fact that a Neighborhood is made up of Cells is one of the key defining characteristics
(attributes) of a neighborhood. As I mentioned in Chapter 1, occasionally providing method-
level access to a core attribute is at times okay, and this is one of those times. It would be a
serious error to expose how the Neighborhood stores the cells, but it’s harmless to expose the
fact that the Neighborhood simply contains cells.

Moreover, edge(...) is called only by other Neighborhood objects. Passing data between
two identical objects doesn’t impact maintenance one iota, since they both instantiate the
same class definition. Normally, I’d make a method such as edge(...) private to ensure that
it wasn’t called from foreign classes, but I can’t do that here because the Composite pattern
mandates access through the Cell interface. I could get around this problem by dispensing
with the Cell interface, making edge(...) private, and redefining Resident to extend Neigh-
borhood and override all the public methods. Although this reorganization lets me restrict
access to edge(...), it’s unacceptable for a Cell to carry around all the baggage of a
Neighborhood (the array of subcells, for example) when it’s not using that baggage.

Flyweight Pools
Returning to the clock-tick handler, as follows, the Universe passes the outermost cell eight
references to the Cell.DUMMY object:

CHAPTER 3 ■ THE GAME OF L IFE176

388x_Ch03_CMP3 8/17/04 9:29 PM Page 176

Clock.instance().addClockListener
(new Clock.Listener()

{ public void tick()
{ if(outermostCell.figureNextState

(Cell.DUMMY,Cell.DUMMY,Cell.DUMMY,Cell.DUMMY,
Cell.DUMMY,Cell.DUMMY,Cell.DUMMY,Cell.DUMMY

)
)

{ if(outermostCell.transition())
refreshNow();

}
}

}
);

This code is a simplistic example of flyweight pooling, the other main characteristic of
the Flyweight pattern. Rather than create eight identical flyweights, I use eight references to a
single flyweight. (In fact, the DUMMY object actually masquerades as 256 instances of Cell, since
the eight references passed into figureNextState() are themselves treated as Neighborhood
objects, each of which uses the same DUMMY objects as the cells on the edge of its Neighborhood.)
Conceptually, the entire grid that comprises the Life universe is bordered by DUMMY objects, but
these objects on the border are all actually the same object.

The DUMMY object is defined using the anonymous-inner-class mechanism in the Cell
interface (Listing 3-8, line 128). It implements a dead cell that does nothing. By passing it into
the outermost Cell of the composite, this cell is effectively surrounded by “dummy” objects.
Using an anonymous inner class makes the actual class definition inaccessible.

The DUMMY object, by the way, is yet another Singleton. The instance is manufactured
in the DUMMY declaration on line 128 of Listing 3-8. The Singleton is accessed globally using
Cell.DUMMY instead of an accessor method. Only one instance of the class can possibly exist
since the class itself is defined using the anonymous inner-class mechanism. You can’t create
another instance using new because you don’t have a class name to use.

A better example of Flyweight pooling is Java’s BorderFactory class. The javax.Swing.Border
defines a Flyweight, albeit a big one. The Border interface defines a paint method that uses
four variables to render the border. Here’s the prototype for that method:

void paintBorder(Component c, Graphics g, int x, int y, int width, int height)

Since all these arguments could just as well be attributes of the class that implements
Border, these arguments really define the Border’s extrinsic data. Making these fields extrinsic
yields an important benefit. A single Border object can draw borders around any numbers of
components. For example, I can put a three-pixel EmptyBorder around several components
with the following code:

Border threePixelPadding = new EmptyBorder(3, 3, 3, 3);

JButton hello = new JButton("Hello");
JButton goodbye = new JButton("Goodbye");

hello.setBorder(threePixelPadding);
goodbye.setBorder(threePixelPadding);

CHAPTER 3 ■ THE GAME OF L IFE 177

388x_Ch03_CMP3 8/17/04 9:29 PM Page 177

The extrinsic information needed to render the border is passed into the Border three-
PixelPadding object when it’s time to do the drawing.

Since the border is so flexible, and since most Border objects are used around many
components, there’s no real need to use new to make a Border derivative with certain charac-
teristics every time you need one. That is, it’s better to use the same Border object everywhere
rather than to create many identical objects. You want to cache a single instance and use the
instance in the cache.

Swing accomplishes caching with an Abstract Factory: BorderFactory. Use it like this:

JButton hello = new JButton("Hello");
JButton goodbye = new JButton("Goodbye");

hello.setBorder (BorderFactory.createEmptyBorder(3,3,3,3));
goodbye.setBorder(BorderFactory.createEmptyBorder(3,3,3,3));

If I were implementing BorderFactory, I’d do it as a flyweight pool. The first time I was
asked for a three-pixel-wide empty border, I would have the BorderFactory manufacture it.
Subsequent requests for Border objects with the same characteristics would return the same
object. Only one three-pixel-wide-empty-Border object would exist. (Swing gives no guarantee
that the BorderFactory actually works this way, so you can’t safely do things such as use == to
compare factory-generated objects—something that you could do if being a flyweight pool
was part of the object’s contract.)

So far, this code is just a reification of Abstract Factory that’s used to create Singletons. (You
can argue with me about whether the manufactured Border objects are indeed Singletons, but I
think of them in a similar light as the Class-object Singleton.) What makes the BorderFactory a
Flyweight pool is that the Singleton that’s managed by the factory is a flyweight, and the purpose
of the factory is to limit the number of flyweight instances to the minimal set.

Memento
One final design pattern exists in Life: Memento. I briefly discussed Memento in the context
of OLE in-place activation back in the section “The Menuing System: Facade and Bridge.”
The idea of a memento is that some object (an Originator) needs another object (a Caretaker)
to hold the Originator’s state. The Originator encapsulates that state into a black box (a
Memento), which the Caretaker stores. The Caretaker cannot modify the state of the Origi-
nator by manipulating the Memento, however. To enforce the black-box nature of a Memento,
it is often represented physically as a byte array or an Object whose concrete class is unknown
to the Caretaker.

You’ll remember that the OLE container uses Memento to store the state of the in-place
activated object. When Excel (the Originator) shuts down, it passes its state to Word as a
memento—a byte array that Word stores until Excel needs again. Since Word (the Caretaker)
has no idea what’s in that byte array, Word can’t do anything with the Memento but store it.
Another good example is a web-browser cookie—a chunk of data provided by the server that
the browser holds onto until it talks to that server again. The browser has no idea what’s in the
cookie—it’s the Caretaker.

A Caretaker can store the memento as a blob in a database, by serializing it to disk or just
by holding it in memory until the Originator needs it again.

CHAPTER 3 ■ THE GAME OF L IFE178

388x_Ch03_FINAL.qxd 1/12/05 11:22 AM Page 178

Though you may think you can use Memento to implement “undo,” it’s not usually suit-
able for that purpose. Simply restoring some piece of the program to a previous state doesn’t
undo any “side effects” of the original operation. For example, if an object updates a database
during some operation, simply restoring the object to its former state does not reverse the
database update. In any event, the memento may not store actual state information; it may
contain some “key” you use to get the actual state information. In JSP, for example, the cookie
holds a ”session ID” that’s used to find the actual session state in the server. There’s not enough
information in the cookie itself to do anything like an undo operation. The Command pattern,
discussed in Chapter Four, solves the undo problem.

In the case of Life, I wanted to be able to save the state of a Life universe (all of the cells)
so that I could seed a complex pattern onto the board only once and then load the pattern
back into the game at some future time. I wanted to isolate the mechanics of storage and
retrieval in my Universe mediator, so I implemented persistence by having the Universe ask
the Cells for a memento that the Universe stores and retrieves.

I applied two levels of interfaces in Life’s implementation of Memento to guarantee the
black-box quality of the Memento itself. At the Universe level everything is done in terms of
the Storable interface (Listing 3-12). It has only two methods, load() and flush(), which
do the obvious.

If you look back at the Universe (Listing 3-7), you’ll see that it sets up menu handlers that
store and load the entire game board (on line 113). These handlers call doStore() and doLoad()
to do the actual work.

The doStore method (Listing 3-7, line 186) uses Abstract Factory to create a Memento.

Storable memento = outermostCell.memento();

(This Abstract Factory isn’t called out in Figure 3-2 simply because there wasn’t enough
room to cram it in, so I’ve put it in Figure 3-18. Cell is an Abstract Factory of Storable Abstract
Products. Neighborhood is the Concrete Factory of NeighborhoodState Concrete Products.)
doStore() then asks the outermost cell to transfer its state into the memento. Finally, it asks
the memento to flush itself out to the disk.

The doLoad() method (Listing 3-7, line 164) is basically the same as doStore(). It reverses
the disk access and transfer operations, however. It first loads the memento from the disk and
then asks the outermost cell to import the memento into itself.

At the Caretaker level (the Universe) the Memento is a black box—a Storable object of
some sort that knows how to load and store itself. The Universe can’t change the state of the
data in the memento.

Listing 3-12. Storable.java

1 package com.holub.life;
2 import java.io.*;
3
4 /**...*/
5
6 public interface Storable
7 { void load (InputStream in) throws IOException;
8 void flush(OutputStream out) throws IOException;
9 }

CHAPTER 3 ■ THE GAME OF L IFE 179

388x_Ch03_FINAL.qxd 1/12/05 11:50 AM Page 179

Figure 3-18. Life’s mementos

Moving into the concrete classes, at the Life level, access to the Memento is through the
Cell.Memento interface (Listing 3-8, line 87), implemented by the Neighborhood.Neighborhood-
State class (Listing 3-10, line 462). NeighborhoodState implements the Storable interface to
serialize itself out to the disk and back in using the built-in serialization system. At some
point, I plan to replace the serialization with XML so that I can build seed files in an ASCII
editor, but for the time being, serialization will do. Note that this change to an XML format
involves a localized change in the NeighborhoodState class; it affects no other classes. Neigh-
borhoodState encapsulates a linked list of points, each identifying a live cell on the board. All
cells not in the list are dead. A Resident object marks itself as alive by calling markAsAlive,
which simply adds a point to the list. When loading from the Memento, a Resident asks if it
isAlive(), and if an affirmative answer comes back, the Resident object sets its state to “alive”
(in the transfer(...) overload, Listing 3-9, line 109).

This implementation of Memento seems complex, but it has two important characteristics:
I can change the way in which the game state is stored by changing only one class (Neighborhood-
State), and, because I have isolated the Memento generation from the file system in the mediator,
I can change the location of the stored Memento without changing anything except the Universe
class. All likely changes are localized to a single class.

Loose Ends
Listings 3-13, 3-14, and 3-15 contain the remaining classes in the Game of Life.

The Colors interface (Listing 3-13) contains nothing but symbolic constants that alias
various java.awt.Color values I use regularly. Use this interface like a Singleton. That is, use
Colors.DARK_RED to access the dark-red Color. Don’t implement the Colors interface to use
DARK_RED without the prefix. Many Java programs do implement interfaces to access static data
in this way, but I don’t think much of that practice from a design point of view. An employee is
not a color (which implies extends), and employees do not support messages that are passed to
colors generally (which implies implements), so an Employee class should not implement Colors.
It’s better to think of Colors as a kind of multiway Singleton that provides global access to a
constrained set of objects. Just use the fields directly.

Abstract
Factory

Concrete
Product

Abstract
Product

Abstract
Factory

Concrete
Factory

Cell Storable

NeighborhoodStateNeighborhood
«create»

Cell.Memento

Resident store state in >

store state in >

CHAPTER 3 ■ THE GAME OF L IFE180

388x_Ch03_CMP3 8/17/04 9:29 PM Page 180

The Files utility contains only one method that makes it a little easier to display a file-
chooser dialog. When you want a user-selected file, you call this:

File in = Files.userSelected(".",".txt","Text File","Open");

The method takes care of the mechanics of getting the dialog box displayed. This class is a
simplistic example of Facade.

Finally, the ConditionVariable class in Listing 3-15 is a roll-your-own threading primitive
that corrects an omission in Java’s wait() method. One of the main problems with wait() is
that the thing you’re waiting on has no notification state. That is, a thread that needs to wait
for some event to occur may not want to be suspended if the event has already occurred when
the thread calls wait(). ConditionVariable solves the problem by incorporating a boolean
that’s checked prior to issuing the wait() request. Think of a condition variable as a boolean
that represents a condition of some sort. If the condition is false, then you wait for it to become
true. If the condition is true, then you’ll never wait at all. You create a condition variable in the
false state like this:

ConditionVariable eventHappened = new ConditionVariable(false);

You can issue the following call to wait for the condition to become true:

eventHappened.waitForTrue();

When the event does happen, the event handler sets the condition variable to the true
state as follows:

eventHappened.set(true);

Any waiting threads are released, and all subsequent calls to eventHappened.waitForTrue()
return immediately without blocking. If you need the threads to start waiting for the condition
variable again, set it back to a false state as follows:

eventHappened.set(false);

ConditionVariable is another simple Facade, simplifying a tiny bit of behavior of Java’s
threading subsystem.

I use a condition variable in Life to make sure that the activities associated with a clock tick
don’t overlap. The semaphore (readingPermitted) is declared at the top of the Neighborhood class
(Listing 3-10, line 31). The reading-permitted state is set and cleared in the Neighborhood’s transi-
tion() override (Listing 3-10, line 241). Finally, the Neighborhood’s redraw override does nothing if
reading is not permitted (Listing 3-10, line 345). The waitForTrue() on the line following this last
test is just insurance that handles a potential race condition in the code.

Listing 3-13. Colors.java

1 // © 2003 Allen I Holub. All rights reserved.
2 package com.holub.ui;
3 import java.awt.*;
4
5 /* The Colors interface contains nothing but symbolic constants for various
6 * color values that I use regularly. The names are self explanatory.
7 */

CHAPTER 3 ■ THE GAME OF L IFE 181

388x_Ch03_CMP3 8/17/04 9:29 PM Page 181

8
9 /**...*/
10
11 public interface Colors
12 {
13 /**...*/ static final Color DARK_RED = new Color(0x99, 0x00, 0x00);
14 /**...*/ static final Color MEDIUM_RED = new Color(0xcc, 0x00, 0x00);
15 /**...*/ static final Color LIGHT_RED = new Color(0xff, 0x00, 0x00);
16
17 /**...*/ static final Color DARK_ORANGE = new Color(0xff, 0x66, 0x00);
18 /**...*/ static final Color MEDIUM_ORANGE = new Color(0xff, 0x99, 0x00);
19 /**...*/ static final Color LIGHT_ORANGE = new Color(0xff, 0xcc, 0x00);
20 /**...*/ static final Color ORANGE = new Color(0xff, 0x99, 0x00);
21
22 /**...*/ static final Color OCHRE = new Color(0xcc, 0x99, 0x00);
23 /**...*/ static final Color DARK_YELLOW = new Color(0xff, 0xff, 0x00);
24 /**...*/ static final Color MEDIUM_YELLOW = new Color(0xff, 0xff, 0x99);
25 /**...*/ static final Color LIGHT_YELLOW = new Color(0xff, 0xff, 0xdd);
26
27 /**...*/ static final Color DARK_GREEN = new Color(0x00, 0x66, 0x00);
28 /**...*/ static final Color MEDIUM_GREEN = new Color(0x00, 0x99, 0x00);
29 /**...*/ static final Color LIGHT_GREEN = new Color(0x00, 0xff, 0x00);
30 /**...*/ static final Color GREEN = MEDIUM_GREEN;
31
32 /**...*/ static final Color DARK_BLUE = new Color(0x00, 0x00, 0x99);
33 /**...*/ static final Color MEDIUM_BLUE = new Color(0x00, 0x00, 0xcc);
34 /**...*/ static final Color LIGHT_BLUE = new Color(0x00, 0x00, 0xff);
35
36 /**...*/ static final Color DARK_PURPLE = new Color(0x99, 0x00, 0x99);
37 /**...*/ static final Color MEDIUM_PURPLE = new Color(0xcc, 0x00, 0xff);
38 /**...*/ static final Color LIGHT_PURPLE = new Color(0xcc, 0x99, 0xff);
39 /**...*/ static final Color PURPLE = MEDIUM_PURPLE;
40 }

Listing 3-14. Files.java

1 package com.holub.io;
2
3 import java.io.*;
4 import javax.swing.*;
5 import javax.swing.filechooser.FileFilter; // disambiguate from java.io version
6
7 /**...*/
8
9 public class Files
10 {
11 /** Throw up a file chooser and return the file that the user selects.
12 * @param extension File extension you're looking for. Use null if
13 * any will do.

CHAPTER 3 ■ THE GAME OF L IFE182

388x_Ch03_CMP3 8/17/04 9:29 PM Page 182

14 * @param description the description of what the extension means.
15 * Not used if "extension" is null.
16 * @param selectButtonText Replaces the "Open" on the chooser button.
17 * @param startHere Name of initial directory in which to look.
18 * @return the selected file.
19 * @throws FileNotFoundException if the user didn't select a file. I've
20 * done this rather than returning null so that it's easy to
21 * do the following:
22 * <PRE>
23 * FileInputStream in =
24 * new FileInputStream(
25 * Files.userSelected(".",".txt","Text File","Open"));
26 * </PRE>
27 */
28
29 public static File userSelected(final String startHere,
30 final String extension,
31 final String description,
32 final String selectButtonText)
33 throws FileNotFoundException
34 { FileFilter filter =
35 new FileFilter()
36 { public boolean accept(File f)
37 { return f.isDirectory()
38 || (extension != null
39 && f.getName().endsWith(extension));
40 }
41 public String getDescription()
42 { return description;
43 }
44 };
45
46 JFileChooser chooser = new JFileChooser(startHere);
47 chooser.setFileFilter(filter);
48
49 int result = chooser.showDialog(null,selectButtonText);
50 if(result == JFileChooser.APPROVE_OPTION)
51 return chooser.getSelectedFile();
52
53 throw new FileNotFoundException("No file selected by user");
54 }
55
56 static class Test
57 {
58 public static void main(String[] args)
59 {
60 try

CHAPTER 3 ■ THE GAME OF L IFE 183

388x_Ch03_CMP3 8/17/04 9:29 PM Page 183

61 { File f=Files.userSelected(".",".test","Test File","Select!");
62 System.out.println("Selected " + f.getName());
63 }
64 catch(FileNotFoundException e)
65 { System.out.println("No file selected");
66 }
67 System.exit(0); // Required to stop AWT thread & shut down.
68 }
69 }
70 }

Listing 3-15. ConditionVariable.java

1 package com.holub.asynch;
2
3 /**
4 * This class is a simplified version of the com.asynch.Condition
5 * class. Use it to wait for some condition to become true:
6 * <PRE>
7 * ConditionVariable hellFreezesOver = new ConditionVariable(false);
8 *
9 * Thread 1:
10 * hellFreezesOver.waitForTrue();
11 *
12 * Thread 2:
13 * hellFrezesOver.set(true);
14 * </PRE>
15 * Unlike <code>wait()</code> you will not be suspended at all if you
16 * wait on a true condition variable. You can call <code>set(false)</code>,
17 * to put the variable back into a false condition (thereby forcing
18 * threads to wait for it to become true, again).
19 */
20
21 public class ConditionVariable
22 {
23 private volatile boolean isTrue;
24
25 public ConditionVariable(boolean isTrue){ this.isTrue = isTrue; }
26
27 public synchronized boolean isTrue()
28 { return isTrue;
29 }
30
31 public synchronized void set(boolean how)
32 { if((isTrue = how) == true)
33 notifyAll();
34 }

CHAPTER 3 ■ THE GAME OF L IFE184

388x_Ch03_CMP3 8/17/04 9:29 PM Page 184

35
36 public final synchronized void waitForTrue() throws InterruptedException
37 { while(!isTrue)
38 wait();
39 }
40 }

Summing Up
Whew! That’s 11 design patterns—the 9 pictured in Figure 3-2 plus Command and Abstract
Factory—used in a program that has only 20 classes and interfaces in it, some of which are
trivial. Though Life is a small program, it nicely demonstrates how the patterns all work
together in the real world. They never stand in splendid isolation, as they would appear in
a catalog-based design-patterns book.

More important, if you factor out all of the text in this chapter that describes what the
pattern is, you’ll find that there’s hardly anything left. That is, if you knew the patterns already,
I could have explained the entire Life program to you in a couple pages. This economy of
expression makes for very productive conversations.

One of the main reasons for doing design at all is improved communication (between
programmers, between designers and programmers, between programmers and users, and
so on). I hope I’ve shown you how effective the design-pattern vocabulary can be in achieving
that end.

This chapter also shows you one of the significant disadvantages of a hard-core design-
pattern approach. As I mentioned earlier, my implementation of Life is probably the most
complicated implementation of Life ever written. As I said at the beginning of the chapter,
this Game of Life is, after all, a toy, and I let myself go nuts with the patterns. The current
implementation certainly shows how the patterns all interact to get work done, however,
and that was one of the main things I was trying to show you.

CHAPTER 3 ■ THE GAME OF L IFE 185

388x_Ch03_CMP3 8/17/04 9:29 PM Page 185

388x_Ch03_CMP3 8/17/04 9:29 PM Page 186

Implementing Embedded SQL

This chapter presents a complete subsystem that demonstrates all the remaining Gang-of-
Four design patterns: a miniature SQL interpreter (and JDBC interface) that you can embed
in your applications. This package is not a full-blown database but is a small in-memory
database suitable for many client-side applications.

As was the case with the Game of Life game discussed in the previous chapter, I’ve set up a
web page at http://www.holub.com/software/holubSQL/ that lists various links to SQL resources
and provides an applet that lets you play with the interpreter I’m about to discuss. You can find
the most recent version of the source code from this chapter on the same web page.

As was also the case with Life, I’ve opted to present a complete subsystem, so this chapter
has a lot of code in it. As before, I don’t expect you to read every line—I’ve called out the
important stuff in the text.

With the exception of “The Interpreter Pattern” section, you don’t need to know anything
special to read this chapter. That section, which covers how the actual SQL interpreter and the
parser that builds it works, is a doozy, though. After a lot of thought, I decided not to turn this
chapter into a treatise on compiler writing, simply because the subject rarely comes up in
normal programming. Moreover, the Interpreter Pattern section introduces only one design
pattern, which is used only to build interpreters. If you’re not going to build an interpreter, you
can safely skip it (both the pattern and the section). If you’re bold enough to proceed, however,
I’m assuming (in that section only) that you know how write simple SQL statements, you know
how to read an LL(1) BNF grammar, and you know how recursive-descent parsing works. The
web page I just mentioned has links to SQL and JDBC resources if you need to learn that mate-
rial, and it also links to a long introduction of formal grammars and recursive-descent parsing.

The Requirements
I originally wrote the small database engine in this chapter to handle the persistence layer for
a client-side-only “shrink-wrap” application. My program used only a few tables and did only
simple joins, and I didn’t want the size, overhead, and maintenance problems of a “real” data-
base. I also didn’t need full-blown SQL—just a reasonable subset that supports table creation,
modification, and simple queries (including joins) was sufficient. I didn’t need views, triggers,
functions, and the other niceties of a real database. I did, however, need the tables that comprised
the database to be stored in some human-readable ASCII format such as comma-separated
values (preferred) or XML, and none of the databases that I could find satisfied this last
requirement.

187

C H A P T E R 4

■ ■ ■

388x_Ch04_CMP4 8/17/04 2:27 PM Page 187

http://www.holub.com/software/holubSQL

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL188

I rolled my own database for other reasons as well. The database needed to be “embedded”
into the rest of the program rather than being a stand-alone server. I just didn’t want the hassle
of installing (and maintaining) a stand-alone third-party database server that was likely to be
an order of magnitude larger than the application itself. I wanted a small, lean implementation.

I wanted to talk to the database using JDBC so that I could replace it with something that
was more fully featured if necessary. The database engine had to be written entirely in Java so
that it was platform independent.

Finally, several times I’ve wanted to store a small amount of data in a database-like way,
but without the overhead of an actual database. For example, it’s handy to put configuration
options into a database-like data structure so that you can issue queries against the configura-
tion. Using a database to keep track of ten configuration options was just too much overhead,
however. I wanted the data structures that underlie the SQL interpreter to be useable in their
own right as a sort of “collection,” but without the SQL.

I checked the web to see if there was anything that would do the job, but I couldn’t find
anything at the time, so I rolled up my sleeves and wrote my own. (I’ve subsequently discov-
ered a couple small public-domain SQL interpreters, but that’s life—it took less than two
weeks to write the SQL engine you’re about to examine, so I didn’t waste any time.)

The Architecture
I approached the design of my small-database subsystem by breaking it into three distinct
layers, each accessed through well-defined interfaces (see Figure 4-1). This use of interfaces to
isolate subsystems from each other is a simple reification of the Bridge pattern, which I’ll discuss
in greater depth later in the current chapter. The basic idea of Bridge is to separate subsystems
with a set of interfaces so you can modify one subsystem without impacting the other.

The data-storage layer manages the actual data that comprises a table and also handles
persistence. This layer exposes two interfaces: Table (which defines access to the table itself)
and Cursor, which provides an iterator across rows in the table (an object that lets you visit
each row of the table in sequence).

The data-storage classes are wrapped in a SQL-engine layer, which implements the SQL
interpreter and uses the underlying data-storage classes to manage the actual data. This layer
exposes result sets (the set of rows that result from a SQL select operation) as Table objects,
and you can examine the result set with a Cursor, so these two interfaces isolate both “faces”
of the subsystem. (Like Janus, one face looks backward at the data-storage layer, and the other
face looks forward at the JDBC layer.)

Finally, a JDBC-driver layer wraps the SQL engine with classes that implement the various
interfaces required by JDBC, so you can access my simple database just like you would any other
database. Using the JDBC Bridge also lets you easily replace my simple database with something
that’s more fully featured without having to modify your code. The JDBC layer completely hides
the underlying Table and Cursor interfaces. (You won’t have to worry about JDBC-related stuff
until you get to “The JDBC Layer” section toward the end of this chapter. Everything I discuss
up to that point has nothing to do with JDBC. I’ll explain how JDBC works when you get to that
section, and when I do get to it, JDBC classes will be clearly indicated by using their fully qualified
class names: java.sql.Xxx. If you don’t see the java.sql, then the class is one of mine.)

388x_Ch04_FINAL.qxd 1/12/05 11:20 AM Page 188

The messaging between layers is effectively unidirectional. For example, the SQL engine
knows about, and send messages to, the data-storage layer, but the data-storage layer knows
nothing about the SQL engine and sends no messages to any of the objects that comprise the
SQL engine. This one-way communication vastly simplifies maintenance because you know
that the effects of a given change are limited. Since these three layers are completely inde-
pendent of one another, I can also discuss them independently.

Figure 4-1. Database-classes architecture

The Data-Storage Layer
At the core of everything is the Table interface, its implementation (ConcreteTable), and various
support classes and interfaces. As I did in the previous chapter, I’ll start with a couple of monstrous
figures, which will seem confusing at first but make sense as I discuss the program one bit at a
time. Figure 4-2 shows the static structure of the classes that comprise the data-storage layer: the
Table interface and all its implementations and supporting classes. Figure 4-3 shows the design
patterns. As was the case with Life, there are almost as many patterns as there are classes, which is
to say that several classes participate in more than one pattern. You should bookmark these figures
so that you can refer to them as I discuss the various patterns.

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 189

388x_Ch04_FINAL.qxd 1/14/05 3:53 PM Page 189

Figure 4-2. Data-storage layer: static structure

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL190

388x_Ch04_FINAL.qxd 1/14/05 3:55 PM Page 190

Figure 4-3. Data-storage layer: design patterns

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 191

388x_Ch04_FINAL.qxd 1/14/05 3:56 PM Page 191

The Table Interface
The Table interface (Listing 4-1) defines the methods you use to talk to a table. I’ve designed
the Table so that it (and the underlying implementation) is useful as a data structure in its
own right, without needing to wrap it with the SQL-related layers. Sometimes, you just need a
searchable table rather than a whole database.

A Table is an in-memory data structure that you can use rather like a Collection. The inter-
face doesn’t extend Collection, however, because a Table is really doing a different thing than a
standard Collection—they just both happen to be data structures. There would be no way to
implement most of the methods of the Collection interface in the Table. A Table supports the
database notion of a column. You can think of a Table as a set of rows, each of which has several
columns that are identified by name. It’s like a two-dimensional array, except that it’s searchable
and the columns have names, not column indexes. (JDBC lets you specify a column by index,
but I don’t do that in my own code, so I haven’t implemented the feature. Index-based access—
as compared to named access—has given me grief when I’ve had to add columns to the data-
base and the column indexes have changed as a consequence, so I don’t use them.)

Every cell (the intersection of a column and row) can hold an object. The rows in a Table
are not ordered. You find a particular row by searching the table for rows whose columns
match certain criteria (which you specify—more in a moment).

Table is an interface, not a class. An interface makes it possible to isolate the parts of the
program that use the Table from the parts of the program that implement the Table. I can change
everything about the implementation—even the concrete-class name—without any code on
the “client” side of the interface changing. The comments in Listing 4-1 describe the various Table
operations adequately, and I’ll have more to say about them when I look at the implementations.

Listing 4-1. Table.java

1 package com.holub.database;
2
3 import java.io.*;
4 import java.util.*;
5 import com.holub.database.Selector;
6
7 /** A table is a database-like table that provides support for
8 * queries.
9 */
10
11 public interface Table extends Serializable, Cloneable
12 {
13 /** Return a shallow copy of the table (the contents are not
14 * copied.
15 */
16 Object clone() throws CloneNotSupportedException;
17
18 /** Return the table name that was passed to the constructor
19 * (or read from the disk in the case of a table that
20 * was loaded from the disk.) This is a "getter," but
21 * it's a harmless one since it's just giving back a

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL192

388x_Ch04_CMP4 8/17/04 2:27 PM Page 192

22 * piece of information that it was given.
23 */
24 String name();
25
26 /** Rename the table to the indicated name. This method
27 * can also be used for naming the anonymous table that's
28 * returned from {@link #select select(...)}
29 * or one of its variants.
30 */
31 void rename(String newName);
32
33 /** Return true if this table has changed since it was created.
34 * This status isn't entirely accurate since it's possible
35 * for a user to change some object that's in the table
36 * without telling the table about the change, so a certain
37 * amount of user discipline is required. Returns true
38 * if you modify the table using a Table method (such as
39 * update, insert, etc.). The dirty bit is cleared when
40 * you export the table.
41 */
42 boolean isDirty();
43
44 /** Insert new values into the table corresponding to the
45 * specified column names. For example, the value at
46 * <code>values[i]</code> is put into the column specified
47 * in <code>columnNames[i]</code>. Columns that are not
48 * specified are initialized to <code>null</code>.
49 *
50 * @return the number of rows affected by the operation.
51 * @throws IndexOutOfBoundsException One of the requested columns
52 * doesn't exist in either table.
53 */
54 int insert(String[] columnNames, Object[] values);
55
56 /** A convenience overload of {@link #insert(String[],Object[])} */
57
58 int insert(Collection columnNames, Collection values);
59
60 /** In this version of insert, values must have as many elements as there
61 * are columns, and the values must be in the order specified when the
62 * Table was created.
63 * @return the number of rows affected by the operation.
64 */
65 int insert(Object[] values);
66
67 /** A convenience overload of {@link #insert(Object[])}
68 */

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 193

388x_Ch04_CMP4 8/17/04 2:27 PM Page 193

69
70 int insert(Collection values);
71
72 /**
73 * Update cells in the table. The {@link Selector} object serves
74 * as a visitor whose <code>includeInSelect(...)</code> method
75 * is called for each row in the table. The return value is ignored,
76 * but the Selector can modify cells as it examines them. It's your
77 * responsibility not to modify primary-key and other constant
78 * fields.
79 * @return the number of rows affected by the operation.
80 */
81
82 int update(Selector where);
83
84 /** Delete from the table all rows approved by the Selector.
85 * @return the number of rows affected by the operation.
86 */
87
88 int delete(Selector where);
89
90 /** begin a transaction */
91 public void begin();
92
93 /** Commit a transaction.
94 * @throw IllegalStateException if no {@link #begin} was issued.
95 *
96 * @param all if false, commit only the innermost transaction,
97 * otherwise commit all transactions at all levels.
98 * @see #THIS_LEVEL
99 * @see #ALL
100 */
101 public void commit(boolean all) throws IllegalStateException;
102
103 /** Roll back a transaction.
104 * @throw IllegalStateException if no {@link #begin} was issued.
105 * @param all if false, commit only the innermost transaction,
106 * otherwise commit all transactions at all levels.
107 * @see #THIS_LEVEL
108 * @see #ALL
109 */
110 public void rollback(boolean all) throws IllegalStateException;
111
112 /** A convenience constant that makes calls to {@link #commit}
113 * and {@link #rollback} more readable when used as an
114 * argument to those methods.
115 * Use <code>commit(Table.THIS_LEVEL)</code> rather than

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL194

388x_Ch04_CMP4 8/17/04 2:27 PM Page 194

116 * <code>commit(false)</code>, for example.
117 */
118 public static final boolean THIS_LEVEL = false;
119
120 /** A convenience constant that makes calls to {@link #commit}
121 * and {@link #rollback} more readable when used as an
122 * argument to those methods.
123 * Use <code>commit(Table.ALL)</code> rather than
124 * <code>commit(true)</code>, for example.
125 */
126 public static final boolean ALL = true;
127
128 /**Described in the text on page 235*/
129
130 Table select(Selector where, String[] requestedColumns, Table[] other);
131
132 /** A more efficient version of
133 * <code>select(where, requestedColumns, null);</code>
134 */
135 Table select(Selector where, String[] requestedColumns);
136
137 /** A more efficient version of <code>select(where, null, null);</code>
138 */
139 Table select(Selector where);
140
141 /** A convenience method that translates Collections to arrays, then
142 * calls {@link #select(Selector,String[],Table[])};
143 * @param requestedColumns a collection of String objects
144 * representing the desired columns.
145 * @param other a collection of additional Table objects to join to
146 * the current one for the purposes of this SELECT
147 * operation.
148 */
149 Table select(Selector where, Collection requestedColumns,
150 Collection other);
151
152 /** Convenience method, translates Collection to String array, then
153 * calls String-array version.
154 */
155 Table select(Selector where, Collection requestedColumns);
156
157 /** Return an iterator across the rows of the current table.
158 */
159 Cursor rows();
160
161 /** Build a representation of the Table using the
162 * specified Exporter. Create an object from an

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 195

388x_Ch04_CMP4 8/17/04 2:27 PM Page 195

163 * {@link Table.Importer} using the constructor with an
164 * {@link Table.Importer} argument. The table's
165 * "dirty" status is cleared (set false) on an export.
166 * @see #isDirty
167 */
168 void export(Table.Exporter importer) throws IOException;
169
170 /***
171 * Used for exporting tables in various formats. Note that
172 * I can add methods to this interface if the representation
173 * requires it without impacting the Table's clients at all.
174 */
175 public interface Exporter
176 { public void startTable() throws IOException;
177 public void storeMetadata(
178 String tableName,
179 int width,
180 int height,
181 Iterator columnNames) throws IOException;
182 public void storeRow(Iterator data) throws IOException;
183 public void endTable() throws IOException;
184 }
185
186 /***
187 * Used for importing tables in various formats.
188 * Methods are called in the following order:
189 *
190 * <code>start()</code>
191 * <code>loadTableName()</code>
192 * <code>loadWidth()</code>
193 * <code>loadColumnNames()</code>
194 * <code>loadRow()</code> (multiple times)
195 * <code>done()</code>
196 *
197 */
198 public interface Importer
199 { void startTable() throws IOException;
200 String loadTableName() throws IOException;
201 int loadWidth() throws IOException;
202 Iterator loadColumnNames() throws IOException;
203 Iterator loadRow() throws IOException;
204 void endTable() throws IOException;
205 }
206 }

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL196

388x_Ch04_CMP4 8/17/04 2:27 PM Page 196

The Bridge Pattern
The Table interface is part of the Bridge design pattern mentioned earlier. A Bridge separates
subsystems from each other so that they can change independently. Unlike Facade (which
you looked at in the previous chapter in the context of the menuing subsystem), a Bridge
provides complete isolation between subsystems. Code on one side of the Bridge has no idea
what’s on the other side. (Facade, you’ll remember, doesn’t hide the subsystem—it just simpli-
fies access to it.)

I’ll explain Bridge by presenting several examples, shown in Figure 4-4. The top section
shows Java’s older AWT subsystem, and though you probably won’t be familiar with it unless
you’re doing something such as PalmPilot programming, the architecture is a nice reification
of the classic Gang-of-Four Bridge. The “client” classes (the ones that use java.awt.Window) can
change completely without impacting the implementation of AWT. By the same token, the classes
on the other side of the bridge (various “peer” classes that interface to the operating system’s GUI
layer) can change without impacting the client classes. AWT leverages this ability to change in
order to make the GUI model platform independent, so your PalmPilot application’s UI may well
run on Windows, Linux, or some other operating system without modification.

The peer classes (the classes that implement the xxxPeer interfaces) are created at runtime
using an Abstract Factory called java.awt.Toolkit. (Abstract Factory was discussed in Chapter 2,
but to refresh your memory, a Collection is an Abstract Factory of Iterator objects. A Concrete
Factory [ArrayList, for example] implements the Abstract-Factory interface to produce a
Concrete Products [some implementation of Iterator whose class is unknown]. Other imple-
mentations of Collection may [or may not—you don’t know or care] produce different Concrete
Products that implement the same Iterator interface in a way that makes sense for that partic-
ular data structure.) Toolkit is an abstract class used as an interface. (It has to be abstract because
it needs to contain a static method.) The Singleton pattern is used to fetch a concrete instance of
the Toolkit “interface.” That is, the Toolkit.getDefaultToolkit() method determines the oper-
ating environment at runtime (typically, by looking at a system property) and then instantiates a
Toolkit implementer appropriate for that environment. I’ve shown the Windows and Motif vari-
ants in Figure 4-4, but a Toolkit implementation must exist for every environment on which a
particular JVM runs.

The concrete Toolkit object acts as an Abstract Factory of “peer” objects. The peers are
system-dependent implementers of various graphical objects. I’ve shown one such peer (the
WindowPeer, which implements an unbordered stand-alone window) in Figure 4-4, but 27 peer
interfaces exist and create the whole panoply of graphical objects (ButtonPeer, CanvasPeer,
CheckboxPeer, and so on). For each of these interfaces, a system-dependent implementation
exists that’s manufactured by the system-dependent concrete Toolkit in response to one
of its createxxx(...) methods. For example, the Windows Toolkit (sun.awt.windows.WToolkit)
will produce a Windows-specific peer (sun.awt.windows.WWindowPeer) when you call Toolkit
.createWindow(). The Motif Toolkit (sun.awt.windows.MToolkit) will produce a Motif-specific
peer (sun.awt.motif.MWindowPeer) when you call Toolkit.createWindow().

The Abstract Factory I’ve just described is used in concert with the Bridge pattern to
isolate the mechanics of switching subsystems. The java.awt.Window class understands
Toolkits and peers. When you create a Window, that object creates the appropriate peer. As
long as you program in terms of Window objects, you don’t need to know that the peer exists.
Consequently, everything on the other side of the bridge (all the peers) can change radically,
even at runtime, without your program’s side of the bridge being impacted. By the same
token, none of the peer implementations knows or cares how they’re used. Consequently,
your program can change radically without the peer implementations knowing or caring.

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 197

388x_Ch04_CMP4 8/17/04 2:27 PM Page 197

It is commonplace for Abstract Factory and Bridge to be used together in the way I just
described. You will rarely see a Bridge without an Abstract Factory helping to create the
Concrete Implementor objects (for example, WWindowPeer and MWindowPeer).

Another example of Singleton, Abstract Factory, and Bridge working together includes the
java.text.NumberFormat class, which is used to parse and print numbers in a Locale-specific
way. When you call NumberFormat.getInstance(), you’re using Singleton to access an Abstract
Factory that creates some subclass of NumberFormat that understands the current Locale. The
NumberFormat “interface” serves as a Bridge that isolates your program from the rather compli-
cated subsystem that deals with Locale-specific formatting. That subsystem could change (to
support new Locales, for example), and your code wouldn’t know it.

Now let’s apply the notion of Bridge to the current problem. Referring again to Figure 4-4,
the Table uses an Abstract-Factory/Bridge strategy much like AWT and NumberFormat, but
things are simplified a bit. I’ll cover the Abstract-Factory issues in the next section, but the
figure shows a small bridge consisting of the Database class (the core of the SQL engine, which
I’ll describe shortly) and the Table interface. If you program in terms of Database objects, you
don’t know or care that the Table exists. It’s possible, then, to completely change the under-
lying table implementation—even at runtime—without your code caring about the change.
For example, at some future date I may introduce several kinds of Tables that store the under-
lying data in a way that’s particularly efficient for a particular data set. The Bridge, however,
isolates your code from that change.

I’ll come back to Bridge (and to the third part of Figure 4-4) later in this chapter.

Creating a Table, Abstract Factory
Now let’s look at the Abstract-Factory component of the Table creation process. The following
code creates a Table named people whose rows have three columns named last, first, and
addrID (for address identifier—not a particularly readable name, but short column names
are good because they improve search times):

Table people = TableFactory.create(
"people", new String[]{"last", "first", "addrId" });

You can also create a table from data stored on the disk in comma-separated-value (CSV)
format. The following call reads a table called address (which must be stored in a file named
address) from the specified directory:

Table address = tableFactory.load("address.csv", "c:/data/directory");

The data is stored in CSV format, where every row of the table is on its own line and
commas separate the column values from each other. Here’s a short sample:

address
addrId, street, city, state, zip
0, 12 MyStreet, Berkeley, CA, 99998
1, 34 Quarry Ln., Bedrock, AZ, 00000

The first line is the table name, the second line names the columns, and the remaining
lines specify the rows.

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL198

388x_Ch04_CMP4 8/17/04 2:27 PM Page 198

Figure 4-4. The Bridge Pattern in AWT, com.holub.database, and JDBC

+ (...) :WindowPeer

sun.awt.windows.WWindowPeer

sun.awt.motif.MWindowPeer

sun.awt.???.??WindowPeer

java.awt.WindowPeer

java.awt.Dialog

java.awt.Frame

Other Windows...

Bridge

Refined
Abstraction

Concrete
Implementor

Abstraction Implementor

sun.awt.windows.WToolkit

sun.awt.motif.MToolkit

sun.awt.???.??Toolkit

Abstract
Factory

Concrete Factory

Abstract
Factory

 ConcreteProduct

Abstract
Product

«creates»

ConcreteTable

PossibleFutureTableImplementaions

Abstract
Factory

«creates»

PossibleFutureRefinements Bridge

Implementor
Abstraction

Refined
Abstraction

Concrete
Implementor

 ConcreteProduct

Abstract and Concrete Factory

Abstract
Product

Implemented by
necessity as an abstract
class, but used as an
interface.

java.sql.Connection com.holub.database.JDBCConnection

 Bridge

 Bridge

+getConnection

«creates»

 Bridge

Client Class

Abstraction

Implementor

Abstract
Factory

Abstract and Concrete Factory

Abstract
Product Concrete

Product

java.sql.Statement

java.sql.ResultSet

...

com.holub.database.JDBCStatement

com.holub.database.JDBCResultSet

Concrete
Implementor

Bridge

TableFactory «singleton»

+create(...): Table
+loadCS V(...): Table

java.awt.Window

TableDatabase

Toolkit «interface»

createWindow

java.sql.DriverManager

(): Connection

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 199

388x_Ch04_CMP4 8/17/04 2:27 PM Page 199

The TableFactory demonstrates the reification of Abstract Factory that I’ve used most
often. Unlike the classic reification (as embodied by Collection and Iterator), there’s no
interface in the Abstract Factory role of which Collection is an example. (More precisely, the
TableFactory class serves as its own interface, as if Collection were an actual class, not an
interface). You just have no need to complicate the code with a separate interface. What
makes this reification an Abstract Factory is that it satisfies the same “intent” as a classic
Abstract Factory: It provides a means of “creating families of related or dependant objects
without specifying their concrete classes,” to quote the Gang of Four. TableFactory is another
example of how reifications of a particular pattern can differ in form.

This particular Factory creates Table implementers, of which only one is currently present—
the ConcreteTable, which I’ll discuss in subsequent sections. This particular reification of Abstract
Factory is in some ways just the skeleton of a pattern, put in place primarily so that I can provide
alternative Table implementations in the future. That is, this particular Factory isn’t producing a
“family” of objects right now but is put into the code to make it easy to increase the size of the
“family” to some number greater than 1 if the need arises. Putting a small factory into the code
up front has virtually no cost but provides for a lot of down-the-line flexibility, so the potential
payback is high. On the other hand, the Factory does add a small amount of extra complexity to
the code.

The TableFactory source code is in Listing 4-2. For the most part, its methods do nothing
but hide calls to new. The load()method (Listing 4-2, line 57) is interesting in that the method
can potentially load a table from various file formats on the disk. I’ll explain the code in the
load() method in greater depth in the next section, but let’s look now at what the method does
rather than how it does it.

The load() method is passed a filename and location, and it creates a Table from the data
it finds in that file. Right now, it examines the filename extension to determine the data format,
but it could just as easily examine the contents of the file. It’s a trivial matter to make it load from
an XML file rather than a CSV file, for example. It could even be passed a .sql file and load the
Table by using the SQL. In other words, the method potentially isolates you completely from
the underlying data format. The file read by the load() method may also specify a particular
type of Table that could represent the data in a more efficient way than the current Table imple-
mentation, and the Factory could produce that specific Concrete Product. Since load() hides
the complexity of creating a table, you can also think of TableFactory as a simple Facade
|reification.

Listing 4-2. TableFactory.java

1 package com.holub.database;
2
3 import java.io.*;
4
5 public class TableFactory
6 {
7 /** Create an empty table.
8 * @param name the table name
9 * @param columns names of all the columns
10 * @return the table
11 */

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL200

388x_Ch04_CMP4 8/17/04 2:27 PM Page 200

12 public static Table create(String name, String[] columns)
13 { return new ConcreteTable(name, columns);
14 }
15
16 /** Create a table from information provided by a
17 * {@link Table.Importer} object.
18 */
19 public static Table create(Table.Importer importer)
20 throws IOException
21 { return new ConcreteTable(importer);
22 }
23
24 /** This convenience method is equivalent to
25 * <code>load(name, new File("."));</code>
26 *
27 * @see #load(String,File)
28 */
29 public static Table load(String name) throws IOException
30 { return load(name, new File("."));
31 }
32
33 /** This convenience method is equivalent to
34 * <code>load(name, new File(location));</code>
35 *
36 * @see #load(String,File)
37 */
38 public static Table load(String name, String location)
39 throws IOException
40 { return load(name, new File(location));
41 }
42
43 /* Create a table from some form stored on the disk.
44 *
45 * <p>At present, the filename extension is used to determine
46 * the data format, and only a comma-separated-value file
47 * is recognized (the filename must end in .csv).
48 *
49 * @param the filename. The table name is the string to the
50 * left of the extension. For example, if the file
51 * is "foo.csv," then the table name is "foo."
52 * @param the directory within which the file is found.
53 *
54 * @throws java.io.IOException if the filename extension is not
55 * recognized.
56 */
57 public static Table load(String name, File directory)
58 throws IOException
59 {

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 201

388x_Ch04_CMP4 8/17/04 2:27 PM Page 201

60 if(!(name.endsWith(".csv") || name.endsWith(".CSV")))
61 throw new java.io.IOException(
62 "Filename (" +name+ ") does not end in "
63 +"supported extension (.csv)");
64
65 Reader in = new FileReader(new File(directory, name));
66 Table loaded = new ConcreteTable(new CSVImporter(in));
67 in.close();
68 return loaded;
69 }
70 }

Creating and Saving a Table: Passive Iterators and Builder
Now let’s move onto the ConcreteTable implementation of Table. You can bring tables into
existence in two ways. A run-of-the-mill constructor is passed a table name and an array of
strings that define the column names. Here’s an example:

Table t = new ConcreteTable("table-name",
new String[]{ "column1", "column2" });

The sources for ConcreteTable up to and including this constructor definition are in
Listing 4-3. The ConcreteTable represents the table as a list of arrays of Object (rowSet, line
32). The columnNames array (line 33) is an array of Strings that both define the column names
and organize the Object arrays that comprise the rows. A one-to-one relationship exists
between the index of a column name in the columnNames table and the index of the associated
data in one of the rowSet arrays. If you find the column name X at columnNames[i], then you
can find the associated data for column X at the ith position in one of these Object arrays.

The private indexOf method on line 49 is used internally to do this column-name-to-
index mapping. It’s passed a column name and returns the associated index.

Note that everything is 0 indexed, which is intuitive to a Java programmer. Unfortunately,
SQL is 1 indexed, so you have to be careful if you implement any of the SQL methods that
specify column data using indexes. I’ve taken the coward’s way out and have not implemented
any of the index-based JDBC methods. Be careful of off-by-one errors if you add these
methods to my implementation.

Of the other fields at the top of the class definition, tableName does the obvious, and
isDirty is true if the table has been modified. (I use this field to avoid unnecessary writes to
disk). I’ll discuss transactionStack soon, when I discuss transaction processing.

Listing 4-3. ConcreteTable.java: Simple Table Creation

1 package com.holub.database;
2
3 import java.io.*;
4 import java.util.*;
5 import com.holub.tools.ArrayIterator;
6
7 /** The concrete class that implements the Table "interface."
8 * This class is not thread safe.
9 * Create instances of this class using {@link TableFactory} class,

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL202

388x_Ch04_CMP4 8/17/04 2:27 PM Page 202

10 * not <code>new</code>.
11 *
12 * <p>Note that a ConcreteTable is both serializable and "Cloneable,"
13 * so you can easily store it onto the disk in binary form
14 * or make a copy of it. Clone implements a shallow copy, however,
15 * so it can be used to implement a rollback of an insert or delete,
16 * but not an update.
17 */
18
19 /*package*/ class ConcreteTable implements Table
20 {
21 // Supporting clone() complicates the following declarations. In
22 // particular, the fields can't be final because they're modified
23 // in the clone() method. Also, the rows field has to be declared
24 // as a LinkedList (rather than a List) because Cloneable is made
25 // public at the LinkedList level. If you declare it as a List,
26 // you'll get an error message because clone()—for reasons that
27 // are mysterious to me—is declared protected in Object.
28 //
29 // Be sure to change the clone() method if you modify anything about
30 // any of these fields.
31
32 private LinkedList rowSet = new LinkedList();
33 private String[] columnNames;
34 private String tableName;
35
36 private transient boolean isDirty = false;
37 private transient LinkedList transactionStack = new LinkedList();
38
39 //--
40 public ConcreteTable(String tableName, String[] columnNames)
41 { this.tableName = tableName;
42 this.columnNames = (String[]) columnNames.clone();
43 }
44
45 //--
46 // Return the index of the named column. Throw an
47 // IndexOutOfBoundsException if the column doesn't exist.
48 //
49 private int indexOf(String columnName)
50 { for(int i = 0; i < columnNames.length; ++i)
51 if(columnNames[i].equals(columnName))
52 return i;
53
54 throw new IndexOutOfBoundsException(
55 "Column ("+columnName+") doesn't exist in " + tableName);
56 }

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 203

388x_Ch04_CMP4 8/17/04 2:27 PM Page 203

The second constructor (shown in Listing 4-4) is more interesting. Here, the constructor
is passed an object that implements the Table.Importer interface, defined on line 198 of
Listing 4-1. The constructor uses the Importer to import data into an empty table. The source
code is in Listing 4-4 (p. 196). As you can see, the constructor just calls the various methods of
the Importer in sequence to get table metadata (the table name, column names, and so forth).
It then calls loadRow() multiple times to load the rows.

Each call to loadRow() returns a standard java.util.Iterator, which iterates across the
data representing a single row in left-to-right order. By using an iterator (rather than an array),
I’ve isolated myself completely from the way that the row data is stored internally. The Iterator
returned from the Importer could even synthesize the data internally.

The load process finishes up with a call to done().

Listing 4-4. ConcreteTable.java Continued: Importing and Exporting

57 //--
58 public ConcreteTable(Table.Importer importer) throws IOException
59 { importer.startTable();
60
61 tableName = importer.loadTableName();
62 int width = importer.loadWidth();
63 Iterator columns = importer.loadColumnNames();
64
65 this.columnNames = new String[width];
66 for(int i = 0; columns.hasNext() ;)
67 columnNames[i++] = (String) columns.next();
68
69 while((columns = importer.loadRow()) != null)
70 { Object[] current = new Object[width];
71 for(int i = 0; columns.hasNext() ;)
72 current[i++] = columns.next();
73 this.insert(current);
74 }
75 importer.endTable();
76 }
77 //--
78 public void export(Table.Exporter exporter) throws IOException
79 { exporter.startTable();
80 exporter.storeMetadata(tableName,
81 columnNames.length,
82 rowSet.size(),
83 new ArrayIterator(columnNames));
84
85 for(Iterator i = rowSet.iterator(); i.hasNext();)
86 exporter.storeRow(new ArrayIterator((Object[]) i.next()));
87
88 exporter.endTable();
89 isDirty = false;
90 }

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL204

388x_Ch04_CMP4 8/17/04 2:27 PM Page 204

The CSVImporter class (Listing 4-5) demonstrates how to build an Importer. The following
code shows a simplified version of how the TableFactory, discussed earlier, uses the CSVImporter
to load a CSV file. The importer is created in the constructor call on the second line of the
method. It’s passed a Reader to use for input. The ConcreteTable constructor then calls
the various methods of the CSVImporter to initialize the table.

public static Table loadCSV(String name, File directory) throws IOException
{

Reader in = new FileReader(new File(directory, name));
Table loaded = new ConcreteTable(new CSVImporter(in));
in.close();
return loaded;

}

As you can see in Listing 4-5, there’s not that much to building an importer. The startTable()
method reads the table name first, and then it reads the metadata (the column names) from the
second line and splits them into an array of String objects. The loadRow() method then reads
the rows and then splits them. I’ll discuss the ArrayIterator class called on line 30 in a moment.

Listing 4-5. CSVImporter.java

1 package com.holub.database;
2
3 import com.holub.tools.ArrayIterator;
4
5 import java.io.*;
6 import java.util.*;
7
8 public class CSVImporter implements Table.Importer
9 { private BufferedReader in; // null once end-of-file reached
10 private String[] columnNames;
11 private String tableName;
12
13 public CSVImporter(Reader in)
14 { this.in = in instanceof BufferedReader
15 ? (BufferedReader)in
16 : new BufferedReader(in)
17 ;
18 }
19 public void startTable() throws IOException
20 { tableName = in.readLine().trim();
21 columnNames = in.readLine().split("\\s*,\\s*");
22 }
23 public String loadTableName() throws IOException
24 { return tableName;
25 }
26 public int loadWidth() throws IOException
27 { return columnNames.length;

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 205

388x_Ch04_CMP4 8/17/04 2:27 PM Page 205

28 }
29 public Iterator loadColumnNames() throws IOException
30 { return new ArrayIterator(columnNames);
31 }
32
33 public Iterator loadRow() throws IOException
34 { Iterator row = null;
35 if(in != null)
36 { String line = in.readLine();
37 if(line == null)
38 in = null;
39 else
40 row = new ArrayIterator(line.split("\\s*,\\s*"));
41 }
42 return row;
43 }
44
45 public void endTable() throws IOException
46 }

A more interesting importer is in Listing 4-6. The PeopleImporter loads a Table using the
interactive UI pictured in Figure 4-5. You create a table that initializes itself interactively as
follows:

Table t = TableFactory.create(new PeopleImporter());
System.out.println(t.toString());
System.exit(0);

My main intent is to illustrate the techniques used, so this class isn’t really production
quality, but it demonstrates an effective way to separate a UI from the “business object.” I
can completely change the structure of the user interface by changing the definition of the
PeopleImporter. The Table implementation is completely unaffected by changes to the UI. In
fact, the Table doesn’t even know that it’s being initialized from an interactive user interface.

Looking at the implementation, the getRowDataFromUser() method (Listing 4-6, line 46)
creates the user interface, and the button handlers at the bottom of the method transfer the
row data from the text-input fields to the rows LinkedList (declared on line 19). The balance
of the class works much like the CSVImporter, but it transfers data from the rows array to the
Table.

Figure 4-5. The PeopleImporter user interface

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL206

388x_Ch04_CMP4 8/17/04 2:27 PM Page 206

Listing 4-6. PeopleImporter.java

1 import com.holub.tools.ArrayIterator;
2 import com.holub.database.Table;
3 import com.holub.database.TableFactory;
4
5 import java.io.*;
6 import java.util.*;
7 import javax.swing.*;
8 import java.awt.*;
9 import java.awt.event.*;
10
11 /** A very simplistic demonstration of using Builder for
12 * interactive input. Doesn't do validation, error detection,
13 * etc. Also, I read all the user data, then import it to the
14 * table, rather than reading the UI on a per-row basis.
15 */
16
17 public class PeopleImporter implements Table.Importer
18 {
19 private LinkedList rows = new LinkedList();
20
21 public void startTable() throws IOException
22 { getRowDataFromUser();
23 }
24 public String loadTableName() throws IOException
25 { return "people";
26 }
27 public int loadWidth() throws IOException
28 { return 3;
29 }
30 public Iterator loadColumnNames() throws IOException
31 { return new ArrayIterator(
32 new String[]{"first", "last", "addrID"});
33 }
34 public Iterator loadRow() throws IOException
35 { try
36 { String[] row = (String[])(rows.removeFirst());
37 return new ArrayIterator(row);
38 }
39 catch(NoSuchElementException e)
40 { return null;
41 }
42 }
43
44 public void endTable() throws IOException
45
46 private void getRowDataFromUser()

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 207

388x_Ch04_CMP4 8/17/04 2:27 PM Page 207

47 {
48 final JTextField first = new JTextField(" ");
49 final JTextField last = new JTextField(" ");
50 final JDialog ui = new JDialog();
51
52 ui.setModal(true);
53 ui.getContentPane().setLayout(new GridLayout(3,1));
54
55 JPanel panel = new JPanel();
56
57 panel.setLayout(new FlowLayout());
58 panel.add(new JLabel("First Name:"));
59 panel.add(first);
60 ui.getContentPane().add(panel);
61
62 panel = new JPanel();
63
64 panel.setLayout(new FlowLayout());
65 panel.add(new JLabel("Last Name:"));
66 panel.add(last);
67 ui.getContentPane().add(panel);
68
69 JButton done = new JButton("Done");
70 JButton next = new JButton("Next");
71 panel = new JPanel();
72
73 done.addActionListener
74 (new ActionListener()
75 { public void actionPerformed(ActionEvent e)
76 { rows.add
77 (new String[]{ first.getText().trim(),
78 last.getText().trim() }
79);
80 ui.dispose();
81 }
82 }
83);
84
85 next.addActionListener
86 (new ActionListener()
87 { public void actionPerformed(ActionEvent e)
88 { rows.add
89 (new String[]{ first.getText().trim(),
90 last.getText().trim() }
91);
92 first.setText("");
93 last.setText("");
94 }

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL208

388x_Ch04_CMP4 8/17/04 2:27 PM Page 208

95 }
96);
97 panel.add(next);
98 panel.add(done);
99 ui.getContentPane().add(panel);
100
101 ui.pack();
102 ui.show();
103 }
104
105 public static class Test
106 { public static void main(String[] args) throws IOException
107 { Table t = TableFactory.create(new PeopleImporter());
108 System.out.println(t.toString());
109 System.exit(0);
110 }
111 }
112 }

The other method of interest in Listing 4-4 is the export() method, which exports the
table data similarly to the way the constructor imports the data. The export() method takes a
Table.Exporter argument and sends the Exporter the metadata and the rows. (The Exporter
interface is also an inner class of Table, defined on line 175 of Listing 4-1.)

As with the Importer constructor, the export() method first asks the Exporter to store the
table metadata, and then it passes the Exporter the rows one at a time. As was the case with
the Importer constructor, the export() method passes the Exporter a java.util.Iterator
across the columns of a row rather than passing an Object array. This way, the Table imple-
mentor is not tied into a particular representation of the underlying data. (The ConcreteTable,
for example, isn’t giving away the fact that it stores rows as Object arrays.)

The CSVExporter class in Listing 4-7 demonstrates how to build an Exporter. It’s passed a
Writer and just writes the table data to that stream.

Listing 4-7. CSVExporter.java

1 package com.holub.database;
2
3 import java.io.*;
4 import java.util.*;
5
6 public class CSVExporter implements Table.Exporter
7 { private final Writer out;
8 private int width;
9
10 public CSVExporter(Writer out)
11 { this.out = out;
12 }
13
14 public void storeMetadata(String tableName,

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 209

388x_Ch04_FINAL.qxd 1/12/05 12:13 PM Page 209

15 int width,
16 int height,
17 Iterator columnNames) throws IOException
18
19 { this.width = width;
20 out.write(tableName == null ? "<anonymous>" : tableName);
21 out.write("\n");
22 storeRow(columnNames); // comma-separated list of column IDs
23 }
24
25 public void storeRow(Iterator data) throws IOException
26 { int i = width;
27 while(data.hasNext())
28 { Object datum = data.next();
29
30 // Null columns are represented by an empty field
31 // (two commas in a row). There's nothing to write
32 // if the column data is null.
33 if(datum != null)
34 out.write(datum.toString());
35
36 if(--i > 0)
37 out.write(",\t");
38 }
39 out.write("\n");
40 }
41
42 public void startTable() throws IOException {/*nothing to do*/}
43 public void endTable() throws IOException {/*nothing to do*/}
44 }

A more interesting example of an exporter is the JTableExporter in Listing 4-8, which
builds the UI in Figure 4-6. The code that created the UI in the Test class is at the bottom of
Listing 4-8 (line 45), but here’s the essential stuff:

Table people = ...;
JFrame frame = ...;

JTableExporter tableBuilder = new JTableExporter();
people.export(tableBuilder);
frame.getContentPane().add(

new JScrollPane(tableBuilder.getJTable()));

You pass the Table’s export() method a JTableExporter() rather than a CSVExporter().
The JTableExporter() creates a JTable and populates it from the table data. You then extract
the JTable from the exporter with the getJTable() call. (This “get” method is not really an
accessor since the whole point of the JTableExporter is to create a JTable—I’m not giving
away any surprising implementation details here.)

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL210

388x_Ch04_CMP4 8/17/04 2:27 PM Page 210

Figure 4-6. The JTableExporter user interface

Listing 4-8. JTableExporter.java

1 package com.holub.database;
2
3 import java.io.*;
4 import java.util.*;
5 import javax.swing.*;
6
7 public class JTableExporter implements Table.Exporter
8 {
9 private String[] columnHeads;
10 private Object[][] contents;
11 private int rowIndex = 0;
12
13 public void startTable() throws IOException { rowIndex = 0; }
14
15 public void storeMetadata(String tableName,
16 int width,
17 int height,
18 Iterator columnNames) throws IOException
19 {
20 contents = new Object[height][width];
21 columnHeads = new String[width];
22
23 int columnIndex = 0;
24 while(columnNames.hasNext())
25 columnHeads[columnIndex++] = columnNames.next().toString();
26 }
27
28 public void storeRow(Iterator data) throws IOException
29 { int columnIndex = 0;
30 while(data.hasNext())
31 contents[rowIndex][columnIndex++] = data.next();
32 ++rowIndex;
33 }
34
35 public void endTable() throws IOException {/*nothing to do*/}

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 211

388x_Ch04_CMP4 8/17/04 2:27 PM Page 211

36
37 /** Return the Concrete Product of this builder—a JTable
38 * initialized with the table data.
39 */
40 public JTable getJTable()
41 { return new JTable(contents, columnHeads);
42 }
43
44 public static class Test
45 { public static void main(String[] args) throws IOException
46 {
47 Table people = TableFactory.create("people",
48 new String[]{ "First", "Last" });
49 people.insert(new String[]{ "Allen", "Holub" });
50 people.insert(new String[]{ "Ichabod", "Crane" });
51 people.insert(new String[]{ "Rip", "VanWinkle" });
52 people.insert(new String[]{ "Goldie", "Locks" });
53
54 javax.swing.JFrame frame = new javax.swing.JFrame();
55 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
56
57 JTableExporter tableBuilder = new JTableExporter();
58 people.export(tableBuilder);
59
60 frame.getContentPane().add(
61 new JScrollPane(tableBuilder.getJTable()));
62 frame.pack();
63 frame.show();
64 }
65 }
66 }

The import/export code you’ve just been looking at is an example of the Builder design
pattern. The basic idea of Builder is separate the code that creates an object from the object’s
internal representation so that the same construction process can be used to create different
sorts of representations. Put another way, Builder separates a “business object” (an object that
models some domain-level abstraction) from implementation-specific details such as how
to display that business object on the screen or put it in a database. Using Builder, a domain-
level object can create multiple representations of itself without having to be rewritten. The
business object has the role of Director in the pattern, and objects in the role of Concrete-
Builder (which implement the Builder interface) create the representation. In the current
example, ConcreteTable is the Director, Table.Exporter is the Builder, and CSVExporter is
the Concrete Builder.

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL212

388x_Ch04_CMP4 8/17/04 2:27 PM Page 212

To my mind Table.Importer is also a Builder (of Table objects) and CSVImporter is the
matching Concrete Builder, though this way of looking at things is rather backward since I’m
turning multiple representations into a single object rather than the other way around. The
implementation is certainly similar, however.

As you saw in the PeopleImporter and JTableExporter classes, Builder nicely solves the
object-oriented UI conundrum mentioned way back in Chapter 2. If an object can’t expose
implementation details (so you can’t have getter and setter methods), then how do you create
a user interface, particularly if an object has to represent itself in different ways to different
subsystems? An object could have a method that returns a JComponent representation of itself
or of some attribute of itself, but what if you’re building a server-side UI and you need an
HTML representation? What if you’re talking to a database and you need an XML or SQL
representation? Adding a billion methods to the class, one for each possible representation
(getXML(), getJComponent(), getSQL(), getHTML(), and so on) isn’t a viable solution—it’s too
much of a maintenance hassle to go into the class definition every time a new business
requirement needs a new representation..

As you just saw, however, a Builder is perfectly able to accommodate disparate represen-
tations, and adding a new Builder doesn’t require any modifications to the domain-level
object at all. Any Table can be represented as a CSV list and also as a JComponent, all without
having to modify the Table implementation. In fact, Builder provides a nice way to concen-
trate all the UI logic in a single place (the Concrete Builder) and to separate the UI logic from
the “business logic” (all of which is in the Director).

Using Builder lets me support representations that don’t need to exist when the program
is first written. Adding XMLImporter and XMLExporter implementations of Table.Importer and
Table.Exporter is an easy matter. Once I create these new classes, a Table can now store itself
in XML format and load itself from an XML file. Moreover, I’ve added XML export/import to
every Table implementation (all of which have to be Directors), not just ConcreteTable.

The only difficulty with Builder is in the design of the Builder interface itself. This inter-
face has to have methods that accommodate all displayable state information. Consequently,
a tight coupling relationship exists between the objects in the Director and Builder roles,
simply because the Builder interface has to have methods that are “tuned” for use by the
Director. It’s possible that the Director could change in such a way that you would have to
modify the Builder interface (and all the Concrete Builders, too) to accommodate the change.
This problem is really the getter problem I discussed in Chapter 1. Builder, however, restricts
the scope of the problem to a small number of classes (the Concrete Builders). I’d have a much
worse situation if I were to put get/set methods in the Director (the Table). Unknown coupling
relationships with random classes would be scattered all over the program. In any event, I
haven’t often needed to make those sorts of changes in practice.

Populating the Table
The next order of business is to put some data into the table. Several methods are provided for
this purpose. The simplest method, shown below, inserts a new row into the table. It’s up to
you to assure that the order of array elements matches the order of columns specified when
the table was created.

people.insert(new Object[]{ "Holub", "Allen", "1" });

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 213

388x_Ch04_CMP4 8/17/04 2:27 PM Page 213

The foregoing method is delicate—it depends on a particular column ordering to work
correctly. It’s too easy to get the column ordering wrong. A second overload of insert(...)
solves the problem by requiring both column names and their contents. The columns don’t
have to be in declaration order, but the two arrays much match. When firstArgument[i] spec-
ifies a column, secondArgument[i] must specify that column’s contents. Here’s an example:

people.insert(new String[]{ "addrId", "first", "last" },
new Object[]{ "1", "Fred", "Flintstone"});

Also, Collection versions of both methods exist. The following code creates a row from
the Collection elements:

List rowData = new ArrayList();
rowData.add("Flintstone");
rowData.add("Wilma");
rowData.add("1")
people.insert(rowData);

The following codes does the same thing, but with rows specified in an arbitrary order:

List columnNames = new ArrayList();
columnNames.add("addrId");
columnNames.add("first");
columnNames.add("last");

List rowData = new ArrayList();
rowData.add("1")
rowData.add("Pebbles");
rowData.add("Flintstone");
people.insert(columnNames, rowData);

This last method seems to be of dubious value, but it turns out that a two-collection
variant is quite useful when building the SQL interpreter, as you’ll see later in the chapter.

Finally, I’ve provided a Map version where the keys are the column names and the values
are the contents.

The source code for the methods that insert rows is in Listing 4-9. The overloads that don’t
take column-name arguments just add a new object array to the rowSet. The other methods
go through the column names in sequence, determine the index in the object array associated
with that column (using indexOf(...)), and put the appropriate data into the appropriate
element of the Object array that represents the row.

The actual inserting of the object array into the list representing the table is done by the
doInsert() method (Listing 4-9, line 148). I’ll come back to the registerInsert(...) method
that’s called at the top of doInsert() in a moment, when I talk about the undo system. For
now, note that all insert operations mark the table as “dirty.” This boolean is initially false; it’s
marked true by all operations that modify the table, and it’s reset to false by the export()
method discussed earlier. A client class can determine the “dirty” state of the table by calling
someTable.isDirty(). The SQL-engine layer uses this mechanism to avoid flushing to disk
tables that have been read, but not modified, when you issue a SQL DUMP request.

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL214

388x_Ch04_CMP4 8/17/04 2:27 PM Page 214

The isDirty() method, by the way, is not a “get” method of the sort I was railing against
in Chapter 1, even though it’s implemented in the simplest possible way to return a private
field:

public boolean isDirty(){ return isDirty; }

The fact that the “dirty” state is stored in a boolean, and that isDirty() returns that
boolean, is just an implementation convenience. I’m not exposing any implementation details
(there’s no way that the client can determine how the table decides whether it’s dirty), and
since there’s no setDirty(), there’s no way for the “dirty” state to be corrupted from outside.
I can change the implementation and represent the “dirty” state in some other way without
impacting the interface or the classes that use the interface.

If you find this explanation confusing, think about the design process. I decided at design
time that a “dirty” state was necessary, so I provided an isDirty() method in the interface. Later,
I added the simplest implementation possible. This way of working is fundamentally different
from starting with a isDirty field in the class and then adding getDirty() and setDirty() as a
matter of course. It would be a serious error for a setDirty() method to exist because, where that
method present, a client object could break a Table object by making the Table think it didn’t
need to be flushed to disk when it actually did; setDirty() has no valid use.

Listing 4-9. ConcreteTable.java Continued: Inserting Rows

91 //--
92 // Inserting
93 //
94 public int insert(String[] intoTheseColumns, Object[] values)
95 {
96 assert(intoTheseColumns.length == values.length)
97 :"There must be exactly one value for "
98 +"each specified column" ;
99
100 Object[] newRow = new Object[width()];
101
102 for(int i = 0; i < intoTheseColumns.length; ++i)
103 newRow[indexOf(intoTheseColumns[i])] = values[i];
104
105 doInsert(newRow);
106 return 1;
107 }
108 //--
109 public int insert(Collection intoTheseColumns, Collection values)
110 { assert(intoTheseColumns.size() == values.size())
111 :"There must be exactly one value for "
112 +"each specified column" ;
113
114 Object[] newRow = new Object[width()];
115
116 Iterator v = values.iterator();

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 215

388x_Ch04_FINAL.qxd 1/12/05 12:11 PM Page 215

117 Iterator c = intoTheseColumns.iterator();
118 while(c.hasNext() && v.hasNext())
119 newRow[indexOf((String)c.next())] = v.next();
120
121 doInsert(newRow);
122 return 1;
123 }
124 //--
125 public int insert(Map row)
126 { // A map is considered to be "ordered," with the order defined
127 // as the order in which an iterator across a "view" returns
128 // values. My reading of this statement is that the iterator
129 // across the keySet() visits keys in the same order as the
130 // iterator across the values() visits the values.
131
132 return insert (row.keySet(), row.values());
133 }
134 //--
135 public int insert(Object[] values)
136 { assert values.length == width()
137 : "Values-array length (" + values.length + ") "
138 + "is not the same as table width (" + width() +")";
139
140 doInsert((Object[]) values.clone());
141 return 1;
142 }
143 //--
144 public int insert(Collection values)
145 { return insert(values.toArray());
146 }
147 //--
148 private void doInsert(Object[] newRow)
149 {
150 rowSet.add(newRow);
151 registerInsert(newRow);
152 isDirty = true;
153 }

Examining a Table: The Iterator Pattern
Now that you’ve populated the table, you may want to examine it. The design pattern is Iter-
ator, of which Java’s java.util.Iterator class is a familiar reification. The basic idea is that
Iterator provides a way to access the elements of some aggregate object (some data structure)
without exposing the internal representation of the aggregate. Java’s Iterator is just one way
to accomplish this end. Any reification that you invent that lets a client object examine an
aggregate one element at a time is a reification of Iterator.

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL216

388x_Ch04_CMP4 8/17/04 2:27 PM Page 216

Another simple reification of Iterator is the ArrayIterator class, shown in Listing 4-10.
This class just wraps an array with a class that implements the java.util.Iterator interface,
so you can pass arrays to methods that take Iterator arguments. The ArrayIterator is also an
example of the Adapter design pattern that I’ll discuss later. ArrayIterator adapts an array
object to implement an interface that an array doesn’t normally implement.

Listing 4-10. ArrayIterator.java

1 package com.holub.tools;
2
3 import java.util.*;
4
5 /** A simple implementation of java.util.Iterator that enumerates
6 * over arrays. Use this class when you want to isolate the
7 * data structures used to hold some collection by passing an
8 * Enumeration to some method.
9 * <!-- ... -->
10 * @author Allen I. Holub
11 */
12
13 public final class ArrayIterator implements Iterator
14 {
15 private int position = 0;
16 private final Object[] items;
17
18 public ArrayIterator(Object[] items){ this.items = items; }
19
20 public boolean hasNext()
21 { return (position < items.length);
22 }
23
24 public Object next()
25 { if(position >= items.length)
26 throw new NoSuchElementException();
27 return items[position++];
28 }
29
30 public void remove()
31 { throw new UnsupportedOperationException(
32 "ArrayIterator.remove()");
33 }
34
35 /** Not part of the Iterator interface, returns the data
36 * set in array form. Modifying the returned array will
37 * not affect the iteration at all.
38 */
39 public Object[] toArray()

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 217

388x_Ch04_CMP4 8/17/04 2:27 PM Page 217

40 { return (Object[]) items.clone();
41 }
42 }

Though most iterators don’t give you control over the order of traversal (the ArrayIterator
just goes through the array elements in order), no requirement exists that an iterator visit nodes
in any particular order. A ReverseArrayIterator could traverse from high to low indexes, for
example. A tree class may have inOrderIterator(), preOrderIterator(), and postOrderIterator()
methods, all of which returned objects that implemented the Iterator interface, but those
objects would traverse the tree nodes “in order,” root first or depth first. You can define an iter-
ator to handle whatever ordering you like—even random ordering is okay—as long as the
ordering is specified in the class contract. Some iterators—such as the tree iterators just
discussed—may make requirements on the underlying data structure, however.

Iterators can also modify the underlying data structure. Some of the java.util.Iterator
implementers support a remove() operation that lets you remove the current element from
the underlying data structure, for example.

Iterator is used all over the ConcreteTable, but most important, it’s used to examine or
modify the rows. Listing 4-11 defines the Cursor interface used by the Table, but let’s look at
how it’s used before looking at the code. The following method prints all the rows of the Table
passed into the method as an argument:

public void print(Table someTable)
{

Cursor current = someTable.rows();

while(current.advance())
{ for(java.util.Iterator columns = current.columns(); columns.hasNext();)

System.out.print((String) columns.next() + " ");
}

}

The Cursor knows about columns, so you could print only the first- and last-name fields
of some Table as follows:

public void printFirstAndLast(Table someTable)
{

for(Cursor current = someTable.rows(); current.advance() ;)
{

System.out.print(current.column("first").toString() + " " +
current.column("last").toString() + " ");

}
}

A Cursor can also update the contents of a row or delete the current row. (You actually
modify the underlying table when you use these methods.) The following code changes the
names of all people named Smith to Jones. It also deletes all rows representing people
named Doe:

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL218

388x_Ch04_CMP4 8/17/04 2:27 PM Page 218

public void modify(Table people)
{

for(Cursor current = people.rows(); current.advance() ;)
{ if(current.column("last").equals("Smith"))

current.update("last", "Jones");

else if(current.column("last").equals("Doe"))
current.delete();

}
}

This functionality works properly with the transaction system that I’ll discuss later in the
chapter, so you can roll back modifications if necessary.

Listing 4-11. Cursor.java

1 package com.holub.database;
2
3 import java.util.Iterator;
4 import java.util.NoSuchElementException;
5
6 /** The Cursor provides you with a way of examining the
7 * tables that you create and the tables that are created
8 * as a result of a select or join operation. This is
9 * an "updateable" cursor, so you can modify columns or
10 * delete rows via the cursor without problems. (Updates
11 * and deletes done through the cursor are handled
12 * properly with respect to the transactioning system, so
13 * they can be committed or rolled back.)
14 */
15
16 public interface Cursor
17 {
18 /** Metadata method required by JDBC wrapper--Return the name
19 * of the table across which we're iterating. I am deliberately
20 * not allow access to the Table itself, because this would
21 * allow uncontrolled modification of the table via the
22 * iterator.
23 * @return the name of the table or null if we're iterating
24 * across a nameless table like the one created by
25 * a select operation.
26 */
27 String tableName();
28
29 /** Advances to the next row, or if this iterator has never
30 * been used, advances to the first row.

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 219

388x_Ch04_CMP4 8/17/04 2:27 PM Page 219

31 * @throws NoSuchElementException if this call would advance
32 * past the last row.
33 * @return true if the iterator is positioned at a valid
34 * element after the advance.
35 */
36 boolean advance() throws NoSuchElementException;
37
38 /** Return the contents of the requested column of the current
39 * row. You should
40 * treat the cells accessed through this method as read only
41 * if you ever expect to use the table in a thread-safe
42 * environment. Modify the table using {@link Table#update}.
43 *
44 * @throws IndexOutOfBoundsException --- the requested column
45 * doesn't exist.
46 */
47
48 Object column(String columnName);
49
50 /** Return a java.util.Iterator across all the columns in
51 * the current row.
52 */
53 Iterator columns();
54
55 /** Return true if the iterator is traversing the
56 * indicated table.
57 */
58 boolean isTraversing(Table t);
59
60 /** Replace the value of the indicated column of the current
61 * row with the indicated new value.
62 *
63 * @throws IllegalArgumentException if the newValue is
64 * the same as the object that's being updated.
65 *
66 * @return the former contents of the now-modified cell.
67 */
68 Object update(String columnName, Object newValue);
69
70 /** Delete the row at the current cursor position.
71 */
72 void delete();
73 }

The comments in Listing 4-11 describe the remainder of the methods in the interface
adequately, so let’s move onto the implementation in Listing 4-12.

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL220

388x_Ch04_CMP4 8/17/04 2:27 PM Page 220

Cursors are extracted from a Table using a classic Gang-of-Four Abstract Factory. The Table
interface defines an Abstract Cursor Factory; the ConcreteTable, which implements that inter-
face, is the Concrete Factory; the Cursor interface defines the Abstract Product; the Concrete
Product an instance of the Results class on line 161 of Listing 4-12. As you saw in the earlier
examples, you get a Cursor by calling rows() (Listing 4-12, line 157), which just instantiates and
returns a Results object.

Looking at the implementation, the Results object traverses the List of rows using a stan-
dard java.util.Iterator. The advance() method on line 169 of Listing 4-12 just delegates to
the Iterator, for example.

The interesting methods are update() and delete(), at the end of the listing. Other than
do what their names imply, both methods set the table’s “dirty” flag to indicate that something
has changed. They also register the operation with the transaction-processing system
(described on p. 226) by calling registerUpdate() or registerDelete().

Listing 4-12. ConcreteTable.java Continued: Traversing and Modifying

154 //--
155 // Traversing and cursor-based Updating and Deleting
156 //
157 public Cursor rows()
158 { return new Results();
159 }
160 //--
161 private final class Results implements Cursor
162 { private final Iterator rowIterator = rowSet.iterator();
163 private Object[] row = null;
164
165 public String tableName()
166 { return ConcreteTable.this.tableName;
167 }
168
169 public boolean advance()
170 { if(rowIterator.hasNext())
171 { row = (Object[]) rowIterator.next();
172 return true;
173 }
174 return false;
175 }
176
177 public Object column(String columnName)
178 { return row[indexOf(columnName)];
179 }
180
181 public Iterator columns()
182 { return new ArrayIterator(row);
183 }
184

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 221

388x_Ch04_FINAL.qxd 1/12/05 12:10 PM Page 221

185 public boolean isTraversing(Table t)
186 { return t == ConcreteTable.this;
187 }
188
189 // This method is for use by the outer class only and is not part
190 // of the Cursor interface.
191 private Object[] cloneRow()
192 { return (Object[])(row.clone());
193 }
194
195 public Object update(String columnName, Object newValue)
196 {
197 int index = indexOf(columnName);
198
199 // The following test is required for undo to work correctly.
200 if(row[index] == newValue)
201 throw new IllegalArgumentException(
202 "May not replace object with itself");
203
204 Object oldValue = row[index];
205 row[index] = newValue;
206 isDirty = true;
207
208 registerUpdate(row, index, oldValue);
209 return oldValue;
210 }
211
212
213 public void delete()
214 { Object[] oldRow = row;
215 rowIterator.remove();
216 isDirty = true;
217
218 registerDelete(oldRow);
219 }
220 }

Passive Iterators
The iterators we’ve been looking at are called external (or active) iterators because they’re
separate objects from the data structure they’re traversing.

The storeRow() method of the Builder discussed in the previous section is an example
of another sort of Iterator. Rather than creating an iterator object that’s external to the
data structure, the export() method effectively implements the traversal mechanism inside
the data-structure class (the ConcreteTable). The export() method iterates by calling the
Exporter’s storeRow() method multiple times. We’re still visiting every node in turn, so this is
still the Iterator pattern, but things are now inside out.

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL222

388x_Ch04_CMP4 8/17/04 2:27 PM Page 222

This kind of iterator is known as an internal (or passive) iterator. The idea of a passive iter-
ator is that you provide some data structure with a Command object, one method of which is
called repetitively (once for each node) and is passed the “current” node.

Passive iterators are quite useful when the data structure is inherently difficult to traverse.
Consider the case of a simple binary tree such as the one shown in Listing 4-13. A passive iter-
ator is a simple recursive function, easy to write. The traverseInOrder method (Listing 4-13,
line 31) demonstrates a passive iterator. This textbook recursive-traversal algorithm just
passes each node to the Examiner object (declared just above this method, on line 23) in turn.
You could print all the nodes of a tree like this:

Tree t = new Tree();
//...
t.traverse
(new Examiner()

{ public void examine(Object currentNode)
{ System.out.println(currentNode.toString());
}

}
);

Now consider the implementation of an active (external) iterator across a tree. The Tree
class’s iterator() method (line 49) returns a standard java.util.Iterator that visits every
node of the tree in order. My main point in showing you this code is to show you how opaque
this code is. The algorithm is short but difficult to both understand and write. (In essence, I
use a stack to keep track of parent nodes as I traverse the tree.)

Listing 4-13. Tree.java: A Simple Binary-Tree Implementation

1 import java.util.*;
2
3 /** This class demonstrates how to make both internal and external
4 * iterators across a binary tree. I've deliberately used a tree
5 * rather than a linked list to make the external in-order iterator
6 * more complicated.
7 */
8
9 public class Tree
10 {
11 private Node root = null;
12
13 private static class Node
14 { public Node left, right;
15 public Object item;
16 public Node(Object item)
17 { this.item = item;
18 }
19 }
20 //---

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 223

388x_Ch04_CMP4 8/17/04 2:27 PM Page 223

21 // A Passive (internal) iterator
22 //
23 public interface Examiner
24 { public void examine(Object currentNode);
25 }
26
27 public void traverse(Examiner client)
28 { traverseInOrder(root, client);
29 }
30
31 private void traverseInOrder(Node current, Examiner client)
32 { if(current == null)
33 return;
34
35 traverseInOrder(current.left, client);
36 client.examine (current.item);
37 traverseInOrder(current.right, client);
38 }
39
40 public void add(Object item)
41 { if(root == null)
42 root = new Node(item);
43 else
44 insertItem(root, item);
45 }
46 //---
47 // An Active (external) iterator
48 //
49 public Iterator iterator()
50 { return new Iterator()
51 { private Node current = root;
52 private LinkedList stack = new LinkedList();
53
54 public Object next()
55 {
56 while(current != null)
57 { stack.addFirst(current);
58 current = current.left;
59 }
60
61 if(stack.size() != 0)
62 { current = (Node)
63 (stack.removeFirst());
64 Object toReturn=current.item;
65 current = current.right;
66 return toReturn;
67 }

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL224

388x_Ch04_CMP4 8/17/04 2:27 PM Page 224

68
69 throw new NoSuchElementException();
70 }
71
72 public boolean hasNext()
73 { return !(current==null && stack.size()==0);
74 }
75
76 public void remove()
77 { throw new UnsupportedOperationException();
78 }
79 };
80 }
81 //---
82
83 private void insertItem(Node current, Object item)
84 { if(current.item.toString().compareTo(item.toString())>0)
85 { if(current.left == null)
86 current.left = new Node(item);
87 else
88 insertItem(current.left, item);
89 }
90 else
91 { if(current.right == null)
92 current.right = new Node(item);
93 else
94 insertItem(current.right, item);
95 }
96 }
97
98 public static void main(String[] args)
99 { Tree t = new Tree();
100 t.add("D");
101 t.add("B");
102 t.add("F");
103 t.add("A");
104 t.add("C");
105 t.add("E");
106 t.add("G");
107
108 Iterator i = t.iterator();
109 while(i.hasNext())
110 System.out.print(i.next().toString());
111
112 System.out.println("");
113
114 t.traverse(new Examiner()

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 225

388x_Ch04_CMP4 8/17/04 2:27 PM Page 225

115 { public void examine(Object o)
116 { System.out.print(o.toString());
117 }
118 });
119 System.out.println("");
120 }
121 }

I’m not really done with the Iterator pattern because I haven’t discussed the problems
that iterators can cause in mulithreading situations, so I’ll come back to them later in the
current chapter. For now, I want to move onto the transaction-support subsystem.

Implementing Transactions (Undo) with the Command Pattern
The next interesting chunk of the ConcreteTable class is the “undo” subsystem that you need
to support transactions. The design pattern here is the lowly Command pattern I discussed in
Chapter 1. To refresh your memory, a Command object encapsulates knowledge of how to do
some unspecified operation. For you C/C++ programmers, it’s the object-oriented equivalent
of a “function pointer,” but rather than passing around a function that does something, you
pass around an object who knows how to do it. The simplest reification of Command is Java’s
Runnable class, which encapsulates knowledge of what to do on a thread. You create a
Command object like this:

Runnable backgroundTask = new Runnable()
{ public void run()
{ System.out.println("Hello World");
}

};

and then pass it to a Thread object:

Thread controller = new Thread(backgroundTask);

You then start up the thread like this:

controller.start();

and the controller asks the Command object to do whatever it does by calling run().
That last statement is key to differentiating the Command pattern from some of the other

design patterns that use Command objects (such as Strategy, discussed in Chapter 1 and later
in this chapter). In Command, the Invoker (the Thread object) doesn’t actually know what the
Concrete Command object (backgroundTask) is going to do.

One of the more interesting uses of the Command pattern is in implementing an undo
system. Since I use the Table to implement a database, it must be possible to roll back a trans-
action at the Table level. (JDBC doesn’t actually require transactions, but I do.) Put another
way, a modification to the Table may require several operations (inserts, updates, and so on),
any one of which could fail for some reason. This group of logically connected operations
forms a single transaction, and if any operation in the transaction fails, they all should fail. If
you perform the first two operations of a transaction, for example, and the third operation

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL226

388x_Ch04_CMP4 8/17/04 2:27 PM Page 226

then fails, then you must be able to undo the effect of the first two operations. This undo to
the beginning of the transaction is called a rollback.

The complementary notion to a rollback is a commit. Once a transaction is committed, it
becomes permanent. You can’t roll it back anymore. Formally, once you begin a transaction,
you can terminate the transaction by issuing a rollback request (which puts the table back
into the state it was in when you issued the begin), or you commit the transaction.

The situation is made only marginally more complicated by the notion of nested transac-
tions. Consider the following SQL:

BEGIN
Operation-group A
BEGIN

Operation-group B
ROLLBACK
Operation-group C

COMMIT

The rollback causes the operations in Operation-group B to be ignored, so the result of
the foregoing is to perform the operations in group A and C, but not B. On the other hand, the
following SQL does nothing at all since the outermost transaction is rolled back:

BEGIN
Operation-group A
BEGIN

Operation-group B
COMMIT
Operation-group C

ROLLBACK

Transaction processing can get a lot more complicated than what I’ve just described, but
since my database is built on a single-user, single-process model and I’m doing only simple
things with it, the transaction system I just described is adequate, so I won’t go further into
the topic.

One way to implement commit/rollback is to take a snapshot of the entire table every
time you begin a transaction. A rollback restores the previous state from the snapshot. A
commit just throws away the snapshot. You can implement nested transactions using a snap-
shot strategy by pushing a snapshot of the Table onto a stack every time you issue a BEGIN
statement. You roll back by restoring the table to whatever state was remembered in the snap-
shot at the top of the stack. You commit a transaction simply by throwing away the snapshot
at the top of the stack.

The main problem with a snapshot strategy for undo is that it’s too inefficient in both
time and memory. The other commonplace problem with snapshots (not really an issue here
but often an issue in other applications) is that an operation may have side effects, and simply
restoring an object or objects to a previous state doesn’t undo the side effects. For example,
consider an operation that both changes the internal state of the program but also modifies a
database. The matching undo must not only put the program back into its original state, but
also put the database back into its original state. A snapshot does only the former.

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 227

388x_Ch04_CMP4 8/17/04 2:27 PM Page 227

To your rescue comes a more sophisticated use of the Command pattern than the one I
used earlier. I define an interface that a Table can use to request an undo operation (the Undo
interface on line 224 of Listing 4-14). I then implement that interface with three separate
classes (UndoInsert, UndoDelete, and UndoUpdate on lines 228, 238, and 248 of Listing 4-14).
Taking UndoInsert as characteristic, you pass its constructor a reference to the inserted row.
When the Table passes an execute() message to this object, it removes that row from the List
that represents the table. The Invoker (the ConcreteTable object) doesn’t actually know or care
what the Concrete-Command objects (the Undo implementers) actually do, as long as the
undo something.

Now that I’ve defined the Command objects, I need to organize them. The Undo stack
was defined at the top of the class definition (Listing 4-3, line 37, previously) as follows:

private transient LinkedList transactionStack = new LinkedList();

The stack is actually a stack of lists, one list for each transaction level. Consider the
following calls (which I’ve indented to show the transaction nesting).

1 Table t new new ConcreteTable("x", "data"); // a single-column table
2
3 t.begin();
4 t.insert("data", "A")
5 t.insert("data", "B")
6 t.begin();
7 t.insert("data", "C")
8 t.insert("data", "D")
9 t.commit(false);
10 t.commit(false);

Transactioning is disabled until you issue the outermost begin() call: All operations are
effectively committed when executed, and the transactionStack() is empty. Issuing a begin
causes an empty list to be pushed onto the stack, and every insert, delete, or update operation
will add a corresponding Undo object to the list at top of stack. The transactionStack will look
like this just before the commit() on line 9, previously, is issued:

The four objects on the stack are instances of UndoInsert that remember the rows that
they inserted. If a rollback() had been issued instead of the commit() on line 9, previously,
the ConcreteTable would traverse the list of Undo objects at top of stack, asking each one to
execute(), thereby undoing the operation. The list at top of stack is then discarded (so the A
and B nodes are still on the stack). The commit() on line 9 doesn’t execute anything, however.
Rather, the ConcreteStack concatenates the operations in the list at the top of stack to the list
just under it on the stack. After the first commit(), the transactionStack looks like this:

C D

A B

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL228

388x_Ch04_CMP4 8/17/04 2:27 PM Page 228

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 229

Again, if you issued a rollback at this juncture, the system would traverse the entire list
asking each undo object to execute() and then discarding the list. Since this is a commit oper-
ation, though, the undo system just discards the list at the top of stack.

The implementation of this system starts on line 265 of Listing 4-14. The begin() method
pushes a new list onto the stack. The register methods create the proper sort of undo object
and add them to the end of the list at the top of stack. (Note that nothing is added if the stack
is empty, because no begin has been issued in that case.) Finally, commit(...) and roll-
back(...) modify the list and execute Undo objects, as described previously.

Listing 4-14. ConcreteTable.java Continued: Transaction Support

221 //--
222 // Undo subsystem.
223 //
224 private interface Undo
225 { void execute();
226 }
227 // -
228 private class UndoInsert implements Undo
229 { private final Object[] insertedRow;
230 public UndoInsert(Object[] insertedRow)
231 { this.insertedRow = insertedRow;
232 }
233 public void execute()
234 { rowSet.remove(insertedRow);
235 }
236 }
237 // -
238 private class UndoDelete implements Undo
239 { private final Object[] deletedRow;
240 public UndoDelete(Object[] deletedRow)
241 { this.deletedRow = deletedRow;
242 }
243 public void execute()
244 { rowSet.add(deletedRow);
245 }
246 }
247 // -
248 private class UndoUpdate implements Undo
249 {
250 private Object[] row;

C DA B

388x_Ch04_CMP4 8/17/04 2:27 PM Page 229

251 private int cell;
252 private Object oldContents;
253
254 public UndoUpdate(Object[] row, int cell, Object oldContents)
255 { this.row = row;
256 this.cell = cell;
257 this.oldContents = oldContents;
258 }
259
260 public void execute()
261 { row[cell] = oldContents;
262 }
263 }
264 // -
265 public void begin()
266 { transactionStack.addLast(new LinkedList());
267 }
268 // -
269 private void register(Undo op)
270 { ((LinkedList) transactionStack.getLast()).addLast(op);
271 }
272 private void registerUpdate(Object[] row, int cell, Object oldContents)
273 { if(!transactionStack.isEmpty())
274 register(new UndoUpdate(row, cell, oldContents));
275 }
276 private void registerDelete(Object[] oldRow)
277 { if(!transactionStack.isEmpty())
278 register(new UndoDelete(oldRow));
279 }
280 private void registerInsert(Object[] newRow)
281 { if(!transactionStack.isEmpty())
282 register(new UndoInsert(newRow));
283 }
284 // -
285 public void commit(boolean all) throws IllegalStateException
286 { if(transactionStack.isEmpty())
287 throw new IllegalStateException("No BEGIN for COMMIT");
288 do
289 { LinkedList currentLevel =
290 (LinkedList) transactionStack.removeLast();
291
292 if(!transactionStack.isEmpty())
293 ((LinkedList)transactionStack.getLast())
294 .addAll(currentLevel);
295
296 } while(all && !transactionStack.isEmpty());
297 }

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL230

388x_Ch04_CMP4 8/17/04 2:27 PM Page 230

298 // -
299 public void rollback(boolean all) throws IllegalStateException
300 { if(transactionStack.isEmpty())
301 throw new IllegalStateException("No BEGIN for ROLLBACK");
302 do
303 { LinkedList currentLevel =
304 (LinkedList) transactionStack.removeLast();
305
306 while(!currentLevel.isEmpty())
307 ((Undo) currentLevel.removeLast()).execute();
308
309 } while(all && !transactionStack.isEmpty());
310 }
311 // -

Modifying a Table: The Strategy Pattern
Once you’ve built a table, you may want to change it. As you saw earlier, you can use a Cursor
for this purpose, but that’s sometimes inconvenient. Consequently, two methods are provided
to do updates and deletes without using a Cursor explicitly.

By way of demonstration, the following code deletes everyone named Flintstone from the
people table:

people.delete
(new Selector.Adapter()

{ public boolean approve(Cursor[] tables)
{ return tables[0].column("lastName").equals("Flintstone");
}

}
);

The design pattern here is Strategy—introduced in Chapter 2. Pass into the Table an
object that knows how to select rows: a Selector (that encapsulates a selection strategy). The
delete method calls the Strategy object’s approve() method as many times as there are rows,
and approve() must return true if that row should be deleted. The one complication is that
approve() is passed an array of Table objects rather than a single Table reference. In the
current example, the array has only one Table in it, but you will see situations in a moment
where that is not the case.

Update operations are done more-or-less like deletes, but you have to override a modify()
method as well as the approve(...) method of the Selector. The following code moves everyone
who lives in Arizona to California; it examines the entire “address” table and changes all rows
whose “state” columns have the value “AZ” to “CA”: The modify(...) method is passed a
cursor that’s prepositioned at the current row, and it updates the row through the cursor.

address.update
(new Selector()

{ public boolean approve(Cursor[] tables)

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 231

388x_Ch04_CMP4 8/17/04 2:27 PM Page 231

{ return tables[0].column("state").equals("AZ");
}
public void modify(Cursor current)
{ current.update("state", "AZ");
}

}
);

Astute readers (that’s you, I’m sure) will notice that I extended Selector.Adapter in the
earlier example, and I implemented the Selector interface directly in the latter example.
Selector.Adapter implements Selector by providing default implementations of its two
methods: approve() and modify(). This is the same naming and implementation strategy
that’s used by the AWT/Swing event model, which provides default implementations of the
listener interfaces. (MouseAdapter implements MouseListener, for example.) This naming
convention is unfortunate in that we’re not reifying the Adapter design pattern, in spite of
the class name. Don’t get confused.

This code also demonstrates the passive (or internal) variant of the Iterator pattern that
I discussed earlier. The approve(...) method of the Selector object is called for every row of
the table. Since the traversal algorithm is in the Table, Selector is a passive iterator across
Table objects. (I haven’t shown this use of Iterator in Figure 4-2, only because there wasn’t
enough room to cram it in.)

The Selector interface is in Listing 4-15. The Selector.Adapter is declared as a static
inner class of Selector (on line 49 of Listing 4-15). It approves everything and complains with
an exception toss if it’s used in an update() call. From a design point of view, I wrestled with
the throw-an-exception strategy that I ended up using. As I mentioned earlier, I really dislike
the notion of unsupported operations throwing exceptions because this structure effectively
moves a compile-time error into runtime. The alternative was splitting the interface into two
single-method interfaces, but I didn’t like this solution any better because it complicates an
otherwise trivial system. I wouldn’t argue with you if you said that I made the wrong decision,
however.

An instance of Selector.Adapter called ALL is declared at the end of the listing. This
instance is used primarily in the “select” operations discussed in the following section, but
you could use it as follows to delete all the rows of a table:

people.delete(Selector.ALL);

The implementations of update(...) and delete(...) are in Listing 4-16. All that these
methods do is hide the iteration code and call the Strategy object’s methods where appro-
priate.

Listing 4-15. Selector.java

1 package com.holub.database;
2
3 /** A Selector is a Strategy object that is used by
4 * {@link Table#select} to determine
5 * whether a particular row should be included in the result.
6 * The passed Cursor is positioned at the correct row,

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL232

388x_Ch04_CMP4 8/17/04 2:27 PM Page 232

7 * and attempts to advance it will fail.
8 */
9
10 interface Selector
11 {
12 /** This method is passed rows from the tables being joined
13 * and returns true if the aggregate row is approved for the
14 * current operation. In a select, for example, "aproval"
15 * means that the aggregate row should be included in the
16 * result-set Table.
17 * @param rows An array of iterators, one for the current
18 * row in each table to be examined (The array will
19 * have only one element unless a you're approving
20 * rows in a join.) These iterators are already
21 * positioned at the correct row. Attempts to
22 * advance the iterator result in an exception
23 * toss ({@link java.lang.IllegalStateException}).
24 * @return true if the aggregate row should has been approved
25 * for the current operation.
26 */
27 boolean approve(Cursor[] rows);
28
29 /** This method is called only when an update request for a
30 * row is approved by {@link #approve approve(...)}. It should
31 * replace the required cell with a new value.
32 * You must do the replacement using the iterator's
33 * {@link Cursor#update} method. A typical implementation
34 * takes this form:
35 * <PRE>
36 * public Object modify(Cursor current)
37 * { return current.update("columnName", "new-value");
38 * }
39 * </PRE>
40 * @param current Iterator positioned at the row to modify
41 */
42 void modify(Cursor current);
43
44 /** An implementation of {@link Selector} whose approve method
45 * approves everything, and whose replace() method throws an
46 * {@link UnsupportedOperationException} if called. Useful
47 * for creating selectors on the fly with anonymous inner classes.
48 */
49 public static class Adapter implements Selector
50 { public boolean approve(Cursor[] tables)
51 { return true;
52 }
53 public void modify(Cursor current)

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 233

388x_Ch04_CMP4 8/17/04 2:27 PM Page 233

54 { throw new UnsupportedOperationException(
55 "Can't use a Selector.Adapter in an update");
56 }
57 }
58
59 /** An instance of {@link Selector.Adapter),
60 * pass Selector.ALL to the {@link Table}'s
61 * {@link Table#select select(...)} or
62 * {@link Table#delete delete(...)} methods to select all rows
63 * of the table. May not be used in an update operation.
64 */
65 public static final Selector ALL = new Selector.Adapter();
66
67 }

Listing 4-16. ConcreteTable.java Continued: Updating and Deleting

312 //---
313 public int update(Selector where)
314 {
315 Results currentRow = (Results)rows();
316 Cursor[] envelope = new Cursor[]{ currentRow };
317 int updated = 0;
318
319 while(currentRow.advance())
320 { if(where.approve(envelope))
321 { where.modify(currentRow);
322 ++updated;
323 }
324 }
325
326 return updated;
327 }
328 //--
329 public int delete(Selector where)
330 { int deleted = 0;
331
332 Results currentRow = (Results) rows();
333 Cursor[] envelope = new Cursor[]{ currentRow };
334
335 while(currentRow.advance())
336 { if(where.approve(envelope))
337 { currentRow.delete();
338 ++deleted;
339 }
340 }
341 return deleted;
342 }

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL234

388x_Ch04_CMP4 8/17/04 2:27 PM Page 234

Selection and Joins
The final significant ability of Table is to do a SQL-like “select/join” operation. A simple select
extracts from one table only those rows that satisfy some criterion. For example, the following
code extracts from the people table those rows whose “lastName” column contains the value
“Flintstone” (In SQL: SELECT * FROM people WHERE lastName="Flintstone"):

Selector flintstoneSelector =
new Selector.Adapter()
{ public boolean approve(Cursor[] tables)

{ return tables[0].column("lastName").equals("Flintstone");
}

};

Table result = people.select(flintstoneSelector);

The select() method returns a Table (typically called a result set) that contains only the
selected rows. This table differs from one you may declare in that it’s “unmodifiable.” Attempts
to modify it result in an exception toss. You can make the table modifiable like this:

result = ((UnmodifiableTable)result).extract();

I’ll explain this code further in a moment.
You can also get a result set that contains only specified columns of the selected rows.

The following code extracts all people whose last name is Flintstone but includes only the
first- and last-name columns in the result set (in SQL: SELECT first,last FROM people WHERE
lastName="Flintstone"):

Table result = people.select(flintstoneSelector,
new String[]{"firstName", "lastName"}

Create a result set that contains selected columns of every row like this:

Table result = people.select(Selector.ALL,
new String[]{"firstName", "lastName"}

Finally, the following variant lets you specify the desired columns in a Collection rather
than an array:

List columns = new ArrayList();
columns.add("firstName");
columns.add("lastName");

Table result = people.select(flintstoneSelector, columns);

Though selection is useful in and of itself, an even more powerful variant on selection is a
“join” operation. The basic idea is to select simultaneously from multiple tables. The word join
comes from the notion that you’re joining multiple tables together to make one big virtual

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 235

388x_Ch04_CMP4 8/17/04 2:27 PM Page 235

table and then selecting a row from that virtual table. It’s well beyond the scope of this book to
describe why joins are useful, but for those of you who know a little database stuff, this SQL

SELECT firstName, lastName, street, city, state, zip"
FROM people, address
WHERE people.addrId = address.addrId

is performed as follows:

String[] columns= new String[]{ "firstName","lastName",
"street","city","state","zip"};

Table [] tables = new Table[] { address }; // additional tables to
// join to current table.

Table result=
people.select
(new Selector.Adapter()

{ public boolean approve(Cursor[] tables)
{ return

tables[0].column("addrId"). /*people.addrId*/
equals(tables[1].column("addrId") /*=address.addrId*/);

}
},
columns,
tables

);

The array of Cursor objects passed into approve() is ordered identically to the array of
Table objects that you pass into select(...).

Every possible combination of rows from the two tables is considered when the result set
is built. (Formally, a result table holding every combination of rows from a set of source tables
is said to be the Cartesian product of the source tables.) Given one table with the rows A, B,
and C and a second table with the rows D and E, the following calls to approve() are made
(where A, B, C, D, and E) are cursors positioned at the appropriate rows:

approve(Cursor[]{ A, D });
approve(Cursor[]{ A, E });
approve(Cursor[]{ B, D });
approve(Cursor[]{ B, E });
approve(Cursor[]{ C, D });
approve(Cursor[]{ C, E });

You can join any number of tables, but bear in mind that every time you add a table, you
multiply the amount of work by the number of rows in the added table. (Joining two 5-row
tables requires 25 calls to approve() [5×5]; joining three, 5-row tables requires 125 [5×5×5]
approvals.) In a real database, you can do some clever work to reduce this overhead, but
the number of tables always significantly increases the cost of the join operation.

An overload of this method lets you use Collection objects rather than arrays for the
columns and tables arguments.

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL236

388x_Ch04_CMP4 8/17/04 2:27 PM Page 236

Listing 4-17 shows the code that implements the various select() overloads. From a
design-pattern perspective, there’s nothing interesting here. The select() overloads are just
additional reifications of Strategy. From a programming perspective, the selectFromCartesian-
Product(...) method on line 437 is worth examining. This is the method that does the actual
join. It uses a recursive algorithm to assemble arrays of cursors representing each row of the
Cartesian product and then passes that array off to your approve() method. The code is elegant
(if I do say so myself), but the recursion makes it somewhat opaque.

Listing 4-17. ConcreteTable.java Continued: Selection and Joins

343 //--
344 public Table select(Selector where)
345 { Table resultTable = new ConcreteTable(null,
346 (String[]) columnNames.clone());
347
348 Results currentRow = (Results) rows();
349 Cursor[] envelope = new Cursor[]{ currentRow };
350
351 while(currentRow.advance())
352 { if(where.approve(envelope))
353 resultTable.insert((Object[]) currentRow.cloneRow());
354 }
355 return new UnmodifiableTable(resultTable);
356 }
357 // -
358 public Table select(Selector where, String[] requestedColumns)
359 { if(requestedColumns == null)
360 return select(where);
361
362 Table resultTable = new ConcreteTable(null,
363 (String[]) requestedColumns.clone());
364
365 Results currentRow = (Results) rows();
366 Cursor[] envelope = new Cursor[]{ currentRow };
367
368 while(currentRow.advance())
369 { if(where.approve(envelope))
370 { Object[] newRow = new Object[requestedColumns.length];
371 for(int column=0; column < requestedColumns.length;
372 ++column)
373 { newRow[column]=
374 currentRow.column(requestedColumns[column]);
375 }
376 resultTable.insert(newRow);
377 }
378 }
379 return new UnmodifiableTable(resultTable);

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 237

388x_Ch04_CMP4 8/17/04 2:27 PM Page 237

380 }
381 // -
382 // This version of select does a join
383 //
384 public Table select(Selector where, String[] requestedColumns,
385 Table[] otherTables)
386 {
387 // If we're not doing a join, use the more efficient version
388 // of select().
389
390 if(otherTables == null || otherTables.length == 0)
391 return select(where, requestedColumns);
392
393 // Make the current table not be a special case by effectively
394 // prefixing it to the otherTables array.
395
396 Table[] allTables = new Table[otherTables.length + 1];
397 allTables[0] = this;
398 System.arraycopy(otherTables, 0, allTables, 1, otherTables.length);
399
400 // Create places to hold the result of the join and to hold
401 // iterators for each table involved in the join.
402
403 Table resultTable = new ConcreteTable(null,requestedColumns);
404 Cursor[] envelope = new Cursor[allTables.length];
405
406 // Recursively compute the Cartesian product, adding to the
407 // resultTable all rows that the Selector approves
408
409 selectFromCartesianProduct(0, where, requestedColumns,
410 allTables, envelope, resultTable);
411
412 return new UnmodifiableTable(resultTable);
413 }
414 // -
415 // Think of the Cartesian product as a kind of tree. That is
416 // given one table with rows A and B, and another table with rows
417 // C and D, you can look at the product like this:
418 //
419 // root
420 // ______|______
421 // | |
422 // A B
423 // ____|____ ____|____
424 // | | | |
425 // C D C D
426 //

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL238

388x_Ch04_CMP4 8/17/04 2:27 PM Page 238

427 // The tree is as deep as the number of tables we're joining.
428 // Every possible path from the root to a leaf represents one row
429 // in the Cartesian product. The current method effectively traverses
430 // this tree recursively without building an actual tree. It
431 // assembles an array of iterators (one for each table) positioned
432 // at the current place in the set of rows as it recurses to a leaf,
433 // and then asks the selector whether to approve that row.
434 // It then goes up a notch, advances the correct iterator, and
435 // recurses back down.
436 //
437 private static void selectFromCartesianProduct(
438 int level,
439 Selector where,
440 String[] requestedColumns,
441 Table[] allTables,
442 Cursor[] allIterators,
443 Table resultTable)
444 {
445 allIterators[level] = allTables[level].rows();
446
447 while(allIterators[level].advance())
448 { // If we haven't reached the tips of the branches yet,
449 // go down one more level.
450
451 if(level < allIterators.length - 1)
452 selectFromCartesianProduct(level+1, where,
453 requestedColumns,
454 allTables, allIterators, resultTable);
455
456 // If we are at the leaf level, then get approval for
457 // the fully-assembled row, and add the row to the table
458 // if it's approved.
459
460 if(level == allIterators.length - 1)
461 { if(where.approve(allIterators))
462 insertApprovedRows(resultTable,
463 requestedColumns, allIterators);
464 }
465 }
466 }
467 // -
468 // Insert an approved row into the result table:
469 // for(every requested column)
470 // for(every table in the join)
471 // if the requested column is in the current table
472 // add the associated value to the result table
473 //

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 239

388x_Ch04_CMP4 8/17/04 2:27 PM Page 239

474 // Only one column with a given name is added, even if that column
475 // appears in multiple tables. Columns in tables at the beginning
476 // of the list take precedence over identically named columns that
477 // occur later in the list.
478 //
479 private static void insertApprovedRows(Table resultTable,
480 String[] requestedColumns,
481 Cursor[] allTables)
482 {
483
484 Object[] resultRow = new Object[requestedColumns.length];
485
486 for(int i = 0; i < requestedColumns.length; ++i)
487 { for(int table = 0; table < allTables.length; ++table)
488 { try
489 { resultRow[i] =
490 allTables[table].column(requestedColumns[i]);
491 break; // if the assignment worked, do the next column
492 }
493 catch(Exception e)
494 { // otherwise, try the next table
495 }
496 }
497 }
498 resultTable.insert(/*requestedColumns,*/ resultRow);
499 }
500 // -
501 /**
502 * A collection variant on the array version. Just converts the collection
503 * to an array and then chains to the other version
504 * ({@linkplain #select(Selector,String[],Table[]) see}).
505 * @param requestedColumns the value returned from the {@link #toString}
506 * method of the elements of this collection are used as the
507 * column names.
508 * @param other Collection of tables to join to the current one,
509 * <code>null</code>if none.
510 * @throws ClassCastException if any elements of the <code>other</code>
511 * collection do not implement the {@link Table} interface.
512 */
513 public Table select(Selector where, Collection requestedColumns,
514 Collection other)
515 {
516 String[] columnNames = null;
517 Table[] otherTables = null;
518
519 if(requestedColumns != null) // SELECT *
520 {

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL240

388x_Ch04_CMP4 8/17/04 2:27 PM Page 240

521 // Can't cast an Object[] to a String[], so make a copy to ensure
522 // type safety.
523
524 columnNames = new String[requestedColumns.size()];
525 int i = 0;
526 Iterator column = requestedColumns.iterator();
527
528 while(column.hasNext())
529 columnNames[i++] = column.next().toString();
530 }
531
532 if(other != null)
533 otherTables = (Table[]) other.toArray(new Table[other.size()]);
534
535 return select(where, columnNames, otherTables);
536 }
537 // -
538 public Table select(Selector where, Collection requestedColumns)
539 { return select(where, requestedColumns, null);
540 }

Miscellany
The remainder of the ConcreteTable definition is in Listing 4-18. It contains a few house-
keeping and workhorse methods (such as toString(), which returns a String representation
of all the elements in the table). Listing 4-18 ends with a long unit-test class that has several
examples of the calls I’ve been discussing. I like to put my unit tests into inner classes (which I
always call Test) so that the test code will be in a separate .class file than the class I’m testing.
I don’t ship the test-class files with the product. Run the test using this:

java com.holub.database.ConcreteTable\$Test

(but omit the backslash if you’re testing from a Windows “DOS box”). Normally, I like test
classes such as this to print nothing at all if everything’s okay, and I like to report the number
of errors as the test-program’s exit status. This way, I can automate the tests easily, and the
result of running the test is a list of what went wrong. If you print too many “this is okay”
messages, you’ll lose the error messages in the clutter.

The problem with this approach is that the inner-class unit test has access to parts of
the class that a normal “client” wouldn’t be able to see. I am careful, when I use this unit-test
strategy, to pretend that I do not have this special access. Of course, you can guarantee that
you don’t have access by putting your tests in a separate class in a separate package, but then
the test code is in a different directory and is harder to augment if you change the interface to
the class.

Having said all that, I haven’t followed my usual testing guidelines in the current situation.
I test by redirecting the output of the program to a file and then using the Unix diff utility to
compare that output with an expected-output file. I test the class by running the following shell
script, which prints the words PASSED or FAILED, depending on whether the actual output
matches the expected output:

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 241

388x_Ch04_CMP4 8/17/04 2:27 PM Page 241

java com.holub.database.ConcreteTable\$Test > $TMP/ConcreteTable.test.tmp

diff $TMP/ConcreteTable.test.tmp ConcreteTable.test.out
case $? in
(0) print ConcreteTable PASSED

;;
(1) print ConcreteTable FAILED

;;
(*) print Unknown diff failure

;;
esac

It’s ugly, but it works.

Listing 4-18. ConcreteTable.java Continued: Miscellany

541 //--
542 // Housekeeping stuff
543 //
544 public String name() { return tableName; }
545 public void rename(String s) { tableName = s; }
546 public boolean isDirty() { return isDirty; }
547 private int width() { return columnNames.length; }
548 //--
549 public Object clone() throws CloneNotSupportedException
550 { ConcreteTable copy = (ConcreteTable) super.clone();
551 copy.rowSet = (LinkedList) rowSet.clone();
552 copy.columnNames = (String[]) columnNames.clone();
553 copy.tableName = tableName;
554 return copy;
555 }
556 //--
557 public String toString()
558 { StringBuffer out = new StringBuffer();
559
560 out.append(tableName == null ? "<anonymous>" : tableName);
561 out.append("\n");
562
563 for(int i = 0; i < columnNames.length; ++i)
564 out.append(columnNames[i] + "\t");
565 out.append("\n--\n");
566
567 for(Cursor i = rows(); i.advance();)
568 { Iterator columns = i.columns();
569 while(columns.hasNext())
570 { Object next = columns.next();
571 if(next == null)

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL242

388x_Ch04_CMP4 8/17/04 2:27 PM Page 242

572 out.append("null\t");
573 else
574 out.append(next.toString() + "\t");
575 }
576 out.append('\n');
577 }
578 return out.toString();
579 }
580
581 //--
582 public final static class Test
583 {
584 public static void main(String[] args)
585 { new Test().test();
586 }
587
588 Table people = TableFactory.create(
589 "people", new String[]{"last", "first", "addrId" });
590
591 Table address = TableFactory.create(
592 "address", new String[]{"addrId","street","city","state","zip"});
593
594 public void report(Throwable t, String message)
595 { System.out.println(message + " FAILED with exception toss");
596 t.printStackTrace();
597 System.exit(1);
598 }
599
600 public void test()
601 { try{ testInsert(); }catch(Throwable t){ report(t,"Insert"); }
602 try{ testUpdate(); }catch(Throwable t){ report(t,"Update"); }
603 try{ testDelete(); }catch(Throwable t){ report(t,"Delete"); }
604 try{ testSelect(); }catch(Throwable t){ report(t,"Select"); }
605 try{ testStore(); }catch(Throwable t){ report(t,"Store/Load");}
606 try{ testJoin(); }catch(Throwable t){ report(t,"Join"); }
607 try{ testUndo(); }catch(Throwable t){ report(t,"Undo"); }
608 }
609
610 public void testInsert()
611 { people.insert(new Object[]{"Holub", "Allen","1" });
612 people.insert(new Object[]{"Flintstone","Wilma","2" });
613 people.insert(new String[]{"addrId", "first","last" },
614 new Object[]{"2", "Fred", "Flintstone"});
615
616 address.insert(new Object[]{"1","123 MyStreet",
617 "Berkeley","CA","99999" });
618

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 243

388x_Ch04_CMP4 8/17/04 2:27 PM Page 243

619 List l = new ArrayList();
620 l.add("2");
621 l.add("123 Quarry Ln.");
622 l.add("Bedrock ");
623 l.add("XX");
624 l.add("12345");
625 assert(address.insert(l) == 1);
626
627 l.clear();
628 l.add("3");
629 l.add("Bogus");
630 l.add("Bad");
631 l.add("XX");
632 l.add("12345");
633
634 List c = new ArrayList();
635 c.add("addrId");
636 c.add("street");
637 c.add("city");
638 c.add("state");
639 c.add("zip");
640 assert(address.insert(c, l) == 1);
641
642 System.out.println(people.toString());
643 System.out.println(address.toString());
644
645 try
646 { people.insert(new Object[]{ "x" });
647 throw new AssertionError(
648 "insert wrong number of fields test failed");
649 }
650 catch(Throwable t){ /* Failed correctly, do nothing */ }
651
652 try
653 { people.insert(new String[]{ "?" }, new Object[]{ "y" });
654 throw new AssertionError(
655 "insert-nonexistent-field test failed");
656 }
657 catch(Exception t){ /* Failed correctly, do nothing */ }
658 }
659
660 public void testUpdate()
661 { System.out.println("update set state='YY' where state='XX'");
662 int updated = address.update
663 (new Selector()
664 { public boolean approve(Cursor[] tables)
665 { return tables[0].column("state").equals("XX");

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL244

388x_Ch04_CMP4 8/17/04 2:27 PM Page 244

666 }
667 public void modify(Cursor current)
668 { current.update("state", "YY");
669 }
670 }
671);
672 print(address);
673 System.out.println(updated + " rows affected\n");
674 }
675
676 public void testDelete()
677 {
678 System.out.println("delete where street='Bogus'");
679 int deleted =
680 address.delete
681 (new Selector.Adapter()
682 { public boolean approve(Cursor[] tables)
683 { return tables[0].column("street").equals("Bogus");
684 }
685 }
686);
687 print(address);
688 System.out.println(deleted + " rows affected\n");
689 }
690
691 public void testSelect()
692 { Selector flintstoneSelector =
693 new Selector.Adapter()
694 { public boolean approve(Cursor[] tables)
695 { return tables[0].column("last").equals("Flintstone");
696 }
697 };
698
699 // SELECT first, last FROM people WHERE last = "Flintstone"
700 // The collection version chains to the string version, so the
701 // following call tests both versions
702
703 List columns = new ArrayList();
704 columns.add("first");
705 columns.add("last");
706
707 Table result = people.select(flintstoneSelector, columns);
708 print(result);
709
710 // SELECT * FROM people WHERE last = "Flintstone"
711 result = people.select(flintstoneSelector);
712 print(result);

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 245

388x_Ch04_CMP4 8/17/04 2:27 PM Page 245

713
714 // Check that the result is indeed unmodifiable
715
716 try
717 { result.insert(new Object[]{ "x", "y", "z" });
718 throw new AssertionError(
719 "Insert to Immutable Table test failed");
720 }
721 catch(Exception e){ /*it failed correctly*/ }
722
723 try
724 { result.update(flintstoneSelector);
725 throw new AssertionError(
726 "Update of Immutable Table test failed");
727 }
728 catch(Exception e){ /*it failed correctly*/ }
729
730 try
731 { result.delete(flintstoneSelector);
732 throw new AssertionError(
733 "Delete of Immutable Table test failed");
734 }
735 catch(Exception e){ /*it failed correctly*/ }
736 }
737
738 public void testStore() throws IOException, ClassNotFoundException
739 { // Flush the table to disk, then reread it.
740 // Subsequent tests that use the "people" table will
741 // fail if this operation fails.
742
743 Writer out = new FileWriter("people");
744 people.export(new CSVExporter(out));
745 out.close();
746
747 Reader in = new FileReader("people");
748 people = new ConcreteTable(new CSVImporter(in));
749 in.close();
750 }
751
752 public void testJoin()
753 {
754 // First test a two-way join
755
756 System.out.println("\nSELECT first,last,street,city,state,zip"
757 +" FROM people, address"
758 +" WHERE people.addrId = address.addrId");
759

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL246

388x_Ch04_CMP4 8/17/04 2:27 PM Page 246

760 // Collection version chains to String[] version,
761 // so this code tests both:
762 List columns = new ArrayList();
763 columns.add("first");
764 columns.add("last");
765 columns.add("street");
766 columns.add("city");
767 columns.add("state");
768 columns.add("zip");
769
770 List tables = new ArrayList();
771 tables.add(address);
772
773 Table result= // WHERE people.addrID = address.addrID
774 people.select
775 (new Selector.Adapter()
776 { public boolean approve(Cursor[] tables)
777 { return tables[0].column("addrId")
778 .equals(tables[1].column("addrId"));
779 }
780 },
781 columns,
782 tables
783);
784
785 print(result);
786 System.out.println("");
787
788 // Now test a three-way join
789 //
790 System.out.println(
791 "\nSELECT first,last,street,city,state,zip,text"
792 +" FROM people, address, third"
793 +" WHERE (people.addrId = address.addrId)"
794 +" AND (people.addrId = third.addrId)");
795
796 Table third = TableFactory.create(
797 "third", new String[]{"addrId","text"});
798 third.insert (new Object[]{ "1", "addrId=1" });
799 third.insert (new Object[]{ "2", "addrId=2" });
800
801 result=
802 people.select
803 (new Selector.Adapter()
804 { public boolean approve(Cursor[] tables)
805 { return
806 (tables[0].column("addrId")

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 247

388x_Ch04_CMP4 8/17/04 2:27 PM Page 247

807 .equals(tables[1].column("addrId"))
808 &&
809 tables[0].column("addrId")
810 .equals(tables[2].column("addrId"))
811);
812 }
813 },
814
815 new String[]{"last", "first", "state", "text"},
816 new Table[]{ address, third }
817);
818
819 System.out.println(result.toString() + "\n");
820 }
821
822 public void testUndo()
823 {
824 // Verify that commit works properly
825 people.begin();
826 System.out.println(
827 "begin/insert into people (Solo, Han, 5)");
828
829 people.insert(new Object[]{ "Solo", "Han", "5" });
830 System.out.println(people.toString());
831
832 people.begin();
833 System.out.println(
834 "begin/insert into people (Lea, Princess, 6)");
835
836 people.insert(new Object[]{ "Lea", "Princess", "6" });
837 System.out.println(people.toString());
838
839 System.out.println("commit(THIS_LEVEL)\n"
840 +"rollback(Table.THIS_LEVEL)\n");
841 people.commit (Table.THIS_LEVEL);
842 people.rollback (Table.THIS_LEVEL);
843 System.out.println (people.toString());
844
845 // Now test that nested transactions work correctly.
846
847 System.out.println(people.toString());
848
849 System.out.println("begin/insert into people (Vader,Darth, 4)");
850 people.begin();
851 people.insert(new Object[]{ "Vader","Darth", "4" });
852 System.out.println(people.toString());
853

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL248

388x_Ch04_CMP4 8/17/04 2:27 PM Page 248

854 System.out.println(
855 "begin/update people set last=Skywalker where last=Vader");
856
857 people.begin();
858 people.update
859 (new Selector()
860 { public boolean approve(Cursor[] tables)
861 { return tables[0].column("last").equals("Vader");
862 }
863 public void modify(Cursor current)
864 { current.update("last", "Skywalker");
865 }
866 }
867);
868 System.out.println(people.toString());
869
870 System.out.println("delete from people where last=Skywalker");
871 people.delete
872 (new Selector.Adapter()
873 { public boolean approve(Cursor[] tables)
874 { return tables[0].column("last").equals("Skywalker");
875 }
876 }
877);
878 System.out.println(people.toString());
879
880 System.out.println(
881 "rollback(Table.THIS_LEVEL) the delete and update");
882 people.rollback(Table.THIS_LEVEL);
883 System.out.println(people.toString());
884
885 System.out.println("rollback(Table.THIS_LEVEL) insert");
886 people.rollback(Table.THIS_LEVEL);
887 System.out.println(people.toString());
888 }
889
890 public void print(Table t)
891 { // tests the table iterator
892 Cursor current = t.rows();
893 while(current.advance())
894 { for(Iterator columns = current.columns();columns.hasNext();)
895 System.out.print((String) columns.next() + " ");
896 System.out.println("");
897 }
898 }
899 }
900 }

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 249

388x_Ch04_CMP4 8/17/04 2:27 PM Page 249

Variants on the Table: The Decorator Pattern
If you look back at the various select() overrides in Listing 4-17, you’ll notice that they all
take the following form:

public Table select(...)
{

Table resultTable = new ConcreteTable(...);

/* populate the resultTable... */

return new UnmodifiableTable(resultTable);
}

They create a ConcreteTable, populate it, and then return an UnmodifiableTable that
wraps the actual result table. Listing 4-19 shows the UnmodifiableTable class. As you can see,
its methods are divided into two categories. The methods that can modify a Table (insert(),
update(), delete()) all do nothing but throw an exception if called. The remainder of the
methods just delegate to the wrapped table. Finally, the UnmodifiableTable adds an extract()
method (Listing 4-19, line 88) that just returns the wrapped Table. (As it says in the comment
preceding the method, this last method is somewhat problematic because it provides a way to
get around the unmodifiability, but the SQL-engine layer requires it to implement the SELECT
INTO request efficiently.)

Listing 4-19. UnmodifiableTable.java

1 package com.holub.database;
2 import java.io.*;
3 import java.util.*;
4
5 /** This decorator of the Table class just wraps another table,
6 * but restricts access to methods that don't modify the table.
7 * The following methods toss an
8 * {@link UnsupportedOperationException} when called:
9 * <PRE>
10 * public void insert(String[] columnNames, Object[] values)
11 * public void insert(Object[] values)
12 * public void update(Selector where)
13 * public void delete(Selector where)
14 * public void store ()
15 * </PRE>
16 * Other methods delegate to the wrapped Table. All methods of
17 * the {@link Table} that are declared to return a
18 * <code>Table</code> actually return an
19 * <code>UnmodifiableTable</code>.
20 * <p>
21 * Refer to the {@link Table} interface for method documentation.
22 */

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL250

388x_Ch04_CMP4 8/17/04 2:27 PM Page 250

23
24 public class UnmodifiableTable implements Table
25 { private Table wrapped;
26
27 public UnmodifiableTable(Table wrapped)
28 { this.wrapped = wrapped;
29 }
30
31 /** Return an UnmodifiableTable that wraps a clone of the
32 * currently wrapped table. (A deep copy is used.)
33 */
34 public Object clone() throws CloneNotSupportedException
35 { UnmodifiableTable copy = (UnmodifiableTable) super.clone();
36 copy.wrapped = (Table)(wrapped.clone());
37 return copy;
38 }
39
40 public int insert(String[] c, Object[] v){ illegal(); return 0;}
41 public int insert(Object[] v){ illegal(); return 0;}
42 public int insert(Collection c,Collection v){ illegal(); return 0;}
43 public int insert(Collection v){ illegal(); return 0;}
44 public int update(Selector w){ illegal(); return 0;}
45 public int delete(Selector w){ illegal(); return 0;}
46
47 public void begin (){ illegal(); }
48 public void commit (boolean all){ illegal(); }
49 public void rollback (boolean all){ illegal(); }
50
51 private final void illegal()
52 { throw new UnsupportedOperationException();
53 }
54
55 public Table select(Selector w,String[] r,Table[] o)
56 { return wrapped.select(w, r, o);
57 }
58 public Table select(Selector where, String[] requestedColumns)
59 { return wrapped.select(where, requestedColumns);
60 }
61 public Table select(Selector where)
62 { return wrapped.select(where);
63 }
64 public Table select(Selector w,Collection r,Collection o)
65 { return wrapped.select(w, r, o);
66 }
67 public Table select(Selector w, Collection r)
68 { return wrapped.select(w, r);
69 }

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 251

388x_Ch04_CMP4 8/17/04 2:27 PM Page 251

70 public Cursor rows()
71 { return wrapped.rows();
72 }
73 public void export(Table.Exporter exporter) throws IOException
74 { wrapped.export(exporter);
75 }
76
77 public String toString() { return wrapped.toString(); }
78 public String name() { return wrapped.name(); }
79 public void rename(String s){ wrapped.rename(s); }
80 public boolean isDirty() { return wrapped.isDirty(); }
81
82 /** Extract the wrapped table. The existence of this method is
83 * problematic, since it allows someone to defeat the unmodifiability
84 * of the table. On the other hand, the wrapped table came in from
85 * outside, so external access is possible through the reference
86 * that was passed to the constructor. Use the method with care.
87 */
88 public Table extract(){ return wrapped; }
89 }

What I’ve done with UnmodifiableTable is used a wrapping strategy to do something that
I could also have done using inheritance. My goal was to change the behavior of several of the
methods of ConcreteTable so that the Table was effectively immutable. I was reluctant to put
an isImmutable flag into the ConcreteTable and test the flag all over the place—that solution was
just too complicated. I could also have derived a class and overridden the methods that modi-
fied the table to throw an exception, but that solution introduces a fragile-base scenario. (I could
inadvertently add a method to the superclass that modified the table and forget to override that
method in the subclass.) Finally, the derivation solution leaves open the potential for hard-to-
maintain code that reports errors at runtime that should really be compile-time errors. (If I try
to assign a Table to an UnmodifiableTable reference, I’ll get a compile-time error.)

I solved the problem by replacing implementation inheritance with an interface-inheritance/
delegation strategy. I implement the same interface as the object that I’m wrapping (the object
that would otherwise be the superclass) and delegate to the wrapped object when necessary.

This solution to the fragile-base-class problem, which allows me to change behavior
without using extends, is an example of the Decorator pattern.

You’ve seen decorators if you’ve used Java’s I/O classes. For example, if you need to read a
compressed stream of bytes efficiently, you use a chain of decorators. Here, Decorator reduces
a complex task to a set of simple tasks, each of which is implemented independently. You could
implement a massive efficiently-read-a-compressed-stream class, but it’s easier to break the
problem into the following three distinct subproblems:

1. Reading bytes.

2. Making reads more efficient with buffering.

3. Decompressing a stream of bytes.

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL252

388x_Ch04_CMP4 8/17/04 2:27 PM Page 252

Java solves the first problem with three classes. You start with FileInputStream, instantiated
like this:

try
{ InputStream in = new FileInputStream("file.name");
}
catch(IOException e)
{ System.err.println("Couldn't open file.name");

e.printStackTrace();
}

You then add buffering with a decoration (or wrapping) strategy. You wrap the InputStream
object with another InputStream implementer that buffers bytes. You ask the wrapper for a
byte; it asks the wrapped stream for many bytes and returns the first one. The decorator wrap-
ping goes like this:

try
{ InputStream in = new FileInputStream("file.name");

in = new BufferedInputStream(in);
}
catch(IOException e)
{ System.err.println("Couldn't open file.name");

e.printStackTrace();
}

Add decompression with another decorator, like so:

try
{ InputStream in = new FileInputStream("file.name");

in = new BufferedInputStream(in);
in = new GZipInputStream(in);

}
catch(IOException e)
{ System.err.println("Couldn't open file.name");

e.printStackTrace();
}

You can add additional filtering by adding additional decorators.
This solution is very flexible. You can mix and match the decorators to get the features you

need. More important, each of the decorators is itself relatively simple, because it solves only one
problem. Consequently, the decorators are easy to write, debug, and modify without impacting
the rest of the system. I could change the buffering algorithm by rewriting BufferedInputStream,
for example, and not have to touch any of the other decorators (or any of the code that used them).
I could also add new filter functionality simply by implementing a new decorator. (Classes such
as CipherInputStream were added to Java in this way.)

Though Decorator can effectively decompose a complex problem into simple pieces, the
main intent of Decorator is to provide an alternative to implementation inheritance when you
would be tempted to use extends to modify base-class behavior or add a few minor methods.

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 253

388x_Ch04_CMP4 8/17/04 2:27 PM Page 253

In addition to the fragile-base-class problem discussed in Chapter 2, extends can add a lot of
complexity when you need to change a lot of behavior. Consider Java’s collection classes. By
design, the collection classes are not thread safe. Collections are not often accessed from
nonsynchronized methods, so making them thread safe is just wasting CPU time as the
program runs. You do, occasionally, need a thread-safe collection, however. Figure 4-7 shows
how you’d have to extend the core collection classes to add thread safety. (The new classes are
in gray.) I’ve had to double the number of concrete classes in the system.

Figure 4-7. Using implemenation inheritance to add thread safety to collections

Set
«interface»

AbstractSet SortedSet
«interface»

HashSet

TreeSet

Stack

Vector

ArrayList

LinkedList

AbstractSequentialList

List
«interface»AbstractList

Collection
«interface»AbstractCollection

Collection

ThreadSafeLinkedList

ThreadSafeArrayList

ThreadSafeVector

ThreadSafeStack

ThreadSafeTreeSet

ThreadSafeHashSet

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL254

388x_Ch04_CMP4 8/17/04 2:27 PM Page 254

Now what if I want to add unmodifiable collections, perhaps by adding a lock() method
that causes all the methods that would normally modify the collection to start throwing
exceptions? When I use implementation inheritance for this modification, I have to double
the number of concrete classes again. Figure 4-8 shows the result.

Figure 4-8. Using implementation inheritance to add unmodifiability to collections

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 255

388x_Ch04_FINAL.qxd 1/14/05 3:57 PM Page 255

With an inheritance-based solution, I have to double the number of concrete classes
every time I add a new feature, assuming that I want to support every possible combination of
features. I can leave off some combinations, of course, but those combinations will probably
be the ones I need two weeks from now.

The designers of the Collection classes solved the thread-safety problem with a Deco-
rator. Here’s the code:

Collection threadSafe =
Collections.synchronizedCollection(new LinkedList());

The Collections class looks something like this:

public class Collections // utility
{

//...
public static Collection synchronizedCollection(final Collection wrapped)
{ return new SynchronizedCollection(wrapped);
}

private static class SynchronizedCollection implements Collection
{ private Collection unsafe;

public SynchronizedCollection(Collection unsafe)
{ this.unsafe = unsafe;
}

public synchronized boolean add(Object toAdd)
{ return unsafe.add(toAdd);
}

public synchronized boolean remove(Object toAdd)
{ return unsafe.remove(toAdd);
}

// Implement synchronized version of all other Collection
// methods here ...

}
}

Collections is a utility class—a class made up of static “helper” methods that augment
some existing class or library. Utilities are not Singletons because utilities don’t behave
like objects; they’re just a bag full of functions. In this case, the Collections utility serves as
a Concrete Factory of abstract Collection types. The ThreadSafeCollection class both is a
Collection and wraps a Collection. The methods of ThreadSafeCollection are synchronized,
however. Note that ThreadSafeCollection is private. The user of the Collections knows only
that the object returned from unmodifiableCollection(...) implements Collection without
allowing modifications to the backing collection. The concrete class name is unknown.

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL256

388x_Ch04_CMP4 8/17/04 2:27 PM Page 256

You can provide unmodifiable versions of a Collection with a similar wrapper, just as I
did with the UnmodifiableTable class discussed at the beginning of this section.

You can get a synchronized unmodifiable collection with double wrapping, as follows:

Collection myList = new LinkedList();
//...
myList = Collections.synchronizedCollection

(Collections.unmodifiableCollection
(myList
)

);

The point of using Decorator is that I’ve added a grand total of two classes but accom-
plished the same thing that required 18 classes in an implementation-inheritance solution.

As I mentioned earlier, Java’s I/O system uses Decorator heavily. Figure 4-9 shows enough
of Java’s input system that you can see the general structure. (I’ve left out the Reader classes,
and so on.) I’ll discuss the Adapter pattern shown in this figure at the end of the current
chapter. For now, I want to focus on Decorator.

Structurally, all the Decorators contain an instance of some class that implements the
same interface as the Decorator itself. I think of Decorator as the big-fish/little-fish pattern,
as shown here. The big fish (the Decorator) swallows the little fish (the Concrete
Component), but they’re both fish (the Component). This is also the Gepetto (or
Jonah) school of fish digestion: The little fish swims around happily in the big
fish’s stomach until it’s disgorged. If a fisherman had caught the little fish just
before it was swallowed (in other words, if you have a reference to a wrapped
Component), then the fisherman could talk directly to the little fish by tying a
tin can to the end of the fishing line and yelling into the can. (You can talk directly to a
LineNumberInputStream that had been wrapped in another Decorator by keeping a reference
to it, for example.) Finally, the bigger fish doesn’t know whether it has swallowed a Concrete
Component or another Decorator. They’re all fish. Figure 4-10 shows the message flow during
a write operation for the objects used in the previous InputStream example. Each of the Deco-
rators gets its input from the wrapped object. This wrapped object could be another decorator
or a Concrete Component; the Decorator knows nothing about that wrapped object other than
the interface it implements. The order of wrapping is important. If the BufferedInputStream
wrapped the PushBackInputStream in the earlier example, then a pushed-back character would
effectively move to the end of the current buffer—the pushed-back characters would appear to be
pushed back to random places in the input stream. Also note that since the PushBackInputStream
wraps the LineNumberInputStream, pushing back a newline does not roll back the line number. On
output, you want to compress before encrypting for efficiency reasons (the encryption algorithm
is less efficient than the compression algorithm).

Also note that the unread(...) method that’s used to push back characters is not defined
in InputStream. Consequently, you can’t access this functionality through an InputStream
reference.

We’re now done with the data-storage layer. Whew!

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 257

388x_Ch04_CMP4 8/17/04 2:27 PM Page 257

Figure 4-9. The static structure of Decorator

Figure 4-10. The dynamic structure of Decorator

:PushBackInputStream

:LineNumberInputStream :FileInputStream

:BufferedInputStream

read()

read()
read()

Reads a single
input character

Reads many characters,
buffers them, returns the first one.

Counts newline
characters as
they are read

Returns
characters from
a "pushback"
stack if there are
any; otherwise
reads a
character and
returns it

read()

ByteArrayInputStream

FileInputStream

FilterInputStream
«abstract»

PipedInputStream

DataInputStream

LineNumberInputStream

SequenceInputStream

StringBufferInputStream

ObjectInputStream

BufferedInputStream

PushBackInputStream

java.util.zip.GZIPInputStream

java.util.zip.ZipInputStream

javax.crypto.CipherInputStream

...

...

InputStream
«abstract»

Decorator Decorator

Concrete
Component

Component

Target

Adapter

StringBuffer

Byte[]

Byte[]

Adaptee

«Object»
Adapter

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL258

388x_Ch04_CMP4 8/17/04 2:27 PM Page 258

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 259

Adding SQL to the Mix
(This is not the dreaded SQL-interpreter section, so don’t skip over it.)

The Table classes are pretty useful in and of themselves. They provide a reasonably light-
weight solution to the problem of an embedded database and could be better than something
such as JDBC in situations where “lightweight” is mandatory—for database-like storage of
configuration information without the overhead of a database, for example.

My main goal was to use a database as a persistence layer, however, and though I wanted
the lightest-weight database I could get, I also wanted to be able to swap out that database
with a more full-featured version should the need arise, all without having to modify any of
my code. If I wrote code directly to the Table interface, then I’d have to modify that code to
go to the JDBC interface required by a real database server.

It’s tempting to implement a JDBC layer directly in terms of the Table interface (or, put
another way, to implement the SQL interpreter inside the JDBC classes). JDBC has more
complexity than I needed for the current application, though, and JDBC imposes a relatively
complex structure that I didn’t want to deal with quite yet. Consequently, I opted to go with a
three-layer approach and wrap the Table with a simple SQL engine implemented with one
primary class. This way I can focus on building the SQL interpreter without the complications
of imposing the JDBC structure onto my interpreter. I also end up with a SQL-based table
class that’s easier to use than the JDBC classes.

The interpreter itself is good sized (about 50KB of byte code), and it certainly imposes a
performance penalty on the system. A SQL where clause has to be reinterpreted with every row
of a query, for example, as compared to executing a small Java method (probably inlined by
the HotSpot JVM) on every row.

On the other hand, any SQL database will introduce similar inefficiencies. I wasn’t doing
all that much database access, and the ability to swap persistence layers without a rewrite was
an important requirement.

I should also say that much of the work that I’ve done building the interpreter could be
done using one of the Java “compiler-compilers” (such as JavaCUP at
http://www.cs.princeton.edu/~appel/modern/java/CUP/ or JavaCC at
https://javacc.dev.java.net/). Without getting too much into the technical details, I would
certainly use a compiler-compiler for implementing any language that was at all complicated.
In the case of the small SQL subset that I’m implementing, the structure of the language lends
itself to a parser technology called recursive descent, which can usually be hand built in such a
way as to be more efficient than the generic, table-driven parsers created by tools such as CUP.
Since the language was small, and minimum size and maximum efficiency were two of my
design goals, I opted for a handcrafted approach, thinking that I could do a better job by hand
than the tools could do. This may not actually be the case, however. I haven’t implemented the
language using a compiler-compiler and benchmarked the results against the hand-built
version, so I really don’t know. In any event, the hand-built version provides a few nice exam-
ples of design patterns.

So, back to the salt mines.

388x_Ch04_CMP4 8/17/04 2:27 PM Page 259

http://www.cs.princeton.edu/~appel/modern/java/CUP
https://javacc.dev.java.net

SQL-Engine Structure
Figure 4-11 and Figure 4-12 show the static structure of (and design patterns used by) the
SQL-engine layer. As before, you may want to bookmark these figures so you can refer to
them later.

Figure 4-11. SQL engine and JDBC layers: design patterns

NullValue BooleanValue

StringValue

NumericValue IdValue

NotExpression

RelationalExpression

ArithmeticExpression

LikeExpression

AtomicExpression

LogicalExpression

Tablename

Value Expression

Scanner

Token

Context

Abstract
Expression

Nonterminal
Expression

TableFactory

WordToken

SimpleToken

RegexToken

Database
Concrete
Handler

Client

Handler

Database
is the client

Interpreter

Concrete
Product

Abstract
Product

Chain of
Responsibility

Flyweight

Concrete
Flyweight

Client

Concrete
Factory

Flyweight

Flyweight
Pool

TokenSet

Abstract
Factory

Client

+
Terminal
Expression

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL260

388x_Ch04_CMP4 8/17/04 2:27 PM Page 260

Figure 4-12. SQL engine and JDBC layers: static structure

Database

+ useDatabase (path: File) throws IOException
+ createDatabase (name: String) throws IOException
+ createTable (name: String, columns: List)
+ dropTable (name: String)
+ dump () throws IOException
+ affectedRows (): int

+ begin ()
+ commit ()
+ rollback(checkForMatchingBegin: boolean)

+ execute (sqlExpression: String)

- statement (): Table
- idList (): List
- exprList (): List
- expr(): Expression
- andExpr (): Expression
- relationalExpr (): Expression
- additiveExpr (): Expression
- multiplicativeExpr (): Expression
- term (): Expression
- factor (): Expression

Value «tagging interface»

Expression «interface»

+evaluate(tables[]: TableIterator) :Value

NotExpression

RelationalExpression

ArithmeticExpression

LikeExpression

AtomicExpression

LogicalExpression

Scanner

Attributes

+advance (): Token
+match (candidate: Token): boolean
+matchAdvance (candidate: Token): String
+offset (): int
+toString (): String

Token «interface»

+match(String input): boolean
+advancePast(String input): String
+lexeme(): Sring
+toString(): String

Table
tables

0..*
name

transactionStack

ADDITIVE, AND, BEGIN, COMMA, COMMIT, CREATE,
DATABASE, DELETE, DOT, DROP, DUMP, EQUAL,

FROM, IDENTIFIER, INSERT, INTO, LIKE, LP, NOT,
NULL, NUMBER, OR, RELOP, ROLLBACK, RP,
SELECT, SET, SLASH, STAR, STRING, TABLE,

UPDATE, USE, VALUES, WHERE, WORK

TableFactory

«creates»

WordToken

SimpleToken

RegexToken

currentToken
TokenSet

+iterator (): Iterator
+create(spec:String): Token

tokens

members * 1

1

1

1

1

IdValue

+toString (participants[]: Cursor): String
+value (participants[]: Cursor): Value

StringValue

+value() :String
+toString ():String

NumericValue

+value() :double
+toString ():String

BooleanValue

+value () :boolean
+toString ():String

NullValue

+toString ():String

1

2
left,
right

1
operand

tokens

1

1

1

1

+

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 261

388x_Ch04_CMP4 8/17/04 2:27 PM Page 261

Input Tokenization, Flyweight Revisited, and Chain
of Responsibility
One of the requirements for a parser that is also a requirement for virtually any program
that has to look at text-based input is input tokenization, or scanning, which is the process of
breaking up a long input string into smaller pieces based on the way the input looks, and then
representing those smaller strings as well-defined constants so you don’t have to constantly
rescan them.

In compilers, a token is the smallest meaningful lexical unit of the input. For example, a
keyword such as while is a token, as are each of the various operators. A one-to-one relation-
ship does not necessarily exist between the actual input characters and the token type. Identi-
fiers, for example, are all represented by an IDENTIFIER token, even though the identifiers may
consist of different combinations of characters. Sometimes, semantically similar operators are
grouped together into a single token. For example, the <, >, <=, ==, and != operators could be
grouped together into a single RELATIONAL_OPERATOR token. A scanner inputs a stream of char-
acters and outputs a stream of token objects that represent that input. Put another way, the
scanner extracts substrings of the input and translates these substrings into tokens.

The token objects must be unique. Every time the scanner encounters an identifier in the
input, for example, it returns the same IDENTIFIER object that it did the last time it encountered
an identifier. This way you can tell whether you’ve read an identifier with a simple statement
such as this:

if(currentToken == IDENTIFIER)
//...

An important attribute of the IDENTIFIER object (and of all tokens) is the input string that’s
associated with the token, called a lexeme. Once you get an IDENTIFIER token, for example, you
can figure out which identifier you just read by examining the associated lexeme.

Given that a scanner always returns the same token object for a given input sequence,
the scanner is a good example of a Flyweight-pool manager. The token objects themselves are
Flyweights—the lexeme is the extrinsic data—and the scanner repeatedly returns the same
token object for a particular input sequence. (I discussed Flyweights in Chapter 4. Go back
and read about them if the preceding didn’t make any sense.)

Java has a couple of generic tokenizers: java.util.StringTokenizer and java.io.Stream-
Tokenizer. The former does only half of what a real scanner does: It breaks up the input into
meaningful lexemes and return them to you, but it doesn’t translate the lexemes into tokens.
The StreamTokenizer does return tokens, but it recognizes only four of them: TT_EOF (end of
file), TT_EOL (end of line), TT_NUMBER (a number), and TT_WORD (anything else). TT stands for
token type. In the case of TT_NUMBER and TT_WORD, the associated lexemes can be examined via
the nval and sval fields of the tokenizer (not a great design decision—public accessors would
be better).

The StreamTokenizer is too limited for a compiler application, however. I want unique
tokens for every keyword, for example. Lumping all the keywords and identifiers in the input
into a single TT_WORD token is too coarse grained to be useful. A real scanner would return
IDENTIFIER, WHILE, IF, and ELSE tokens as appropriate.

So, let’s look at the more capable scanner used by the SQL engine. The first order of busi-
ness is to define a set of tokens for the scanner to use. The individual tokens are responsible

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL262

388x_Ch04_CMP4 8/17/04 2:27 PM Page 262

for recognizing the associated input lexemes. Tokens are always part of a set, so I didn’t want
anyone to create one without connecting it to an associated token set. Consequently, a
TokenSet object serves as a Token factory. You create tokens as follows:

TokenSet tokens = new TokenSet();

Token COMMA = tokens.create("','"),
INPUT = tokens.create("INPUT"),
IN = tokens.create("IN"),
IDENTIFIER = tokens.create("[a-zA-Z_][a-zA-Z_0-9]*");

The argument to create() is a regular expression that describes the lexeme associated
with this token. Surrounding the expression with single-quote marks causes all characters to
be treated literally (rather than as regular-expression metacharacters. That is, the specification
"'...'" is treated identically to the regular expression "\Q...\E". The closing quote is
optional.

The TokenSet participates in several design patterns, but here it’s in the Concrete Factory
role of Abstract Factory. (There is no interface in the Abstract Factory role.) Token is the Abstract-
Product interface, and implementers of the Token interface (which we’ll look at shortly) are the
Concrete Products.

The client class (the Database) doesn’t know the actual classes of the Concrete Products:
the Token objects returned from create(...). Nonetheless, the system supports three distinct
Token subclasses that differ only in how efficient they are in processing the input string. That
is, it’s the job of each Token object to look at the input stream and tell whether the next few
input characters match a lexeme associated with that token.

• A RegexToken uses Java’s regular-expression system to match the input stream against
the specification, so it is powerful but relatively inefficient. It is case insensitive.

• A SimpleToken matches tokens for which there is only one possible lexeme. Its recog-
nizer, which just performs a literal match of the pattern against the input string, is by
far the most efficient of the three token types. To make it as efficient as possible, the
recognizer for a SimpleToken is not case insensitive (unlike the other two Token types).
This inconsistency is, in some ways, a design flaw, but I was loath to slow down a recog-
nizer that’s used primarily for finding punctuation and operators. The factory uses a
SimpleToken when the specifier passed to create(...) is either surrounded by single
quotes or contains no regular-expression metacharacters.

• A WordToken is a SimpleToken that must be terminated at a “word boundary.” (Either it
must be followed by a character that’s not legal in a Java identifier or it must be the last
token in the input string.) The regular-expression subsystem isn’t used for word tokens.
The tokens are recognized in a case-insensitive way.

The TokenSet factory simplifies token creation by deciding which of the three Token
implementers to create, based on what the specification looks like. In particular, if the string
contains any of the regular-expression metacharacters and isn’t surrounded by single-quote
marks, RegexToken objects are created. In the case of quoted strings or strings that don’t

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 263

388x_Ch04_CMP4 8/17/04 2:27 PM Page 263

contain metacharacters, the factory creates a WordToken if the specification ends in a character
that’s legal in a Java identifier; otherwise, it creates a SimpleToken.

Given a conflict in the lexemes (in other words, two Token specifications can match the
same input sequence), the token that’s created first takes precedence. In the earlier example,
the INPUT token must be created before the IN token or the string "input" will be processed
incorrectly. (An IN token will be recognized, and then an IDENTIFIER with the value “put” is
recognized.) Similarly, IDENTIFIER has to come last; otherwise, it would suck up all the
keywords.

The TokenSet reification of Abstract Factory omits the interface in the Abstract-Factory
role. The downside of this incomplete reification is that you have to modify the source code
for the TokenSet class if you add a new token type. You can create a token type simply by
extending Token, of course, but you won’t be able to create instances of your token via the
factory unless you modify the factory as well. My main goal with this particular factory was
to simplify the code, however. I just wanted to declare tokens without worrying about which
Token subclass was needed for a particular input specification. Since I don’t expect to add new
token types, the lack of expansibility isn’t a large concern (famous last words).

Moving onto the code, the Token class is in Listing 4-20, and the three implementations
are in Listing 4-21 (SimpleToken.java), Listing 4-22 (WordToken.java), and Listing 4-23 (Regex-
Token.java). SimpleToken (Listing 4-21) is the simplest, so let’s start there. The constructor is
passed a template input sequence. The match(String input) method returns true if the first
characters on the input line match that template. Finally, lexeme() returns the most recently
recognized lexeme.

The WordToken class in Listing 4-22 is only marginally more complicated. The match(...)
method checks the input against the pattern, but it also looks to make sure that the character
that follows couldn’t occur in a Java identifier (in other words, is on a “word” boundary).

The RegexToken class in Listing 4-23 is the most complicated because it uses Java’s regex
package. It’s a straightforward use of the Pattern and Matcher classes, but note that the pattern
is compiled only once, when the RegexToken is created. As is the case in the other Token imple-
mentation, patterns are recognized in a case-insensitive way.

Listing 4-20. Token.java

1 package com.holub.text;
2
3 public interface Token
4 { boolean match (String input, int offset);
5 String lexeme();
6 }

Listing 4-21. SimpleToken.java

1 package com.holub.text;
2
3 import java.util.*;
4 import java.util.regex.*;
5
6 /** Matches a simple symbol that doesn't have to be on a "word"

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL264

388x_Ch04_FINAL.qxd 1/12/05 11:28 AM Page 264

7 * boundary, punctuation, for example. SimpleToken
8 * is very efficient but does not recognize characters in
9 * a case-insensitive way, as does {@link WordToken} and
10 * {@link RegexToken}.
11 */
12
13 public class SimpleToken implements Token
14 {
15 private final String pattern;
16
17 /** Create a token.
18 * @param description a string that defines a literal-match lexeme.
19 */
20
21 public SimpleToken(String pattern)
22 { this.pattern = pattern.toLowerCase();
23 }
24
25 public boolean match(String input, int offset)
26 { return input.toLowerCase().startsWith(pattern, offset);
27 }
28
29 public String lexeme() { return pattern; }
30 public String toString(){ return pattern; }
31 }

Listing 4-22. WordToken.java

1 package com.holub.text;
2
3 import java.util.*;
4 import java.util.regex.*;
5
6 /** Recognize a token that looks like a word. The match
7 * is case insensitive. To be recognized, the input
8 * must match the pattern passed to the constructor
9 * and must be followed by a non-letter-or-digit.
10 * The returned lexeme is always all-lowercase
11 * letters, regardless of what the actual input
12 * looked like.
13 */
14
15 public class WordToken implements Token
16 {
17 private final String pattern;
18
19 /** Create a token.

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 265

388x_Ch04_CMP4 8/17/04 2:27 PM Page 265

20 * @param description a regular expression
21 * ({@linkplain java.util.Pattern see}) that describes
22 * the set of lexemes associated with this token.
23 */
24
25 public WordToken(String pattern)
26 { this.pattern = pattern.toLowerCase();
27 }
28
29 public boolean match(String input, int offset)
30 {
31 // Check that the input matches the patter in a
32 // case-insensitive way. If you don't want case
33 // insenstivity, use the following, less-complicated code:
34 //
35 // if(!input.toLowerCase().startsWith(pattern, offset))
36 // return false;
37
38 if((input.length() - offset) < pattern.length())
39 return false;
40
41 String candidate = input.substring(offset,
42 offset+pattern.length());
43 if(!candidate.equalsIgnoreCase(pattern))
44 return false;
45
46 // Return true if the lexeme is at the end of the
47 // input string or if the character following the
48 // lexeme is not a letter or digit.
49
50 return ((input.length() - offset) == pattern.length())
51 || (!Character.isLetterOrDigit(
52 input.charAt(offset + pattern.length())));
53 }
54
55 public String lexeme() { return pattern; }
56 public String toString(){ return pattern; }
57 }

Listing 4-23. RegexToken.java

1 package com.holub.text;
2
3 import java.util.*;
4 import java.util.regex.*;
5

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL266

388x_Ch04_CMP4 8/17/04 2:27 PM Page 266

6 /** Matches a token specified using a regular expression
7 */
8
9 public class RegexToken implements Token
10 {
11 private Matcher matcher;
12 private final Pattern pattern;
13 private final String id;
14
15 /** Create a token.
16 * @param description a regular expression
17 * ({@linkplain java.util.Pattern see}) that describes
18 * the set of lexemes associated with this token.
19 * The expression is case insensitive, so the
20 * expression "ABC" also recognizes "abc".
21 */
22 public RegexToken(String description)
23 { id = description;
24 pattern = Pattern.compile(description, Pattern.CASE_INSENSITIVE);
25 }
26
27 public boolean match(String input, int offset)
28 { matcher = pattern.matcher(input.substring(offset));
29 return matcher.lookingAt();
30 }
31
32 public String lexeme() { return matcher.group(); }
33 public String toString(){ return id; }
34 }

The tokenSet class is in Listing 4-24. Its members field (Listing 4-24, line 8) holds the
members of the Flyweight pool (the previously created tokens).

The create(...) method (Listing 4-24, line 39) adds all the tokens that it creates to this
collection. It also decides which subclass of Token to create by examining the input specification.

You can get an java.util.Iterator across all the Flyweights in the pool by calling
iterator() (Listing 4-24, line 15). Note that this iterator is guaranteed to present the Token
objects in the same order that they were added to the pool. This guaranteed ordering will be
important when I implement the scanner, shortly.

Listing 4-24. TokenSet.java

1 package com.holub.text;
2
3 import java.util.*;
4 import java.util.regex.*;
5
6 public class TokenSet

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 267

388x_Ch04_CMP4 8/17/04 2:27 PM Page 267

7 {
8 private Collection members = new ArrayList();
9
10 /** Return an iterator across the Token pool. This iterator
11 * is guaranteed to return the tokens in the order that
12 * {@link create()} was called.
13 */
14
15 public Iterator iterator()
16 { return members.iterator();
17 }
18
19 /**
20 * Create a Token based on a specification.
21 * <p>
22 * An appropriate token type is chosen by examining the input
23 * specification. In particular, a {@link RegexToken} is
24 * created unless the input string contains no regular-expression
25 * metacharacters (\\[]{()$^*+?|}) or starts with a single-quote
26 * mark ('). In this case, a
27 * {@link WordToken} is created if the specification ends
28 * in any character that could occur in a Java identifier;
29 * otherwise a {@link SimpleToken} is created.
30 * If a string that starts with a single-quote mark also
31 * ends with a single-quote mark, the end-quote mark
32 * is discarded. The end-quote mark is optional.
33 * <p>
34 * Tokens are always extracted
35 * from the beginning of a String, so the characters that
36 * precede the token are irrelevant.
37 */
38
39 public Token create(String spec)
40 { Token token;
41 int start = 1;
42
43 if(!spec.startsWith("'"))
44 { if(containsRegexMetacharacters(spec))
45 {
46 token = new RegexToken(spec);
47 members.add(token);
48 return token;
49 }
50
51 --start; // don't compensate for leading quote
52

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL268

388x_Ch04_CMP4 8/17/04 2:27 PM Page 268

53 // fall through to the "quoted-spec" case
54 }
55
56 int end = spec.length();
57
58 if(start==1 && spec.endsWith("'")) // saw leading '
59 --end;
60
61 token = Character.isJavaIdentifierPart(spec.charAt(end-1))
62 ? (Token) new WordToken (spec.substring(start,end))
63 : (Token) new SimpleToken(spec.substring(start,end))
64 ;
65
66 members.add(token);
67 return token;
68 }
69
70 /** Return true if the string argument contains any of the
71 * following characters: \\[]$^*+?|()
72 */
73 private static final boolean containsRegexMetacharacters(String s)
74 { // This method could be implemented more efficiently,
75 // but its not called very often.
76 Matcher m = metacharacters.matcher(s);
77 return m.find();
78 }
79 private static final Pattern metacharacters =
80 Pattern.compile("[\\\\\\[\\]$\\^*+?|()]");
81 }

The Scanner: Chain of Responsibility
The Scanner class (Listing 4-25) uses the TokenSet to implement a scanner. You create a
scanner for a particular token set like this:

TokenSet tokens = new TokenSet();
Token COMMA = tokens.create("','"),

INPUT = tokens.create("INPUT"),
IN = tokens.create("IN"),
IDENTIFIER = tokens.create("[a-zA-Z_][a-zA-Z_0-9]*");

Scanner tokenizer = new Scanner(tokenSet, inputReader);

The Scanner looks for tokens in the specified set, reading characters from the specified
Reader. The interface to the Scanner is straightforward, but it may be surprising if you’ve never
built a parser. Parsers, in general, are more interested in seeing if the next input token (called
the lookahead token) is what they expect than they are in actually reading the next token

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 269

388x_Ch04_CMP4 8/17/04 2:27 PM Page 269

(removing it from the input). Consequently, the Scanner interface does not have a getToken()
method, simply because such a method wouldn’t be used. You use the scanner more or less
like this:

TokenSet tokens = new TokenSet();
Token DESIRED_TOKEN = tokens.create(...);
Token DIFFERENT_TOKEN = tokens.create(...);
//...

Reader inputReader = ...;
Scanner tokenizer = new Scanner(tokens, inputReader);
//...

if(tokenizer.match(DESIRED_TOKEN))
{ Token t = tokenizer.advance();

doSomething(t.lexeme();) // or use DESIRED_TOKEN.lexeme()
}
else if(tokenizer.match(DIFFERENT_TOKEN))
{ //...
}
//...

The match(...) method just checks to see if the desired token is the next one in the input
stream. The advance() method actually reads (and returns) the next input token. This match/
advance strategy is much more efficient than reading the token because you’d otherwise have
to repetitively push uninteresting tokens back onto the input.

Two convenience methods are provided to simplify scanning: First, matchAdvance(Token)
(Listing 4-25, line 111) combines the match and advance operations. If the token argument
matches the current token, the scanner advances to the next token and returns the current
lexeme. Otherwise, the scanner does nothing and returns null. Second, the required(Token)
method (Listing 4-25, line 127) is a more forceful version of matchAdvance(). It throws a Parse-
Failure exception if the specified token isn’t the current token.

The Scanner is implemented in Listing 4-25. From the design-patterns perspective, the
interesting code is the for loop on line 76. I get an iterator across the entire token set and then
ask each token in turn whether its lexeme specification matches the current input sequence.
The work of detecting the match is delegated to the Token objects, each of which checks for a
match in the most efficient way possible.

The design pattern here is Chain of Responsibility (sometimes called Chain of Command).
The idea is to handle an event (or in this case, an input sequence) by passing it in turn to a set of
Command objects. Those objects that are able to handle the event do so. The object that does
the routing can’t predict which handler (some object in the pattern’s Handler role) will handle
the event (or input), and usually doesn’t care, as long as that event (or input) gets handled. It’s
important to note that the list of handlers is put together at runtime. The Client has no way to
know at compile time which handlers will be invoked in which sequence.

This characteristic is important in the current context because the order in which Token
objects attempt to match themselves against the input is important. In the SQL engine, for
example, you have an IN and also an INPUT token. It’s important that the Scanner looks for a

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL270

388x_Ch04_FINAL.qxd 1/12/05 11:31 AM Page 270

match of IN before it looks for INPUT; otherwise it will never find the latter. Similarly, it’s impor-
tant that the IDENTIFIER token, which is declared like this:

IDENTIFIER = tokens.create("[a-zA-Z_0-9/\\\\:~]+");

be at the end of the list of tokens, because the specified regular expression will also match all
the keywords. Were IDENTIFIER not declared last, keywords would be incorrectly recognized as
identifiers.

The Scanner stops routing the input to Token objects once a Handler (a Token) recognizes
an input sequence. The design pattern doesn’t require this behavior, however. Several Handlers
could all process all or part of the same event. Similarly, Chain of Responsibility doesn’t require a
separate “router” object that controls who gets a crack at the input. A Handler may keep around
a pointer to its own successor, for example, and handle the routing locally.

Listing 4-25. Scanner.java

1 package com.holub.text;
2
3 import java.util.Iterator;
4 import java.io.*;
5 import com.holub.text.ParseFailure;
6
7 public class Scanner
8 {
9 private Token currentToken = new BeginToken();
10 private BufferedReader inputReader = null;
11 private int inputLineNumber = 0;
12 private String inputLine = null;
13 private int inputPosition = 0;
14
15 private TokenSet tokens;
16
17 public Scanner(TokenSet tokens, String input)
18 { this(tokens, new StringReader(input));
19 }
20
21 public Scanner(TokenSet tokens, Reader inputReader)
22 { this.tokens = tokens;
23 this.inputReader =
24 (inputReader instanceof BufferedReader)
25 ? (BufferedReader) inputReader
26 : new BufferedReader(inputReader)
27 ;
28 loadLine();
29 }
30
31 /** Load the next input line and adjust the line number
32 * and inputPosition offset.

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 271

388x_Ch04_CMP4 8/17/04 2:27 PM Page 271

33 */
34 private boolean loadLine()
35 { try
36 { inputLine = inputReader.readLine();
37 if(inputLine != null)
38 { ++inputLineNumber;
39 inputPosition = 0;
40 }
41 return inputLine != null;
42 }
43 catch(IOException e)
44 { return false;
45 }
46 }
47
48 /** Return true if the current token matches the
49 * candidate token.
50 */
51 public boolean match(Token candidate)
52 { return currentToken == candidate;
53 }
54
55 /** Advance the input to the next token and return it.
56 * This token is valid only until the next advance() call.
57 */
58 public Token advance() throws ParseFailure
59 { try
60 {
61 if(currentToken != null) // not at end of file
62 {
63 inputPosition += currentToken.lexeme().length();
64 currentToken = null;
65
66 if(inputPosition == inputLine.length())
67 if(!loadLine())
68 return null;
69
70 while(Character.isWhitespace(
71 inputLine.charAt(inputPosition)))
72 if(++inputPosition == inputLine.length())
73 if(!loadLine())
74 return null;
75
76 for(Iterator i = tokens.iterator(); i.hasNext();)
77 { Token t = (Token)(i.next());
78 if(t.match(inputLine, inputPosition))
79 { currentToken = t;

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL272

388x_Ch04_CMP4 8/17/04 2:27 PM Page 272

80 break;
81 }
82 }
83
84 if(currentToken == null)
85 throw failure("Unrecognized Input");
86 }
87 }
88 catch(IndexOutOfBoundsException e){ /* nothing to do */ }
89 return currentToken;
90 }
91
92 /* Throws a ParseException object initialized for the current
93 * input position. This method lets a parser that's using the
94 * current scanner report an error in a way that identifies
95 * where in the input the error occurred.
96 * @param message the "message" (as returned by
97 * {@link java.lang.Throwable.getMessage}) to attach
98 * to the thrown <code>RuntimeException</code> object.
99 * @throws ParseFailure always.
100 */
101 public ParseFailure failure(String message)
102 { return new ParseFailure(message,
103 inputLine, inputPosition, inputLineNumber);
104 }
105
106 /** Combines the match and advance operations. Advance automatically
107 * if the match occurs.
108 * @return the lexeme if there was a match and the input was advanced,
109 * null if there was no match (the input is not advanced).
110 */
111 public String matchAdvance(Token candidate) throws ParseFailure
112 { if(match(candidate))
113 { String lexeme = currentToken.lexeme();
114 advance();
115 return lexeme;
116 }
117 return null;
118 }
119
120 /** If the specified candidate is the current token,
121 * advance past it and return the lexeme; otherwise,
122 * throw an exception with the error message
123 * "XXX Expected".
124 * @throws ParseFailure if the required token isn't the
125 * current token.
126 */

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 273

388x_Ch04_CMP4 8/17/04 2:27 PM Page 273

127 public final String required(Token candidate) throws ParseFailure
128 { String lexeme = matchAdvance(candidate);
129 if(lexeme == null)
130 throw failure(
131 "\"" + candidate.toString() + "\" expected.");
132 return lexeme;
133 }
134
135 /*--*/
136 public static class Test
137 {
138 private static TokenSet tokens = new TokenSet();
139
140 private static final Token
141 COMMA = tokens.create("',"),
142 IN = tokens.create("'IN'"),
143 INPUT = tokens.create("INPUT"),
144 IDENTIFIER = tokens.create("[a-z_][a-z_0-9]*");
145
146 public static void main(String[] args) throws ParseFailure
147 {
148 assert COMMA instanceof SimpleToken: "Factory Failure 1";
149 assert IN instanceof WordToken : "Factory Failure 2";
150 assert INPUT instanceof WordToken : "Factory Failure 3";
151 assert IDENTIFIER instanceof RegexToken : "Factory Failure 4";
152
153 Scanner analyzer=new Scanner(tokens, ",aBc In input inputted");
154
155 assert analyzer.advance() == COMMA : "COMMA unrecognized";
156 assert analyzer.advance() == IDENTIFIER : "ID unrecognized";
157 assert analyzer.advance() == IN : "IN unrecognized";
158 assert analyzer.advance() == INPUT : "INPUT unrecognized";
159 assert analyzer.advance() == IDENTIFIER : "ID unrecognized 1";
160
161 analyzer = new Scanner(tokens, "Abc IN\nCde");
162 analyzer.advance(); // advance to first token.
163
164 assert(analyzer.matchAdvance(IDENTIFIER).equals("Abc"));
165 assert(analyzer.matchAdvance(IN).equals("in"));
166 assert(analyzer.matchAdvance(IDENTIFIER).equals("Cde"));
167
168 // Deliberately force an exception toss
169 analyzer = new Scanner(tokens, "xyz\nabc + def");
170 analyzer.advance();
171 analyzer.advance();
172 try
173 { analyzer.advance(); // should throw an exception

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL274

388x_Ch04_CMP4 8/17/04 2:27 PM Page 274

174 assert false : "Error Detection Failure";
175 }
176 catch(ParseFailure e)
177 { assert e.getErrorReport().equals(
178 "Line 2:\n"
179 + "abc + def\n"
180 + "____^\n");
181 }
182
183 System.out.println("Scanner PASSED");
184
185 System.exit(0);
186 }
187 }
188 }

One anti-example of the Chain-of-Responsibility pattern (that is, an example that
demonstrates the pattern’s shortcomings) is the Windows event model. A Windows UI is a
runtime hierarchy of objects. Consider a typical dialog box with a text field on it. Figure 4-13
shows the associated runtime object hierarchy. Now imagine you’re typing in the text field
and accidentally hit a typically easy-to-remember “hot key” such as Ctrl+Alt+Shift+F12. As you
can see by following the sequence of arrows, the key-pressed event can go to many potential
handlers (from the text control to its parent window (the Dialog Frame) to its parent (the MDI
Child) to its parent (the Main Frame) to the menu bar, to each menu on the menu bar to menu
item on that menu bar. Finally, when the key-pressed event gets to the last menu item on the
last menu on the menu bar, it’s discarded. The same sequence will happen every time the
mouse moves one pixel. That’s a lot of motion, but no action. This is one reason why Java
abandoned this message-routing mechanism with Java 1.1 in favor of its Observer-based
system.

Figure 4-13. Chain of Command in a Windows UI

Text Control

Main Frame Window

Menu Bar

First Menu Second Menu

Menu Items
Menu Items

Menu Items
Menu Items

Menu Items

Menu Items
Menu Items
Menu Items

Menu Items
Menu Items

Dialog Frame

MDI Child Window

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 275

388x_Ch04_CMP4 8/17/04 2:27 PM Page 275

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL276

Java has lots of good examples of Chain of Responsibility. One of the better ones is the
servlet filter. A servlet is a small program that’s invoked automatically by the web server in
response to an HTTP Post or Get request. Typical servlets are passed data that’s specified in
an HTML form, and they create a HTML page that’s displayed on the client-side browser in
response to that form submission. Once you’ve written a few servlets, you come to realize that
they often duplicate the code of other servlets. For example, authentication is a commonplace
activity in a servlet. The servlet may read a username and password from the submitted form
data, for example, and refuse to proceed with a transaction if the password isn’t correct. Alter-
natively, a servlet may check the session data (a packet of information that’s associated with
the user) to assure that a given user is indeed logged in. Duplicating this authentication code
in every servlet increases the complexity of the system as a whole and also tends to create
lack-of-consistency problems in the user interface. (Different servlets may handle the same
problem in different ways.) Other common problems include things such as database lookup.
That is, the session data may contain a key that you need to use to get additional information
out of a server-side database. This lookup may occur in several servlets, which can cause
serious maintenance problems if the data dictionary needs to change, for example. By the
same token, information in the session data may have to be stored persistently in a database.

Chain of Responsibility, as reified in the servlet filter, solves all these problems. Figure 4-14
shows the general flow of data through a system of servlets and filters as some form is being
processed. The first filter does authentication. If the user has logged in, this filter is just a pass
through, doing nothing but passing its input to the next filter in the chain. The second filter
handles persistent session information—information that resides in a database rather than
information that is created during the course of the session—performing all the required
database lookup.

You should note two important points: First, the filters are put into place by the web
server, not the servlet. As far as the servlet is concerned, the user is authenticated, and the
database information is fetched and stored by magic. Second, each filter handles its part of
the current operation and then either allows the next object in the chain of responsibility (the
next Filter or the servlet itself) to do additional work or short-circuits the process. Runtime
configuration and the relative autonomy of the Handlers are both defining characteristics of
the Chain of Responsibility.

One other problem I’ve solved with Chain of Responsibility deserves mention: user-input
processing. You saw earlier how you can use the Builder pattern to isolate UI generation from
the underlying “business object,” but it’s sometimes awkward to use Builder on the input side.
For example, you can use Builder to ask an object to build an HTML representation of itself for
insertion into a generated page (or build an XML representation of itself that’s passed through
a XSLT translator to build the HTML). In fact, several objects may contribute user interfaces to
the page in this way. (A UI could be built, in fact, by a series of servlet filters, each of which
augments a generated HTML page by adding a UI for a particular object.)

The page is served, the user hits the submit button, and the form data comes back to
another servlet, but then what? You don’t really want the servlet to know how to talk to all the
objects that contributed to the original page because it’s too much of a maintenance problem.
If those objects change their user interfaces in some way, you need to change the servlet as
well. These coupling relationships are too tight.

Chain of Responsibility solves the coupling problem. All that the servlet (or some filter)
needs to do is keep a list of the objects that contributed to the UI. The servlet passes those
objects the complete set of form-input data, and the objects parse out of that list whatever

388x_Ch04_FINAL.qxd 1/12/05 12:21 PM Page 276

is interesting to them. Since the objects built the form to begin with, the object can generate
unique field names on the output side, and the object can search for these same names on
the input side. The actual servlet is completely generic with respect to the UI: It just keeps a
list of contributing objects, gets HTML from the objects, and routes the form data back to the
objects on the list. It has no idea what the objects actually do, and the interface is extremely
simple. More important, you can make massive changes to the objects without impacting the
code that comprises the servlet at all.

Figure 4-14. Chain of Command in a Windows UI

The ParseFailure Class
Finishing up loose ends before moving onto the SQL interpreter itself, the one class you
haven’t looked at yet is the ParseFailure class in Listing 4-26. (I was going to call this class
ParserException, but that name was too much like java.text.ParseException.)

Other than the obvious use of having something to throw when a parse error occurs, the
ParseFailure object is interesting in the way that I use it to eliminate getter functions from
the Scanner class in order to reduce coupling relationships between the Scanner and the rest
of the program. Rather than using a getter to find out where on the line that an error occurs,
that information is carried around by the exception object itself. This way, you can catch a
parse error and print a reasonable error message without having to talk to the Scanner that
detected the error at all. The ParseFailure object carries around the input line, line number,
and position-on-the-line information, and you can generate a contextual error message that
looks like this:

Context-specific message
Line 17:
a = b + @ c;
________^

Servlet

Authentication
Filter

 Web Server

Database
Lookup Filter

Form Data from HTTP Get

HTML "Response" Page

Database

If the session data indicates
that the user has logged on,
just pass through to the next
Filter; otherwise generate an
HTML logon page and do not
chain to the next filter.

On the way in, add information
to the "session" object via a
database lookup using a key
specified in a "hidden" HTML
element. On the way out, store
session information in the
database and insert a key into
the HTML as a hidden tag.

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 277

388x_Ch04_CMP4 8/17/04 2:27 PM Page 277

as follows:

try
{ // ...
}
catch(ParseFailure e)
{ System.err.println(e.getMessage());

System.err.println(e.getErrorReport());
}

I’ve provided no getter methods (in the sense of methods that access internal state data such
as the line number or offset to the error position), simply because they aren’t required. Remember
the golden rule of implementation hiding: don’t ask for the information that you need to do the
work; rather, ask the object that has the information to do the work for you.

One final issue exists: Not only is it reasonable for a Scanner to throw ParseFailure
objects, but it’s reasonable for the parser that uses the scanner to throw them as well. The
scanner throws a ParseFailure if the input sequence matches no known token, for example.
The parser needs to throw a ParseFailure if it finds malformed SQL.

Since the ParseFailure object contains information that’s provided by the scanner (the
line number and input position), then it makes sense for Scanner objects to act as ParseFailure
factories. Rather than having the parser extract line number and position information from the
Scanner in order to create a parser-related error message, the parser requests a ParseFailure
object that encapsulates that information.

The Scanner, then, is a ParseFailure Factory. When the parser encounters an error at the
language (as compared to the lexical-analysis) level, it can throw a ParseFailure object that
indicates where the error occurred with code like the following:

Scanner lexicalAnalyzer = new Scanner(...);
//...
if(some_parser_error_occurs())
{ throw lexicalAnalyzer.failure("Parser-related error message");
}

Listing 4-26. ParseFailure.java

1 package com.holub.text;
2
3 /** Thrown in the event of a Scanner (or parser) failure
4 */
5
6 public class ParseFailure extends Exception
7 {
8 private final String inputLine;
9 private final int inputPosition;
10 private final int inputLineNumber;
11
12 public ParseFailure(String message,
13 String inputLine,

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL278

388x_Ch04_FINAL.qxd 1/12/05 11:34 AM Page 278

14 int inputPosition,
15 int inputLineNumber)
16 {
17 super(message);
18 this.inputPosition = inputPosition;
19 this.inputLine = inputLine;
20 this.inputLineNumber = inputLineNumber;
21 }
22
23 /** Returns a String that shows the current input line and a
24 * pointer indicating the current input position.
25 * In the following sample, the input is positioned at the
26 * @ sign on input line 17:
27 * <PRE>
28 * Line 17:
29 * a = b + @ c;
30 * ________^
31 * </PRE>
32 *
33 * Note that the official "message" [returned from
34 * {@link Throwable#getMessage()}] is not included in the
35 * error report.
36 */
37
38 public String getErrorReport()
39 {
40 StringBuffer b = new StringBuffer();
41 b.append("Line ");
42 b.append(inputLineNumber + ":\n");
43 b.append(inputLine);
44 b.append("\n");
45 for(int i = 0; i < inputPosition; ++i)
46 b.append("_");
47 b.append("^\n");
48 return b.toString();
49 }
50 }

The Database Class
The Database encapsulates the SQL interpreter. Its main job is to transform a set of SQL state-
ments into calls that a Table understands. By introducing SQL into the mix, however, you free
the program from needing to know anything about Table objects.

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 279

388x_Ch04_CMP4 8/17/04 2:27 PM Page 279

Using the Database
You can use a Database in one of two ways: as a stand-alone class that represents a SQL data-
base or as a Decorator that wraps a com.holub.database.Table temporarily so that you can
access the table using SQL. The only difference between these two uses is the constructor you
use. Open a stand-alone database like this:

Database standalone = new Database("/src/com/holub/database/test");

The (optional) argument specifies the path to a directory that represents the database
itself. (Tables are stored as individual files.) Convenience constructors let you specify the path
with a File or URI object instead of a String. Also, you do not have a no-arg constructor that
just puts tables into the current directory. A SQL USE DATABASE directoryName request causes
the Database to use the named directory instead of the one specified in the constructor.

To use the Database as a Decorator of an existing table (or set of tables), use the following
alternative constructor:

Table table1 = TableFactory.create("table1", ...);
Table table2 = TableFactory.create("table2", ...);
//...

Database wrapped = new Database("/src/com/holub/database/test",
new Table[]{ table1, table2 });

This isn’t a full-blown Gang-of-Four Decorator since Database doesn’t implement the
Table interface. It does satisfy the intent of the pattern, however, in that it allows you to
augment the Table interface by adding SQL support.

Once you’ve created the database, you talk to it using a single method that takes a String
argument that specifies a single SQL command. For example, the following code (taken from
the Database class’s unit test) reads a series of SQL statements from a file and executes them:

Database d = new Database();
BufferedReader sqlScript = new BufferedReader(

new FileReader("Database.test.sql"));
String test;
while((test = sqlScript.readLine()) != null)
{ test = test.trim();

if(test.length() == 0) // ignore blank lines
continue;

System.out.println("Parsing: " + test);
Table result = d.execute(test); // Result sets come back in a Table

if(result != null) // it was a SELECT of some sort
System.out.println(result.toString());

}

Listing 4-27 shows the SQL that the test-script uses, but it’s pretty standard stuff.

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL280

388x_Ch04_CMP4 8/17/04 2:27 PM Page 280

Though you can do everything through the execute(...) method, Database provides
a few additional methods that let you create, load, and drop tables; dump tables to disk; and
manage transactions. I’ve listed these methods in Table 4-1. An exception toss that occurs
when processing a SQL expression submitted to execute() causes an automatic rollback as a
side effect. This automatic-rollback behavior is not implemented by the methods in Table 4-1,
however. If you use these methods, you’ll have to catch any exceptions manually and call
rollback(...) or commit(...) explicitly.

Table 4-1. Methods of the Database Class

Method Description

int affectedRows() Returns the number of rows that were affected
by the most recent execute(java.lang.String)
call.

void begin() Begins a transaction.

void commit(boolean checkForMatchingBegin) Commits a transaction.

void createDatabase(String name) Creates a database by opening the indicated
directory.

void createTable(String name, List columns) Creates a new table.

void dropTable(String name) Destroys both internal and external (on the
disk) versions of the specified table.

void dump() Flushes to the persistent store (for example,
disk) all tables that are “dirty” (which have
been modified since the database was last
committed).

Table execute(String expression) Executes a SQL statement.

void rollback(boolean checkForMatchingBegin) Rolls back a transaction.

void useDatabase(File path) Uses an existing “database.”

Listing 4-27. Database.Test.sql

1 create database Dbase
2
3 create table address \
4 (addrId int, street varchar, city varchar, \
5 state char(2), zip int, primary key(addrId))
6
7 create table name(first varchar(10), last varchar(10), addrId integer)
8
9 insert into address values(0,'12 MyStreet','Berkeley','CA','99999')
10 insert into address values(1, '34 Quarry Ln.', 'Bedrock' , 'XX', '00000')
11
12 insert into name VALUES ('Fred', 'Flintstone', '1')
13 insert into name VALUES ('Wilma', 'Flintstone', '1')
14 insert into name (last,first,addrId) VALUES('Holub','Allen',(10-10*1))
15
16 update address set state = "AZ" where state = "XX"

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 281

388x_Ch04_CMP4 8/17/04 2:27 PM Page 281

17 update address set zip = zip-1 where zip = (99999*1 + (10-10)/1)
18
19 insert into name (last,first) VALUES('Please', 'Delete')
20 delete from name where last like '%eas%'
21
22 select * from address
23 select * from name
24
25 select first, last from name where last = 'Flintstone'
26 select first, last, street, city, zip \
27 from name, address where name.addrId = address.addrId
28
29 create table id (addrId, description)
30 insert into id VALUES (0, 'AddressID=0')
31 insert into id VALUES (1, 'AddressID=1')
32 select first, last, street, city, zip, description \
33 from name, address, id \
34 WHERE name.addrId = address.addrId AND name.addrId = id.addrId
35
36 drop table id
37
38 select first, last from name where last='Flintstone' \
39 AND first='Fred' OR first like '%lle%'
40
41 create table foo (first, second, third, fourth)
42 insert into foo (first,third,fourth) values(1,3,4)
43 update foo set fourth=null where fourth=4
44 select * from foo
45 select * from foo where second=NULL AND third<>NULL
46 drop table foo
47
48 select * into existing_copy from existing
49 select * from existing_copy
50
51 create table foo (only)
52 insert into foo values('xxx')
53 begin
54 insert into foo values('should not see this')
55 rollback
56 select * from foo
57
58 begin
59 insert into foo values('yyy')
60 select * from foo
61 begin
62 insert into foo values('should not see this')
63 rollback

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL282

388x_Ch04_CMP4 8/17/04 2:27 PM Page 282

64 begin
65 insert into foo values('zzz')
66 select * from foo
67 commit
68 select * from foo
69 commit
70 select * from foo
71 insert into foo values('end')
72 select * from foo
73 drop table foo
74
75 create table foo (only)
76 begin
77 insert into foo values('a')
78 insert into foo values('b')
79 begin
80 insert into foo values('c')
81 insert into foo values('d')
82 select * from foo
83 commit
84 rollback
85 select * from foo
86
87 drop table foo

The Proxy Pattern
The first part of the Database class is in Listing 4-28. Of the fields at the top of the listing, the
tables Map (line 41) holds the tables that comprise the database. They’re indexed by table
name. tables is declared as a Map, but it actually holds a specialization of HashMap (TableMap,
declared on line 52).

This specialization adds table-specific behavior to a standard HashMap. First, the get()
override uses lazy instantiation: When a specific table is first requested, it’s loaded from the
disk using the CSV Builder. Database methods can act as if all the tables were preloaded into a
standard Map , but the tables are actually loaded when they're requested for the first time.

The other modification to the standard HashMap is a put() override, which handles a transac-
tion-related problem that’s a side effect of lazy instantiation. The current transaction-nesting level
is stored in transactionLevel field declared on line 46. It’s incremented by a BEGIN operation and
decremented by a COMMIT or ROLLBACK. The code that does the commit/rollback assumes that all
the tables in the Map are at the same transaction level. That is, it just commits or rolls back all of
them, all at once. If you begin a transaction and then use a table that you haven’t used before, that
table will not have had a begin() issued against it, yet. The loop in put() solves the problem by
issuing begin() requests against the newly loaded table.

Since I don’t use it and didn’t want to rewrite it, I also overloaded putAll() to throw an
UnsupportedOperationException(). I’m playing pretty fast and loose with the class contract
here. I wouldn’t argue if someone flagged this change as a defect in a code review and forced
me to provide a putAll(), but the TableMap is a private inner class—so it can’t be extended or

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 283

388x_Ch04_CMP4 8/17/04 2:27 PM Page 283

used from outside the class definition—I decided that the deviation from the contract was
acceptable. I would not make a change of this magnitude if the class were
globally accessible.

The remainder of the methods in the Map interface just map through to the contained
Map object.

Listing 4-28. Database.java: Private Data and the TableMap

1 package com.holub.database;
2
3 import java.util.*;
4 import java.io.*;
5 import java.text.NumberFormat;
6 import java.net.URI;
7
8 import com.holub.text.Token;
9 import com.holub.text.TokenSet;
10 import com.holub.text.Scanner;
11 import com.holub.text.ParseFailure;
12 import com.holub.tools.ThrowableContainer;
13
14 /**...*/
15
16 public final class Database
17 { /* The directory that represents the database.
18 */
19 private File location = new File(".");
20
21 /** The number of rows modified by the last
22 * INSERT, DELETE, or UPDATE request.
23 */
24 private int affectedRows = 0;
25
26 /** This Map holds the tables that are currently active. I
27 * have to use be a Map (as compared to a Set), because
28 * HashSet uses the equals() function to resolve ambiguity.
29 * This requirement would force me to define "equals" on
30 * a Table as "having the same name as another table," which
31 * I believe is semantically incorrect. Equals should match
32 * both name and contents. I avoid the problem entirely by
33 * using an external key, even if that key is also an
34 * accessible attribute of the Table.
35 *
36 * <p>The table is actually a specialization of Map
37 * that requires a Table value argument, and interacts
38 * with the transaction-processing system.
39 */
40
41 private final Map tables = new TableMap(new HashMap());

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL284

388x_Ch04_CMP4 8/17/04 2:27 PM Page 284

42
43 /** The current transaction-nesting level, incremented for
44 * a BEGIN and decremented for a COMMIT or ROLLBACK.
45 */
46 private int transactionLevel = 0;
47
48 /** A Map proxy that handles lazy instantiation of tables
49 * from the disk.
50 */
51
52 private final class TableMap implements Map
53 {
54 private final Map realMap;
55 public TableMap(Map realMap){ this.realMap = realMap; }
56
57 public Object get(Object key)
58 { String tableName = (String)key;
59 try
60 { Table desiredTable = (Table) realMap.get(tableName);
61 if(desiredTable == null)
62 { desiredTable = TableFactory.load(
63 tableName + ".csv",location);
64 put(tableName, desiredTable);
65 }
66 return desiredTable;
67 }
68 catch(IOException e)
69 { // Can't use verify(...) or error(...) here because the
70 // base-class "get" method doesn't throw any exceptions.
71 // Kludge a runtime-exception toss. Call in.failure()
72 // to get an exception object that calls out the
73 // input filename and line number, then transmogrify
74 // the ParseFailure to a RuntimeException.
75
76 String message =
77 "Table not created internally and couldn't be loaded."
78 +"("+ e.getMessage() +")\n";
79 throw new RuntimeException(
80 in.failure(message).getMessage());
81 }
82 }
83
84 public Object put(Object key, Object value)
85 { // If transactions are active, put the new
86 // table into the same transaction state
87 // as the other tables.
88
89 for(int i = 0; i < transactionLevel; ++i)

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 285

388x_Ch04_CMP4 8/17/04 2:27 PM Page 285

90 ((Table)value).begin();
91
92 return realMap.put(key,value);
93 }
94
95 public void putAll(Map m)
96 { throw new UnsupportedOperationException();
97 }
98
99 public int size() { return realMap.size(); }
100 public boolean isEmpty() { return realMap.isEmpty(); }
101 public Object remove(Object k) { return realMap.remove(k); }
102 public void clear() { realMap.clear(); }
103 public Set keySet() { return realMap.keySet(); }
104 public Collection values() { return realMap.values(); }
105 public Set entrySet() { return realMap.entrySet(); }
106 public boolean equals(Object o) { return realMap.equals(o); }
107 public int hashCode() { return realMap.hashCode(); }
108
109 public boolean containsKey(Object k)
110 { return realMap.containsKey(k);
111 }
112 public boolean containsValue(Object v)
113 { return realMap.containsValue(v);
114 }
115 }
116

The code at which we’ve been looking—which creates expensive objects on demand—is
an example of the Proxy design pattern. (The earlier design-patterns diagram (Figure 4-11)
had no space for these classes, so I’ve sketched it out in Figure 4-15.) A proxy is a surrogate or
placeholder for another object, a reference to which is typically contained in the proxy. The
TableMap serves as a proxy for the realMap object that it contains. The main idea is that it’s
convenient, sometimes, to talk to some object (called the Real Subject) through an interme-
diary (called a Proxy) that implements the same interface as the Real Subject. This interme-
diary can do things such as lazy instantiation (loading expensive fields on demand).

Figure 4-15. The Proxy pattern

java.util.HashMap

RealSubject

Subject

Proxy

tables

Proxy

Client

Database

java.util.Map «interface»

com.holub.database.TableMap

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL286

388x_Ch04_CMP4 8/17/04 2:27 PM Page 286

The Gang-of-Four book mentions the following types of proxies:

• A remote proxy exists on one side of a network connection and implements the same
interface as does another object on the other side of the network connection. You talk
to the proxy, and it talks across the network to the real object. For all practical purposes,
the client thinks that the proxy is the remote object because all communication with
the remote object is transparent. Java RMI, CORBA, and XML/SOAP are remote-proxy
architectures.

• The TableMap is an example of a virtual proxy, a proxy that creates expensive objects on
demand. This particular implementation is not “pure” in the sense that the underlying
HashMap is not created on demand, but rather the HashMap is populated on demand. A
“purer” example of a virtual proxy is the java.awt.Image class, which serves as a proxy
for the real image as it’s being loaded. That is, Runtime.getImage() immediately returns
a proxy for the real image, which is being downloaded across the network by a back-
ground thread. You can use the proxy (the Image returned by getImage()) before the real
image arrives, however getImage() returns the real image, not the proxy, if it has already
downloaded the image.

• A protection proxy controls access to an underlying object. For example, the Collection
implementations returned from Collections.synchronizedCollection(...) and
Collections.unmodifiableCollection(...) are protection proxies.

• A smart reference replaces a bare reference in a way that adds additional functionality.
Java’s “weak reference” mechanism, as is used by a java.util.WeakHashMap, is one
example of this kind of proxy; the C++ SmartPointer is another.

Virtual proxies are particularly useful in database applications because you can delay a
query until you actually need the data. Consider an application where you needed to choose
one of 10,000 Employee objects and then do something with that object. You could go out to
the database and fully create all 10,000 Employee objects, but that’s really a waste of time. It
would be better to put the employee names into a single table and then create proxies for the
real Employee objects. (The proxies would hold the name, but nothing else.) When you called
some method of the proxy that used some field other than the name, the proxy would go out
to the database and get the required data for that Employee only (or perhaps fully populate a
full-blown Employee from the database).

One significant source of confusion amongst people learning the Proxy pattern is the
difference between Proxies and Decorators. The point of a Decorator is to add or modify the
behavior of an object. The point of Proxy is to control access to another object. They’re struc-
turally identical; thus, confusion exists.

The Token Set and Other Constants
The Database definition continues in Listing 4-29 with the token-set definition (lines 128
to 172) As I mentioned earlier, tokens are created in search order, so it’s important that the
keyword tokens are created before the IDENTIFIER token. Listing 4-29 finishes up with two
enumerated-type declarations. I’ve used Bloch’s typesafe-enum idiom, discussed in Chapter 1,
to define two enumerations. (This idiom gives me both type safety and also a guaranteed
constraint on the possible values—a static final int does neither.) The RelationalOperator

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 287

388x_Ch04_CMP4 8/17/04 2:27 PM Page 287

objects are used to identify which relational operator is being processed. MathOperator is the
same but for arithmetic operators.

Listing 4-29. Database.java continued: Tokens and Enumerations

117 //--
118 // The token set used by the parser. Tokens automatically
119 // The Scanner object matches the specification against the
120 // input in the order of creation. For example, it's important
121 // that the NUMBER token is declared before the IDENTIFIER token
122 // since the regular expression associated with IDENTIFIERS
123 // will also recognize some legitimate numbers.
124
125 private static final TokenSet tokens = new TokenSet();
126
127 private static final Token
128 COMMA = tokens.create("',"),
129 EQUAL = tokens.create("'="),
130 LP = tokens.create("'("),
131 RP = tokens.create("')"),
132 DOT = tokens.create("'."),
133 STAR = tokens.create("'*"),
134 SLASH = tokens.create("'/"),
135 AND = tokens.create("'AND"),
136 BEGIN = tokens.create("'BEGIN"),
137 COMMIT = tokens.create("'COMMIT"),
138 CREATE = tokens.create("'CREATE"),
139 DATABASE = tokens.create("'DATABASE"),
140 DELETE = tokens.create("'DELETE"),
141 DROP = tokens.create("'DROP"),
142 DUMP = tokens.create("'DUMP"),
143 FROM = tokens.create("'FROM"),
144 INSERT = tokens.create("'INSERT"),
145 INTO = tokens.create("'INTO"),
146 KEY = tokens.create("'KEY"),
147 LIKE = tokens.create("'LIKE"),
148 NOT = tokens.create("'NOT"),
149 NULL = tokens.create("'NULL"),
150 OR = tokens.create("'OR"),
151 PRIMARY = tokens.create("'PRIMARY"),
152 ROLLBACK = tokens.create("'ROLLBACK"),
153 SELECT = tokens.create("'SELECT"),
154 SET = tokens.create("'SET"),
155 TABLE = tokens.create("'TABLE"),
156 UPDATE = tokens.create("'UPDATE"),
157 USE = tokens.create("'USE"),
158 VALUES = tokens.create("'VALUES"),

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL288

388x_Ch04_CMP4 8/17/04 2:27 PM Page 288

159 WHERE = tokens.create("'WHERE"),
160
161 WORK = tokens.create("WORK|TRAN(SACTION)?"),
162 ADDITIVE = tokens.create("\\+|-"),
163 STRING = tokens.create("(\".*?\")|('.*?')"),
164 RELOP = tokens.create("[<>][=>]?"),
165 NUMBER = tokens.create("[0-9]+(\\.[0-9]+)?"),
166
167 INTEGER = tokens.create("(small|tiny|big)?int(eger)?"),
168 NUMERIC = tokens.create("decimal|numeric|real|double"),
169 CHAR = tokens.create("(var)?char"),
170 DATE = tokens.create("date(\\s*\\(.*?\\))?"),
171
172 IDENTIFIER = tokens.create("[a-zA-Z_0-9/\\\\:~]+");
173
174 private String expression; // SQL expression being parsed
175 private Scanner in; // The current scanner.
176
177 // Enums to identify operators not recognized at the token level
178 // These are used by various inner classes, but must be declared
179 // at the outer-class level because they're static.
180
181 private static class RelationalOperator{ private RelationalOperator() }
182 private static final RelationalOperator EQ = new RelationalOperator();
183 private static final RelationalOperator LT = new RelationalOperator();
184 private static final RelationalOperator GT = new RelationalOperator();
185 private static final RelationalOperator LE = new RelationalOperator();
186 private static final RelationalOperator GE = new RelationalOperator();
187 private static final RelationalOperator NE = new RelationalOperator();
188
189 private static class MathOperator{ private MathOperator() }
190 private static final MathOperator PLUS = new MathOperator();
191 private static final MathOperator MINUS = new MathOperator();
192 private static final MathOperator TIMES = new MathOperator();
193 private static final MathOperator DIVIDE = new MathOperator();
194

The next chunk of the Database definition is in Listing 4-30. The constructors—which are
pretty self-explanatory—come first, followed by a few private workhorse functions that are used
elsewhere in the class. The error(...) method (line 247) is called when a parse error occurs. It’s
interesting to see how I’ve used delegation to avoid accessor methods. Since the Scanner already
knows how to create a ParseError object that contains a context-sensitive error message, I dele-
gate the creation of the error object to the Scanner object. This way I don’t have to extract
anything from the scanner to create a sensible error message.

The rest of Listing 4-30 defines most of the convenience methods discussed in Table 4-1.
The only interesting method is dump() on line 327, which flushes to disk those tables in the
tables Map that have been modified (isDirty() returns true). The design issue here is whether

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 289

388x_Ch04_CMP4 8/17/04 2:27 PM Page 289

the isDirty() method is needed at all—it is exposing an implementation detail. I could, for
example, add an exportIfDirty() method to the Table and dispense with isDirty() alto-
gether. You can see why I opted for the isDirty() solution by looking at the code. I just didn’t
want to create (and open) a FileWriter if I wasn’t going to use it.

Another alternative that I also rejected was adding a writeAsCsvIfDirty() method to the
Table. The whole point of using the Builder pattern to export data was to avoid exactly that
sort of method.

One solution has none of these problems, but it does introduce a bit of extra complexity.
You could introduce a Proxy for the Writer called a DelayedWriter. The DelayedWriter would
work exactly like a FileWriter from the outside. Inside, it would create a FileWriter to actually
do the output as a side effect of requesting the first write operation. This way, the file wouldn’t be
opened unless you actually wrote to it. If you implement an exportIfDirty(Exporter builder)
method in the Table, and pass it a CSVExporter that uses a DelayedWriter, the file would never
be opened if the Table wasn’t dirty because the exporter would never write to it. Though the
DelayedWriter Proxy would eliminate the need for isDirty(), I eventually decided that it wasn’t
worth adding the extra complexity, so I didn’t implement it.

Listing 4-30. Database.java continued: Convenience Methods That Mimic SQL

195 //--
196 /** Create a database object attached to the current directory.
197 * You can specify a different directory after the object
198 * is created by calling {@link #useDatabase}.
199 */
200 public Database() { }
201
202 /** Use the indicated directory for the database */
203 public Database(URI directory) throws IOException
204 { useDatabase(new File(directory));
205 }
206
207 /** Use the indicated directory for the database */
208 public Database(File path) throws IOException
209 { useDatabase(path);
210 }
211
212 /** Use the indicated directory for the database */
213 public Database(String path) throws IOException
214 { useDatabase(new File(path));
215 }
216
217 /** Use this constructor to wrap one or more Table
218 * objects so that you can access them using
219 * SQL. You may add tables to this database using
220 * SQL "CREATE TABLE" statements, and you may safely
221 * extract a snapshot of a table that you create
222 * in this way using:

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL290

388x_Ch04_CMP4 8/17/04 2:27 PM Page 290

223 * <PRE>
224 * Table t = execute("SELECT * from " + tableName);
225 * </PRE>
226 * @param database an array of tables to use as
227 * the database.
228 * @param path The default directory to search for
229 * tables, and the directory to which
230 * tables are dumped. Tables specified
231 * in the <code>database</code> argument
232 * are used in place of any table
233 * on the disk that has the same name.
234 */
235 public Database(File path, Table[] database) throws IOException
236 { useDatabase(path);
237 for(int i = 0; i < database.length; ++i)
238 tables.put(database[i].name(), database[i]);
239 }
240
241 //--
242 // Private parse-related workhorse functions.
243
244 /** Asks the scanner to throw a {@link ParseFailure} object
245 * that highlights the current input position.
246 */
247 private void error(String message) throws ParseFailure
248 { throw in.failure(message.toString());
249 }
250
251 /** Like {@link #error}, but throws the exception only if the
252 * test fails.
253 */
254 private void verify(boolean test, String message) throws ParseFailure
255 { if(!test)
256 throw in.failure(message);
257 }
258
259
260 //--
261 // Public methods that duplicate some SQL statements.
262 // The SQL interpreter calls these methods to
263 // do the actual work.
264
265 /** Use an existing "database." In the current implementation,
266 * a "database" is a directory and tables are files within
267 * the directory. An active database (opened by a constructor,
268 * a USE DATABASE directive, or a prior call to the current
269 * method) is closed and committed before the new database is

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 291

388x_Ch04_CMP4 8/17/04 2:27 PM Page 291

270 * opened.
271 * @param path A {@link File} object that specifies directory
272 * that represents the database.
273 * @throws IOException if the directory that represents the
274 * database can't be found.
275 */
276 public void useDatabase(File path) throws IOException
277 { dump();
278 tables.clear(); // close old database if there is one
279 this.location = path;
280 }
281
282 /** Create a database by opening the indicated directory. All
283 * tables must be files in that directory. If you don't call
284 * this method (or issue a SQL CREATE DATABASE directive), then
285 * the current directory is used.
286 * @throws IOException if the named directory can't be opened.
287 */
288 public void createDatabase(String name) throws IOException
289 { File location = new File(name);
290 location.mkdir();
291 this.location = location;
292 }
293
294 /** Create a new table. If a table by this name exists, it's
295 * overwritten.
296 */
297 public void createTable(String name, List columns)
298 { String[] columnNames = new String[columns.size()];
299 int i = 0;
300 for(Iterator names = columns.iterator(); names.hasNext();)
301 columnNames[i++] = (String) names.next();
302
303 Table newTable = TableFactory.create(name, columnNames);
304 tables.put(name, newTable);
305 }
306
307 /** Destroy both internal and external (on the disk) versions
308 * of the specified table.
309 */
310 public void dropTable(String name)
311 { tables.remove(name); // ignore the error if there is one.
312
313 File tableFile = new File(location,name);
314 if(tableFile.exists())
315 tableFile.delete();
316 }

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL292

388x_Ch04_CMP4 8/17/04 2:27 PM Page 292

317
318 /** Flush to the persistent store (e.g. disk) all tables that
319 * are "dirty" (which have been modified since the database
320 * was last committed). These tables will not be flushed
321 * again unless they are modified after the current dump()
322 * call. Nothing happens if no tables are dirty.
323 * <p>
324 * The present implemenation flushes to a .csv file whose name
325 * is the table name with a ".csv" extension added.
326 */
327 public void dump() throws IOException
328 { Collection values = tables.values();
329 if(values != null)
330 { for(Iterator i = values.iterator(); i.hasNext();)
331 { Table current = (Table) i.next();
332 if(current.isDirty())
333 { Writer out =
334 new FileWriter(
335 new File(location, current.name() + ".csv"));
336 current.export(new CSVExporter(out));
337 out.close();
338 }
339 }
340 }
341 }
342
343 /** Return the number of rows that were affected by the most recent
344 * {@link #execute} call. Zero is returned for all operations except
345 * for INSERT, DELETE, or UPDATE.
346 */
347
348 public int affectedRows()
349 { return affectedRows;
350 }

Transaction processing (Listing 4-31) comes next. Most of the work is done in the Table
class, which manages undo operations on a specific table, and the TableMap class you just saw.
The methods in Listing 4-31 do little more than delegate the begin, commit, and rollback
requests to the various Table objects in the tables Map.

From a design point of view, it’s difficult to decide where these three methods actually
belong. Since the TableMap is doing a lot of the work surrounding transactions, it makes sense
to do the rest of the transaction-related work there. On the other hand, it’s nice to make the
TableMap a “pure” proxy that is just a Map implementation. It’s just cleaner not to add addi-
tional methods to the Map methods. (Doing so, of course, would make the TableMap both a
Decorator and a Proxy.) I decided to leave the methods where they are, primarily because I
consider transactions to be operations on a database, not a Map.

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 293

388x_Ch04_CMP4 8/17/04 2:27 PM Page 293

Listing 4-31. Database.java continued: Transaction Processing

351 //--
352 // Transaction processing.
353
354 /** Begin a transaction
355 */
356 public void begin()
357 { ++transactionLevel;
358
359 Collection currentTables = tables.values();
360 for(Iterator i = currentTables.iterator(); i.hasNext();)
361 ((Table) i.next()).begin();
362 }
363
364 /** Commit transactions at the current level.
365 * @throw NoSuchElementException if no <code>begin()</code> was issued.
366 */
367 public void commit() throws ParseFailure
368 {
369 assert transactionLevel > 0 : "No begin() for commit()";
370 --transactionLevel;
371
372 try
373 { Collection currentTables = tables.values();
374 for(Iterator i = currentTables.iterator(); i.hasNext() ;)
375 ((Table) i.next()).commit(Table.THIS_LEVEL);
376 }
377 catch(NoSuchElementException e)
378 { verify(false, "No BEGIN to match COMMIT");
379 }
380 }
381
382 /** Roll back transactions at the current level
383 * @throw NoSuchElementException if no <code>begin()</code> was issued.
384 */
385 public void rollback() throws ParseFailure
386 { assert transactionLevel > 0 : "No begin() for commit()";
387 --transactionLevel;
388 try
389 { Collection currentTables = tables.values();
390
391 for(Iterator i = currentTables.iterator(); i.hasNext() ;)
392 ((Table) i.next()).rollback(Table.THIS_LEVEL);
393 }
394 catch(NoSuchElementException e)
395 { verify(false, "No BEGIN to match ROLLBACK");
396 }
397 }

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL294

388x_Ch04_CMP4 8/17/04 2:27 PM Page 294

The Interpreter Pattern
Okay, you’ve arrived at the dreaded SQL-engine section. This section discusses only one
design pattern: Interpreter. Interpreter is one of the more complicated patterns and assumes
that you know a lot about how compilers work. The odds of your needing to use Interpreter
are not high (unless you’re building a compiler or interpreter), so feel free to skip forward to
“The JDBC Layer” section on page 325.

Supported SQL
The Database class implements a small SQL-subset database that provides a SQL front end to
the Table classes. My intent is to do simple things, only. But you can do everything you need
to do in most small database applications. SELECT statements, for example, support FROM and
WHERE clauses, but nothing else. (DISTINCT, ORDEREDBY, and so on, aren’t supported; neither are
subqueries, outer joins, and so on.) You can join an arbitrary number of tables in a SELECT,
however. A few operators (BETWEEN, IN) aren’t supported. Any Java/Perl regular expression
can be used as an argument to LIKE, and for SQL compatibility, a % wildcard is automatically
mapped to "." The main issue is that you’ll have to escape characters that are used as regular-
expression metacharacters. All the usual relational and arithmetic operators are supported in
a SELECT, and you can SELECT on a formula (SELECT columns WHERE (foo*2) < (bar+1)), but
functions are not supported.

Selecting “into” another table works, but bear in mind that the actual data is shared
between tables. Since everything in the table is a String, this strategy works fine unless you
use the Table object that’s returned from execute(...) to add non-String objects directly to
the Table. Don’t do that.

The Database class uses the file system to store the database itself. A database is effec-
tively a directory, and a table is effectively a file in the directory. The argument to USE DATABASE
specifies the path to that directory. The modified database is not stored to disk until a DUMP
is issued. (In the JDBC wrapper, an automatic DUMP occurs when you close the connection.)

The SQL parser recognizes types (so you can use them in the SQL), but they are ignored.
That is, everything is stored in the underlying database as a String. You can’t store a boolean
value as such, but if you decide on some string such as "true" and "false" as meaningful,
and use it consistently, then comparisons and assignments of boolean values will work fine.
Null is supported. Strings that represent numbers (that can be parsed successfully by
java.text.NumberFormat in the default Locale) can be used in arithmetic expressions,
however. You can use the types in Table 4-2 in your table definitions.

Reasonable defaults are used if an argument is missing. You can also specify a PRIMARY
KEY(identifier) in the table definition, but it’s ignored, too.

Identifiers follow slightly nonstandard rules. Because the database name is the same as a
directory name, I’ve allowed database names to contain characters that would normally go in
a path (/, \, :, ~, and _), but I haven’t allowed them to contain a dot or dash. Identifiers can’t
contain spaces, and they cannot start with digits.

Numbers, on the other hand, must begin with a digit (.10 doesn’t work, but 0.10 does), and
decimal fractions less than 1.0E-20 are assumed to be 0. (That is, 1.000000000000000000001 is
rounded down to 1.0 and will be put into the table as the integer 1.)

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 295

388x_Ch04_CMP4 8/17/04 2:27 PM Page 295

Table 4-2. SQL Types Recognized (But Ignored) by the Parser

Types Description

integer(maxDigits) Integers.
int(maxDigits)
smallint(maxDigits)
bigint(maxDigits)
tinyint(size)

decimal(l,r) Floating point. l and r specify the maximum number of digits to the left
real(l,r) and right of the decimal.
double(l,r)
numeric(l,r)

char(length) Fixed-length string.

varchar(maximum_length) Variable-length string.

date(format) Date in the Gregorian calendar with optional format.

Transactions are supported, and transactions nest properly, but the transaction model is
very simple. (For you database folks, the only part of the ACID test that I’ve supported is the
A—Atomicity. Consistency checks are not made [everything’s stored as a String]. The database
is not thread safe, so multiple transactions won’t work, and there’s no Isolation. The database
is flushed to disk only when you execute a flush() or close the connection, so there’s no Dura-
bility at the transaction level. You could fix the latter by flushing after every transaction, but I
opted not to do so.)

Initially, no transaction is active, and all SQL requests are effectively committed immedi-
ately on execution. This auto-commit mode is superseded once you issue a BEGIN but is rein-
stated as soon as the matching COMMIT or ROLLBACK is encountered. All requests that occur
between the BEGIN and COMMIT are treated as a single unit. The begin(...), commit(...), and
rollback(...) methods of the Database class have the same effect as issuing the equivalent
SQL requests and are sometimes more convenient to use.

The SQL-subset grammar I’ve implemented is as follows. Since the Database uses a recur-
sive-descent parser, I’ve used a strict LL(1) grammar, with the following abbreviations in the
terminal-symbol names: “expr”=expression, “id”=identifier, “opt”=optional. I’ve also used
brackets to identify an optional subproduction.

statement ::= INSERT INTO IDENTIFIER [LP idList RP] VALUES LP exprList RP

| CREATE DATABASE IDENTIFIER

| CREATE TABLE IDENTIFIER LP declarations RP

| DROP TABLE IDENTIFIER

| BEGIN [WORK | TRAN[SACTION]]

| COMMIT [WORK | TRAN[SACTION]]

| ROLLBACK [WORK | TRAN[SACTION]]

- | DUMP

| USE DATABASE IDENTIFIER

| UPDATE IDENTIFIER SET IDENTIFIER EQUAL expr WHERE expr

| DELETE FROM IDENTIFIER WHERE expr

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL296

388x_Ch04_CMP4 8/17/04 2:27 PM Page 296

| SELECT [INTO identifier] idList FROM idList [WHERE expr]

idList ::= IDENTIFIER idList' | STAR

idList’ ::= COMMA IDENTIFIER idList'

| ε

declarations ::= IDENTIFIER [type] [NOT [NULL]] declaration'

declarations’ ::= COMMA IDENTIFIER [type] declarations'

| COMMA PRIMARY KEY LP IDENTIFIER RP

| ε

type ::= INTEGER [LP expr RP]

| CHAR [LP expr RP]

| NUMERIC [LP expr COMMA expr RP]

| DATE

exprList ::= expr exprList'

exprList’ ::= COMMA expr exprList'

| ε

expr ::= andExpr expr'

expr’ ::= OR andExpr expr'

| ε

andExpr ::= relationalExpr andExpr'

andExpr’ ::= AND relationalExpr andExpr'

| ε

relationalExpr ::= additiveExpr relationalExpr'

relationalExpr' ::= RELOP additiveExpr relationalExpr'

| EQUAL additiveExpr relationalExpr'

| LIKE additiveExpr relationalExpr'

| ε

additiveExpr ::= multiplicativeExpr additiveExpr'

additiveExpr' ::= ADDITIVE multiplicativeExpr additiveExpr'

| ε

multiplicativeExpr ::= term multiplicativeExpr'

multiplicativeExpr’ ::= STAR term multiplicativeExpr'

| SLASH term multiplicativeExpr'

| ε

term ::= NOT factor

| LP expr RP

| factor

factor ::= compoundId | STRING | NUMBER | NULL

compoundId ::= IDENTIFIER compoundId'

compoundId' ::= DOT IDENTIFIER

| ε

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 297

388x_Ch04_CMP4 8/17/04 2:27 PM Page 297

Finally, we’ve arrived at the actual interpreter.
Consider the following (deliberately complex) SQL statement:

SELECT first, last FROM people, zip
WHERE people.last='Flintstone'

AND people.first='Fred'
OR people.zip > (94700 + zip.margin)

The WHERE clause of this expression can be represented by the abstract-syntax tree in
Figure 4-16.

Figure 4-16. An abstract-syntax tree

Your first task in implementing a SQL interpreter is to build a parser that creates this
abstract-syntax tree as a physical tree in memory. Nodes in the physical tree are all objects of a
class that implements the Expression interface. You’ll look at all of these subclasses of Expres-
sion momentarily, but Figure 4-17 shows which classes are represented in which places in the
physical tree that the parser builds from the earlier SQL expression. The main common char-
acteristic of the Expression objects is that they contain references to the objects below them in
the tree so can communicate with these descendants. Also note two categories of Expression
objects exist: Terminal nodes have no children—they’re at the ends of the branches. Nonter-
minal nodes are all interior nodes, and all have at least one child. In addition to the children,
each object remembers information specific to the input. The RelationalExpression objects
remember the operator, for example. AtomicExpression objects contain a Value (more on this
in a moment) that represents either a constant value or the table-and-column reference, and
so forth. I’ll come back to this figure later in this section.

Listing 4-32 shows the actual parser, which interestingly, is not part of the Interpreter
pattern itself. This parser is a straightforward recursive-descent parser that directly imple-
ments the grammar shown previously. The only deviation from the grammar itself is the elimi-
nation of tail recursion (situations where the last thing that a recursive method does is call
itself) with a loop. For example, these two productions:

= =

AND

OR

<

people.last

Flintstone people.first

94700

zip.margin

Fred

+

people.zip

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL298

388x_Ch04_CMP4 8/17/04 2:27 PM Page 298

Figure 4-17. The physical representation of the abstract-syntax tree

idList ::= IDENTIFIER idList'

| STAR

idList' ::= COMMA IDENTIFIER idList'

| ε

would be implemented naïvely like this (I’ve stripped out nonessential code):

private ... idList()
{

if(in.matchAdvance(STAR) == null)
//...

else
{ in.required(IDENTIFIER))

idListPrime();
}

}

private ... idListPrime()
{ if(in.matchAdvance(COMMA))

{ in.required(IDENTIFIER);
//...

(=)

(people.last)

(Flintstone)

(=)

(people.first)

(Fred)

(AND)

RelationalExpression

(OR)

(<)

(+)
(people.zip)

(94700)

(zip.margin)

BooleanValue

StringValue

StringValue

BooleanValue BooleanValue

StringValue

StringValue NumericValue

NumericValue

NumericValue NumericValue

BooleanValue

BooleanValue

RelationalExpression

RelationalExpression RelationalExpression

AtomicExpression

AtomicExpression AtomicExpression

AtomicExpression AtomicExpression

AtomicExpression

ArithmeticExpression

AtomicExpression

RelationalExpression

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 299

388x_Ch04_CMP4 8/17/04 2:27 PM Page 299

idListPrime();
}
// the "epsilon" is handled by doing nothing

}

You can improve this code in two steps. First, eliminate the tail recursion in idList-
Prime() as follows:

private ... idListPrime()
{ while(in.matchAdvance(COMMA))

{ in.required(IDENTIFIER);
//...

}
}

Now that idListPrime() is no longer recursive, you can hand-inline the method,
replacing the single call to it in idList() with the method body, like so:

private ... idList()
{

if(in.matchAdvance(STAR) == null)
//...

else
{ in.required(IDENTIFIER))

while(in.matchAdvance(COMMA))
{ in.required(IDENTIFIER);

//...
}

}
}

If you look at the real implementation of idList() (Listing 4-32, line 579), you’ll see that it
follows the foregoing structure. The only addition I’ve added in the real code is that idList()
assembles (and returns) a List of the identifiers that it recognizes.

I’ve deliberately not cluttered up the parser with code that manipulates the underlying
Table objects—all that code is relegated to private methods I’ll discuss shortly. The only real
work that the parser does is build a tree of Expression objects (objects whose classes imple-
ment Expression) that directly reflects the structure of the abstract-syntax tree. That is, most
of the methods that comprise the parser collect Expression objects that are created at levels
below the current one and then assemble another Expression object that represents the
current operation in the syntax tree (typically passing the constructor to the new Expression
references to the objects representing the subexpressions). The method then returns the
Expression that represents the current operation.

Taking multiplicativeExpr() (Listing 4-32, line 748, and reproduced next) as characteristic,
the calls to term() return an Expression object that represents the subexpression tree. The
method creates an ArithmeticExpression to represent itself, passing the ArithmeticExpression
constructor the two Expression objects returned from the two term() calls. The method then
returns the ArithmeticExpression.

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL300

388x_Ch04_CMP4 8/17/04 2:27 PM Page 300

private Expression multiplicativeExpr()
{ Expression left = term();

while(true)
{ if(in.matchAdvance(STAR) != null)

left = new ArithmeticExpression(left, term(), TIMES);
else if(in.matchAdvance(SLASH) != null)

left = new ArithmeticExpression(left, term(), DIVIDE);
else

break;
}
return left;

}

The balance of the parser is similarly straightforward and should provide no difficulty to
you (provided you’ve seen a recursive descent parser before).

Listing 4-32. Database.java: The Parser

398 /***
399 * Execute a SQL statement. If an exception is tossed and we are in the
400 * middle of a transaction (a begin has been issued but no matching
401 * commit has been seen), the transaction is rolled back.
402 *
403 * @return a {@link Table} holding the result of a SELECT,
404 * or null for statements other than SELECT.
405 * @param expression a String holding a single SQL statement. The
406 * complete statement must be present (you cannot break a long
407 * statement into multiple calls), and text
408 * following the SQL statement is ignored.
409 * @throws com.holub.text.ParseFailure if the SQL is corrupt.
410 * @throws IOException Database files couldn't be accessed or created.
411 * @see #affectedRows()
412 */
413
414 public Table execute(String expression) throws IOException, ParseFailure
415 { try
416 { this.expression = expression;
417 in = new Scanner(tokens, expression);
418 in.advance(); // advance to the first token.
419 return statement();
420 }
421 catch(ParseFailure e)
422 { if(transactionLevel > 0)
423 rollback();
424 throw e;
425 }
426 catch(IOException e)

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 301

388x_Ch04_FINAL.qxd 1/14/05 1:34 PM Page 301

427 { if(transactionLevel > 0)
428 rollback();
429 throw e;
430 }
431 }
432
433 /**
434 * <PRE>
435 * statement
436 * ::= CREATE DATABASE IDENTIFIER
437 * | CREATE TABLE IDENTIFIER LP idList RP
438 * | DROP TABLE IDENTIFIER
439 * | USE DATABASE IDENTIFIER
440 * | BEGIN [WORK|TRAN[SACTION]]
441 * | COMMIT [WORK|TRAN[SACTION]]
442 * | ROLLBACK [WORK|TRAN[SACTION]]
443 * | DUMP
444 *
445 * | INSERT INTO IDENTIFIER [LP idList RP]
446 * VALUES LP exprList RP
447 * | UPDATE IDENTIFIER SET IDENTIFIER
448 * EQUAL expr [WHERE expr]
449 * | DELETE FROM IDENTIFIER WHERE expr
450 * | SELECT idList [INTO table] FROM idList [WHERE expr]
451 * </PRE>
452 * <p>
453 *
454 * @return a Table holding the result of a SELECT, or null for
455 * other SQL requests. The result table is treated like
456 * a normal database table if the SELECT contains an INTO
457 * clause; otherwise it's a temporary table that's not
458 * put into the database.
459 *
460 * @throws ParseFailure something's wrong with the SQL
461 * @throws IOException a database or table couldn't be opened
462 * or accessed.
463 * @see #createDatabase
464 * @see #createTable
465 * @see #dropTable
466 * @see #useDatabase
467 */
468 private Table statement() throws ParseFailure, IOException
469 {
470 affectedRows = 0; // is modified by UPDATE, INSERT, DELETE
471
472 // These productions map to public method calls:
473

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL302

388x_Ch04_CMP4 8/17/04 2:27 PM Page 302

474 if(in.matchAdvance(CREATE) != null)
475 { if(in.match(DATABASE))
476 { in.advance();
477 createDatabase(in.required(IDENTIFIER));
478 }
479 else // must be CREATE TABLE
480 { in.required(TABLE);
481 String tableName = in.required(IDENTIFIER);
482 in.required(LP);
483 createTable(tableName, declarations());
484 in.required(RP);
485 }
486 }
487 else if(in.matchAdvance(DROP) != null)
488 { in.required(TABLE);
489 dropTable(in.required(IDENTIFIER));
490 }
491 else if(in.matchAdvance(USE) != null)
492 { in.required(DATABASE);
493 useDatabase(new File(in.required(IDENTIFIER)));
494 }
495
496 else if(in.matchAdvance(BEGIN) != null)
497 { in.matchAdvance(WORK); // ignore it if it's there
498 begin();
499 }
500 else if(in.matchAdvance(ROLLBACK) != null)
501 { in.matchAdvance(WORK); // ignore it if it's there
502 rollback();
503 }
504 else if(in.matchAdvance(COMMIT) != null)
505 { in.matchAdvance(WORK); // ignore it if it's there
506 commit();
507 }
508 else if(in.matchAdvance(DUMP) != null)
509 { dump();
510 }
511
512 // These productions must be handled via an
513 // interpreter:
514
515 else if(in.matchAdvance(INSERT) != null)
516 { in.required(INTO);
517 String tableName = in.required(IDENTIFIER);
518
519 List columns = null, values = null;
520

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 303

388x_Ch04_CMP4 8/17/04 2:27 PM Page 303

521 if(in.matchAdvance(LP) != null)
522 { columns = idList();
523 in.required(RP);
524 }
525 if(in.required(VALUES) != null)
526 { in.required(LP);
527 values = exprList();
528 in.required(RP);
529 }
530 affectedRows = doInsert(tableName, columns, values);
531 }
532 else if(in.matchAdvance(UPDATE) != null)
533 { // First parse the expression
534 String tableName = in.required(IDENTIFIER);
535 in.required(SET);
536 final String columnName = in.required(IDENTIFIER);
537 in.required(EQUAL);
538 final Expression value = expr();
539 in.required(WHERE);
540 affectedRows =
541 doUpdate(tableName, columnName, value, expr());
542 }
543 else if(in.matchAdvance(DELETE) != null)
544 { in.required(FROM);
545 String tableName = in.required(IDENTIFIER);
546 in.required(WHERE);
547 affectedRows = doDelete(tableName, expr());
548 }
549 else if(in.matchAdvance(SELECT) != null)
550 { List columns = idList();
551
552 String into = null;
553 if(in.matchAdvance(INTO) != null)
554 into = in.required(IDENTIFIER);
555
556 in.required(FROM);
557 List requestedTableNames = idList();
558
559 Expression where = (in.matchAdvance(WHERE) == null)
560 ? null : expr();
561 Table result = doSelect(columns, into,
562 requestedTableNames, where);
563 return result;
564 }
565 else
566 { error("Expected insert, create, drop, use, "
567 +"update, delete or select");

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL304

388x_Ch04_CMP4 8/17/04 2:27 PM Page 304

568 }
569
570 return null;
571 }
572 //--
573 // idList ::= IDENTIFIER idList' | STAR
574 // idList' ::= COMMA IDENTIFIER idList'
575 // | e
576 // Return a Collection holding the list of columns
577 // or null if a * was found.
578
579 private List idList() throws ParseFailure
580 { List identifiers = null;
581 if(in.matchAdvance(STAR) == null)
582 { identifiers = new ArrayList();
583 String id;
584 while((id = in.required(IDENTIFIER)) != null)
585 { identifiers.add(id);
586 if(in.matchAdvance(COMMA) == null)
587 break;
588 }
589 }
590 return identifiers;
591 }
592
593 //--
594 // declarations ::= IDENTIFIER [type] declaration'
595 // declarations' ::= COMMA IDENTIFIER [type] [NOT [NULL]] declarations'
596 // | e
597 //
598 // type ::= INTEGER [LP expr RP]
599 // | CHAR [LP expr RP]
600 // | NUMERIC [LP expr COMMA expr RP]
601 // | DATE // format spec is part of token
602
603 private List declarations() throws ParseFailure
604 { List identifiers = new ArrayList();
605
606 String id;
607 while(true)
608 { if(in.matchAdvance(PRIMARY) != null)
609 { in.required(KEY);
610 in.required(LP);
611 in.required(IDENTIFIER);
612 in.required(RP);
613 }
614 else

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 305

388x_Ch04_CMP4 8/17/04 2:27 PM Page 305

615 { id = in.required(IDENTIFIER);
616
617 identifiers.add(id); // get the identifier
618
619 // Skip past a type declaration if one's there
620
621 if((in.matchAdvance(INTEGER) != null)
622 || (in.matchAdvance(CHAR) != null))
623 {
624 if(in.matchAdvance(LP) != null)
625 { expr();
626 in.required(RP);
627 }
628 }
629 else if(in.matchAdvance(NUMERIC) != null)
630 { if(in.matchAdvance(LP) != null)
631 { expr();
632 in.required(COMMA);
633 expr();
634 in.required(RP);
635 }
636 }
637 else if(in.matchAdvance(DATE) != null)
638 { ; // do nothing
639 }
640
641 in.matchAdvance(NOT);
642 in.matchAdvance(NULL);
643 }
644
645 if(in.matchAdvance(COMMA) == null) // no more columns
646 break;
647 }
648
649 return identifiers;
650 }
651
652 // exprList ::= expr exprList'
653 // exprList' ::= COMMA expr exprList'
654 // | e
655
656 private List exprList() throws ParseFailure
657 { List expressions = new LinkedList();
658
659 expressions.add(expr());
660 while(in.matchAdvance(COMMA) != null)
661 { expressions.add(expr());

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL306

388x_Ch04_CMP4 8/17/04 2:27 PM Page 306

662 }
663 return expressions;
664 }
665
666 /** Top-level expression production. Returns an Expression
667 * object which will interpret the expression at runtime
668 * when you call it's evaluate() method.
669 * <PRE>
670 * expr ::= andExpr expr'
671 * expr' ::= OR andExpr expr'
672 * | e
673 * </PRE>
674 */
675
676 private Expression expr() throws ParseFailure
677 { Expression left = andExpr();
678 while(in.matchAdvance(OR) != null)
679 left = new LogicalExpression(left, OR, andExpr());
680 return left;
681 }
682
683 // andExpr ::= relationalExpr andExpr'
684 // andExpr' ::= AND relationalExpr andExpr'
685 // | e
686
687 private Expression andExpr() throws ParseFailure
688 { Expression left = relationalExpr();
689 while(in.matchAdvance(AND) != null)
690 left = new LogicalExpression(left, AND, relationalExpr());
691 return left;
692 }
693
694 // relationalExpr ::= additiveExpr relationalExpr'
695 // relationalExpr'::= RELOP additiveExpr relationalExpr'
696 // | EQUAL additiveExpr relationalExpr'
697 // | LIKE additiveExpr relationalExpr'
698 // | e
699
700 private Expression relationalExpr() throws ParseFailure
701 { Expression left = additiveExpr();
702 while(true)
703 { String lexeme;
704 if((lexeme = in.matchAdvance(RELOP)) != null)
705 { RelationalOperator op;
706 if(lexeme.length() == 1)
707 op = lexeme.charAt(0)=='<' ? LT : GT ;
708 else

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 307

388x_Ch04_CMP4 8/17/04 2:27 PM Page 307

709 { if(lexeme.charAt(0)=='<' && lexeme.charAt(1)=='>')
710 op = NE;
711 else
712 op = lexeme.charAt(0)=='<' ? LE : GE ;
713 }
714 left = new RelationalExpression(left, op, additiveExpr());
715 }
716 else if(in.matchAdvance(EQUAL) != null)
717 { left = new RelationalExpression(left, EQ, additiveExpr());
718 }
719 else if(in.matchAdvance(LIKE) != null)
720 { left = new LikeExpression(left, additiveExpr());
721 }
722 else
723 break;
724 }
725 return left;
726 }
727
728 // additiveExpr ::= multiplicativeExpr additiveExpr'
729 // additiveExpr' ::= ADDITIVE multiplicativeExpr additiveExpr'
730 // | e
731
732 private Expression additiveExpr() throws ParseFailure
733 { String lexeme;
734 Expression left = multiplicativeExpr();
735 while((lexeme = in.matchAdvance(ADDITIVE)) != null)
736 { MathOperator op = lexeme.charAt(0)=='+' ? PLUS : MINUS;
737 left = new ArithmeticExpression(
738 left, multiplicativeExpr(), op);
739 }
740 return left;
741 }
742
743 // multiplicativeExpr ::= term multiplicativeExpr'
744 // multiplicativeExpr' ::= STAR term multiplicativeExpr'
745 // | SLASH term multiplicativeExpr'
746 // | e
747
748 private Expression multiplicativeExpr() throws ParseFailure
749 { Expression left = term();
750 while(true)
751 { if(in.matchAdvance(STAR) != null)
752 left = new ArithmeticExpression(left, term(), TIMES);
753 else if(in.matchAdvance(SLASH) != null)
754 left = new ArithmeticExpression(left, term(), DIVIDE);
755 else

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL308

388x_Ch04_CMP4 8/17/04 2:27 PM Page 308

756 break;
757 }
758 return left;
759 }
760
761 // term ::= NOT expr
762 // | LP expr RP
763 // | factor
764
765 private Expression term() throws ParseFailure
766 { if(in.matchAdvance(NOT) != null)
767 { return new NotExpression(expr());
768 }
769 else if(in.matchAdvance(LP) != null)
770 { Expression toReturn = expr();
771 in.required(RP);
772 return toReturn;
773 }
774 else
775 return factor();
776 }
777
778 // factor ::= compoundId | STRING | NUMBER | NULL
779 // compoundId ::= IDENTIFIER compoundId'
780 // compoundId' ::= DOT IDENTIFIER
781 // | e
782
783 private Expression factor() throws ParseFailure
784 { try
785 { String lexeme;
786 Value result;
787
788 if((lexeme = in.matchAdvance(STRING)) != null)
789 result = new StringValue(lexeme);
790
791 else if((lexeme = in.matchAdvance(NUMBER)) != null)
792 result = new NumericValue(lexeme);
793
794 else if((lexeme = in.matchAdvance(NULL)) != null)
795 result = new NullValue();
796
797 else
798 { String columnName = in.required(IDENTIFIER);
799 String tableName = null;
800
801 if(in.matchAdvance(DOT) != null)
802 { tableName = columnName;

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 309

388x_Ch04_CMP4 8/17/04 2:27 PM Page 309

803 columnName = in.required(IDENTIFIER);
804 }
805
806 result = new IdValue(tableName, columnName);
807 }
808
809 return new AtomicExpression(result);
810 }
811 catch(java.text.ParseException e) { /* fall through */ }
812
813 error("Couldn't parse Number"); // Always throws a ParseFailure
814 return null;
815 }

Now that you’ve looked at how the tree is built, you can look at the Interpreter design
pattern—the pattern actually has nothing to say about how you could bring an expression tree
into existence. You could use a parser, but you could also hand-code the tree.

The basic notion of the Interpreter pattern is to implement an interpreter by traversing
a physical tree of Command objects that represents the abstract-syntax tree for an expression
in some grammar. Each node in the tree performs the operation that it represents syntacti-
cally. For example, the execute() method of the ArithmeticExpression node that was created
in the parser’s multiplicativeExpression() method performs a single arithmetic operation
and returns an object (of class Value) that represents the result of the operation. The tree is
traversed in a depth-first fashion. The first thing that a parent-node execute() method does is
call the execute() methods of the children, all of which return Value objects to their parents.

The Expression interface and its implementations are all in Listing 4-33. The Expression
interface defines only one method: evaluate(...), which causes the Expression object to do
whatever it does to evaluate itself and to return a Value that represents the result.

Taking ArithmeticExpression (on line 833) as characteristic, the constructor stores away
Expression objects representing the two subexpressions and the operation to perform (oper-
ator). The evaluate method gets the values associated with the left and right subexpressions
(and stores them in leftValue and rightValue). It then checks that the subexpressions
returned values of the correct type. As you can see from the class diagram in Figure 4-12, on
page 261, Value is itself an interface, and several implementations represent particular types.
A NumericValue represents a number, a StringValue represents a string, and so on. Arith-
meticExpression’s evaluate() method requires the Values returned from the subexpressions
to be NumericValue objects. Finally, evaluate() extracts the actual values (as doubles),
performs the arithmetic, and creates a NumericValue to hold the result.

Listing 4-33. Database.java: Expressions

816
//==
817 // The methods that parse the productions rooted in expr work in
818 // concert to build an Expression object that evaluates the expression.
819 // This is an example of both the Interpreter and Composite patterns.

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL310

388x_Ch04_FINAL.qxd 1/12/05 11:00 AM Page 310

820 // An expression is represented in memory as an abstract-syntax tree
821 // made up of instances of the following classes, each of which
822 // references its subexpressions.
823
824 private interface Expression
825 { /* Evaluate an expression using rows identified by the
826 * two iterators passed as arguments. <code>j</code>
827 * is null unless a join is being processed.
828 */
829
830 Value evaluate(Cursor[] tables) throws ParseFailure;
831 }
832 //- -
833 private class ArithmeticExpression implements Expression
834 { private final MathOperator operator;
835 private final Expression left, right;
836
837 public ArithmeticExpression(Expression left, Expression right,
838 MathOperator operator)
839 { this.operator = operator;
840 this.left = left;
841 this.right = right;
842 }
843
844 public Value evaluate(Cursor[] tables) throws ParseFailure
845 {
846 Value leftValue = left.evaluate (tables);
847 Value rightValue = right.evaluate(tables);
848
849 verify
850 (leftValue instanceof NumericValue
851 && rightValue instanceof NumericValue,
852 "Operands to < > <= >= = must be Boolean"
853);
854
855 double l = ((NumericValue)leftValue).value();
856 double r = ((NumericValue)rightValue).value();
857
858 return new NumericValue
859 ((operator == PLUS) ? (l + r) :
860 (operator == MINUS) ? (l - r) :
861 (operator == TIMES) ? (l * r) :
862 /* operator == DIVIDE */ (l / r)
863);
864 }
865 }
866 //- -

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 311

388x_Ch04_CMP4 8/17/04 2:27 PM Page 311

867 private class LogicalExpression implements Expression
868 { private final boolean isAnd;
869 private final Expression left, right;
870
871 public LogicalExpression(Expression left, Token op,
872 Expression right)
873 { assert op==AND || op==OR;
874 this.isAnd = (op == AND);
875 this.left = left;
876 this.right = right;
877 }
878
879 public Value evaluate(Cursor[] tables) throws ParseFailure
880 { Value leftValue = left. evaluate(tables);
881 Value rightValue = right.evaluate(tables);
882 verify
883 (leftValue instanceof BooleanValue
884 && rightValue instanceof BooleanValue,
885 "operands to AND and OR must be logical/relational"
886);
887
888 boolean l = ((BooleanValue)leftValue).value();
889 boolean r = ((BooleanValue)rightValue).value();
890
891 return new BooleanValue(isAnd ? (l && r) : (l || r));
892 }
893 }
894 //- -
895 private class NotExpression implements Expression
896 { private final Expression operand;
897
898 public NotExpression(Expression operand)
899 { this.operand = operand;
900 }
901 public Value evaluate(Cursor[] tables) throws ParseFailure
902 { Value value = operand.evaluate(tables);
903 verify(value instanceof BooleanValue,
904 "operands to NOT must be logical/relational");
905 return new BooleanValue(!((BooleanValue)value).value());
906 }
907 }
908 //- -
909 private class RelationalExpression implements Expression
910 {
911 private final RelationalOperator operator;
912 private final Expression left, right;
913

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL312

388x_Ch04_CMP4 8/17/04 2:27 PM Page 312

914 public RelationalExpression(Expression left,
915 RelationalOperator operator,
916 Expression right)
917 { this.operator = operator;
918 this.left = left;
919 this.right = right;
920 }
921
922 public Value evaluate(Cursor[] tables) throws ParseFailure
923 {
924 Value leftValue = left.evaluate (tables);
925 Value rightValue = right.evaluate(tables);
926
927 if((leftValue instanceof StringValue)
928 || (rightValue instanceof StringValue))
929 { verify(operator==EQ || operator==NE,
930 "Can't use < <= > or >= with string");
931
932 boolean isEqual =
933 leftValue.toString().equals(rightValue.toString());
934
935 return new BooleanValue(operator==EQ ? isEqual:!isEqual);
936 }
937
938 if(rightValue instanceof NullValue
939 || leftValue instanceof NullValue)
940 {
941 verify(operator==EQ || operator==NE,
942 "Can't use < <= > or >= with NULL");
943
944 // Return true if both the left and right sides are instances
945 // of NullValue.
946 boolean isEqual =
947 leftValue.getClass() == rightValue.getClass();
948
949 return new BooleanValue(operator==EQ ? isEqual : !isEqual);
950 }
951
952 // Convert Boolean values to numbers so we can compare them.
953 //
954 if(leftValue instanceof BooleanValue)
955 leftValue = new NumericValue(
956 ((BooleanValue)leftValue).value() ? 1 : 0);
957 if(rightValue instanceof BooleanValue)
958 rightValue = new NumericValue(
959 ((BooleanValue)rightValue).value() ? 1 : 0);
960

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 313

388x_Ch04_CMP4 8/17/04 2:27 PM Page 313

961 verify(leftValue instanceof NumericValue
962 && rightValue instanceof NumericValue,
963 "Operands must be numbers");
964
965 double l = ((NumericValue)leftValue).value();
966 double r = ((NumericValue)rightValue).value();
967
968 return new BooleanValue
969 ((operator == EQ) ? (l == r) :
970 (operator == NE) ? (l != r) :
971 (operator == LT) ? (l > r) :
972 (operator == GT) ? (l < r) :
973 (operator == LE) ? (l <= r) :
974 /* operator == GE */ (l >= r)
975);
976 }
977 }
978 //- -
979 private class LikeExpression implements Expression
980 { private final Expression left, right;
981 public LikeExpression(Expression left, Expression right)
982 { this.left = left;
983 this.right = right;
984 }
985
986 public Value evaluate(Cursor[] tables) throws ParseFailure
987 { Value leftValue = left.evaluate(tables);
988 Value rightValue = right.evaluate(tables);
989 verify
990 (leftValue instanceof StringValue
991 && rightValue instanceof StringValue,
992 "Both operands to LIKE must be strings"
993);
994
995 String compareTo = ((StringValue) leftValue).value();
996 String regex = ((StringValue) rightValue).value();
997 regex = regex.replaceAll("%",".*");
998
999 return new BooleanValue(compareTo.matches(regex));
1000 }
1001 }
1002 //- -
1003 private class AtomicExpression implements Expression
1004 { private final Value atom;
1005 public AtomicExpression(Value atom)
1006 { this.atom = atom;
1007 }

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL314

388x_Ch04_CMP4 8/17/04 2:27 PM Page 314

1008 public Value evaluate(Cursor[] tables)
1009 { return atom instanceof IdValue
1010 ? ((IdValue)atom).value(tables) // lookup cell in table and
1011 : atom // convert to appropriate type
1012 ;
1013 }
1014 }

The Value interface and its implementations are in Listing 4-34, and NumericValue is
defined on line 1048. This class is little more than a container for a double. In fact, I could have
used the introspection classes such as java.lang.Double for values, were it not for the fact that
I needed a few operations that the introspection classes don’t support and I needed the
objects that represent return values to implement a common interface. (Double implements
Number, but String does not. NumericValue and StringValue both implement Value, however.)

So far, you’ve just looked at the Expression objects in the Nonterminal-Expression role
(Expression objects that represent interior nodes in the syntax tree). One other sort of Expres-
sion exists: an AtomicExpression that is used in the Terminal-Expression role—it represents a
leaf of the tree, an object that has no subexpressions (a numeric constant, a string constant,
a reference to a cell in a table, or a SQL null). AtomicExpression is at the end of Listing 4-33
(page 314) on line 1003. The only real difference between this Terminal Expression and the
Nonterminal Expressions is the absence of subexpressions and their associated evaluate()
calls. The AtomicExpression contains a Value, not a pair of Expression objects representing
the subexpressions. AtomicExpression objects are created in only one place: in factor(...)
(Listing 4-32, line 783). The factor(...) method creates a Value object, the type of which is
determined by the input, and then returns an AtomicExpression that wraps that Value.

Returning back to the values in Listing 4-34, with one exception, these classes all just act
as containers for the actual value. NumericValue contains a double, StringValue contains a
String, BooleanValue contains a boolean, and so forth.

The only interesting Value class is the IdValue (Listing 4-34, line 1068), which represents
a reference to a row/column intersection (a cell) in a Table. The IdValue’s fields are the table
and column names. The work of fetching the value for a particular row in that table happens
in the toString() method on line 1082, which is passed an array of Cursor objects. (Typically,
this array has only one element in it, but in the case of a join, it will have as many elements
as there are tables in the join.) The toString() method finds the cursor that’s traversing the
table whose name it has stored (in tableName) and then extracts the required column from
the table using that Cursor. It returns the cell’s contents as a String. The value() method in
the IdValue (on line 1119) examines the String returned from the toString() override and
does a type conversion by creating an appropriate Value type, based on the String’s contents.

The important fact to note here is that the value of a cell is not fetched when the inter-
preter tree is built; rather, it’s fetched when the tree is evaluated. At build time, the Atomic-
Expression stores away the information it needs to access the proper cell at evaluation time.
The toString() call, which actually fetches the value of the cell, is made by some Expression
object’s evaluate() method. The Terminal Expression (the IdValue) accesses the Context
(one of the Tables) at expression-evaluation time.

The Table class has the roll of Context in the design pattern. The Context is any data
structure that holds the values of variables that are accessed from the interpreted expressions.

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 315

388x_Ch04_CMP4 8/17/04 2:27 PM Page 315

Listing 4-34. Database.java: Values

1015 //--
1016 // The expression classes pass values around as they evaluate
1017 // the expression. // There are four value subtypes that represent
1018 // the possible/ operands to an expression (null, numbers,
1019 // strings, table.column). The implementers of Value provide
1020 // convenience methods for using those operands.
1021 //
1022 private interface Value // tagging interface
1023 {
1024 }
1025 //- -
1026 private static class NullValue implements Value
1027 { public String toString(){ return null; }
1028 }
1029 //- -
1030 private static final class BooleanValue implements Value
1031 { boolean value;
1032 public BooleanValue(boolean value)
1033 { this.value = value;
1034 }
1035 public boolean value() { return value; }
1036 public String toString(){ return String.valueOf(value); };
1037 }
1038 //- -
1039 private static class StringValue implements Value
1040 { private String value;
1041 public StringValue(String lexeme)
1042 { value = lexeme.replaceAll("['\"](.*?)['\"]", "$1");
1043 }
1044 public String value() { return value; }
1045 public String toString(){ return value; }
1046 }
1047 //- -
1048 private final class NumericValue implements Value
1049 { private double value;
1050 public NumericValue(double value) // initialize from a double.
1051 { this.value = value;
1052 }
1053 public NumericValue(String s) throws java.text.ParseException
1054 { this.value = NumberFormat.getInstance().parse(s).doubleValue();
1055 }
1056 public double value()
1057 { return value;
1058 }
1059 public String toString() // round down if the fraction is very small
1060 {
1061 if(Math.abs(value - Math.floor(value)) < 1.0E-20)

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL316

388x_Ch04_CMP4 8/17/04 2:27 PM Page 316

1062 return String.valueOf((long)value);
1063 else
1064 return String.valueOf(value);
1065 }
1066 }
1067 //- -
1068 private final class IdValue implements Value
1069 { String tableName;
1070 String columnName;
1071
1072 public IdValue(String tableName, String columnName)
1073 { this.tableName = tableName;
1074 this.columnName = columnName;
1075 }
1076
1077 /** Using the cursor, extract the referenced cell from
1078 * the current Row and return its contents as a String.
1079 * @return the value as a String or null if the cell
1080 * was null.
1081 */
1082 public String toString(Cursor[] participants)
1083 { Object content = null;
1084
1085 // If no name is to the left of the dot, then use
1086 // the (only) table.
1087
1088 if(tableName == null)
1089 content= participants[0].column(columnName);
1090 else
1091 { Table container = (Table) tables.get(tableName);
1092
1093 // Search for the table whose name matches
1094 // the one to the left of the dot, then extract
1095 // the desired column from that table.
1096
1097 content = null;
1098 for(int i = 0; i < participants.length; ++i)
1099 { if(participants[i].isTraversing(container))
1100 { content = participants[i].column(columnName);
1101 break;
1102 }
1103 }
1104 }
1105
1106 // All table contents are converted to Strings, whatever
1107 // their original type. This conversion can cause
1108 // problems if the table was created manually.
1109

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 317

388x_Ch04_CMP4 8/17/04 2:27 PM Page 317

1110 return (content == null) ? null : content.toString();
1111 }
1112
1113 /** Using the cursor, extract the referenced cell from the
1114 * current row of the appropriate table, convert the
1115 * contents to a {@link NullValue}, {@link NumericValue},
1116 * or {@link StringValue}, as appropriate, and return
1117 * that value object.
1118 */
1119 public Value value(Cursor[] participants)
1120 { String s = toString(participants);
1121 try
1122 { return (s == null)
1123 ? (Value) new NullValue()
1124 : (Value) new NumericValue(s)
1125 ;
1126 }
1127 catch(java.text.ParseException e)
1128 { // The NumericValue constructor failed, so it must be
1129 // a string. Fall through to the return-a-string case.
1130 }
1131 return new StringValue(s);
1132 }
1133 }

Watching the Interpreter in Action
The final piece of the Database class pulls together everything I’ve discussed in this chapter.
The methods in Listing 4-35 are the workhorse methods that are called from the parser to
execute SQL statements.

Let’s start with SELECT, at the top of Listing 4-35. I’ll demonstrate how the interpreter works
by tracing through the code as it traverses the interpreter tree in Figure 4-17, evaluating the
following SQL statement:

SELECT first, last FROM people, zip
WHERE people.last='Flintstone'

AND people.first='Fred'
OR people.zip > (94700 + zip.margin)

Here’s the parser code (from Listing 4-32) that’s executed when a SELECT is encountered:

else if(in.matchAdvance(SELECT) != null)
{ List columns = idList();

String into = null;
if(in.matchAdvance(INTO) != null)

into = in.required(IDENTIFIER);

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL318

388x_Ch04_CMP4 8/17/04 2:27 PM Page 318

in.required(FROM);
List requestedTableNames = idList();

Expression where = (in.matchAdvance(WHERE) == null)
? null : expr();

Table result = doSelect(columns, into,
requestedTableNames, where);

return result;
}

The first call to idList() parses the list of columns and returns a java.util.List that
contains the two strings "first" and "last". (The idList() method is on line 579 of Listing 4-32.)
The second call to idList() does the same thing, but with tables listed in the FROM clause. The
call to expr() (Listing 4-32, line 676) builds the tree of Expression objects shown in Figure 4-17,
previously. The expr() method returns the RelationalExpression object at the root of the tree.

All this information is then passed to doSelect() (Listing 4-35, line 1137). This method first
converts the table names to actual tables by looking up the names in the tables map. It then
creates a Strategy object that the Table’s select() method can use to select rows and passes it
into the primary table. Here’s the code for the Strategy object (from Listing 4-32, line -1):

Selector selector = (where == null) ? Selector.ALL :
new Selector.Adapter()
{ public boolean approve(Cursor[] tables)

{ Value result = where.evaluate(tables);

verify(result instanceof BooleanValue,
"WHERE clause must yield boolean result");

return ((BooleanValue)result).value();
}

};

Table result = primary.select(selector, columns, participantsInJoin);

As the Table processes the select() statement, it calls approve() for every row, which
causes the anonymous Selector.Adapter to ask the root node in the expression tree to eval-
uate itself. (This ConcreteTable code is way back in Listing 4-17, line 384.)

The topmost node in the expression tree is a RelationalExpression, and the first thing
that its evaluate(...) method (Listing 4-33, line 922) does is evaluate the subexpressions.

Value leftValue = left.evaluate (tables);
Value rightValue = right.evaluate(tables);

All of the Nonterminal Expressions start this way, in fact. In the current case, the left child
of the root node is itself a RelationalExpression, so you’ll traverse the tree recursively down to
the AtomicExpression at the far left.

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 319

388x_Ch04_CMP4 8/17/04 2:27 PM Page 319

The AtomicExpression’s evaluate(...) method (Listing 4-33, line 1008) just delegates to
the contained Value, in this case an IdValue, so go to its value(...) method (Listing 4-34, line
1119). This method looks up the value of the last column on the current row of the people
table and returns its value as a StringValue (shown in Figure 4-17 as an upward-pointing error
on the edge leading into the AtomicExpression node). The RelationalExpression object that
called the AtomicExpression’s evaluate(...) method now calls evaluate on its right child and
gets back a StringValue that holds the String "Flintstone". It compares the two strings and
creates a BooleanValue object that holds the result of the comparison and then returns that
BooleanValue object. The code looks like this:

if((leftValue instanceof StringValue)
|| (rightValue instanceof StringValue))

{ verify(operator==EQ || operator==NE,
"Can't use < <= > or >= with string");

boolean isEqual =
leftValue.toString().equals(rightValue.toString());

return new BooleanValue(operator==EQ ? isEqual:!isEqual);
}

The remainder of the RelationalExpression’s evaluate() method doesn’t come into play
in this scenario, but it handles the evaluation of relational operators that have numeric or null
operands.

The remainder of the expression evaluation proceeds in the same fashion. The evaluate()
call gets Value objects from the child nodes, evaluates those values appropriately, and returns
a Value that holds the result. By the time you finish with the evaluate() method of the root
node, you will have evaluated the entire expression.

The select() method is the most complex of the methods in Listing 4-35. The others work
in pretty much the same way, however. They create a Selector that invokes the execute(...)
method of the root node of the WHERE-clause expression tree, and the Selector approves or
rejects rows by running the interpreter. The remainder of Listing 4-35 is a small unit-test class
that runs the SQL script in Listing 4-27.

Listing 4-35. Database.java: Interpreter Invocation

1134
//==
==
1135 // Workhorse methods called from the parser.
1136 //
1137 private Table doSelect(List columns, String into,
1138 List requestedTableNames,
1139 final Expression where)
1140 throws ParseFailure
1141 {
1142
1143 Iterator tableNames = requestedTableNames.iterator();

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL320

388x_Ch04_CMP4 8/17/04 2:27 PM Page 320

1144
1145 assert tableNames.hasNext() : "No tables to use in select!" ;
1146
1147 // The primary table is the first one listed in the
1148 // FROM clause. The participantsInJoin are the other
1149 // tables listed in the FROM clause. We're passed in the
1150 // table names; use these names to get the actual Table
1151 // objects.
1152
1153 Table primary = (Table) tables.get((String) tableNames.next());
1154
1155 List participantsInJoin = new ArrayList();
1156 while(tableNames.hasNext())
1157 { String participant = (String) tableNames.next();
1158 participantsInJoin.add(tables.get(participant));
1159 }
1160
1161 // Now do the select operation. First create a Strategy
1162 // object that picks the correct rows, then pass that
1163 // object through to the primary table's select() method.
1164
1165 Selector selector = (where == null) ? Selector.ALL :
1166 new Selector.Adapter()
1167 { public boolean approve(Cursor[] tables)
1168 { try
1169 {
1170 Value result = where.evaluate(tables);
1171
1172 verify(result instanceof BooleanValue,
1173 "WHERE clause must yield boolean result");
1174 return ((BooleanValue)result).value();
1175 }
1176 catch(ParseFailure e)
1177 { throw new ThrowableContainer(e);
1178 }
1179 }
1180 };
1181
1182 try
1183 { Table result = primary.select(selector, columns, participantsInJoin);
1184
1185 // If this is a "SELECT INTO <table>" request, remove the
1186 // returned table from the UnmodifiableTable wrapper, give
1187 // it a name, and put it into the tables Map.
1188
1189 if(into != null)

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 321

388x_Ch04_CMP4 8/17/04 2:27 PM Page 321

1190 { result = ((UnmodifiableTable)result).extract();
1191 result.rename(into);
1192 tables.put(into, result);
1193 }
1194 return result;
1195 }
1196 catch(ThrowableContainer container)
1197 { throw (ParseFailure) container.contents();
1198 }
1199 }
1200 //- -
1201 private int doInsert(String tableName, List columns, List values)
1202 throws ParseFailure
1203 {
1204 List processedValues = new LinkedList();
1205 Table t = (Table) tables.get(tableName);
1206
1207 for(Iterator i = values.iterator(); i.hasNext();)
1208 { Expression current = (Expression) i.next();
1209 processedValues.add(
1210 current.evaluate(null).toString());
1211 }
1212
1213 // finally, put the values into the table.
1214
1215 if(columns == null)
1216 return t.insert(processedValues);
1217
1218 verify(columns.size() == values.size(),
1219 "There must be a value for every listed column");
1220 return t.insert(columns, processedValues);
1221 }
1222 //- -
1223 private int doUpdate(String tableName, final String columnName,
1224 final Expression value, final Expression where)
1225 throws ParseFailure
1226 {
1227 Table t = (Table) tables.get(tableName);
1228 try
1229 { return t.update
1230 (new Selector()
1231 { public boolean approve(Cursor[] tables)
1232 { try
1233 { Value result = where.evaluate(tables);
1234
1235 verify(result instanceof BooleanValue,
1236 "WHERE clause must yield boolean result");
1237

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL322

388x_Ch04_CMP4 8/17/04 2:27 PM Page 322

1238 return ((BooleanValue)result).value();
1239 }
1240 catch(ParseFailure e)
1241 { throw new ThrowableContainer(e);
1242 }
1243 }
1244 public void modify(Cursor current)
1245 { try
1246 { Value newValue=value.evaluate(new Cursor[]{current});
1247 current.update(columnName, newValue.toString());
1248 }
1249 catch(ParseFailure e)
1250 { throw new ThrowableContainer(e);
1251 }
1252 }
1253 }
1254);
1255 }
1256 catch(ThrowableContainer container)
1257 { throw (ParseFailure) container.contents();
1258 }
1259 }
1260 //- -
1261 private int doDelete(String tableName, final Expression where)
1262 throws ParseFailure
1263 { Table t = (Table) tables.get(tableName);
1264 try
1265 { return t.delete
1266 (new Selector.Adapter()
1267 { public boolean approve(Cursor[] tables)
1268 { try
1269 { Value result = where.evaluate(tables);
1270 verify(result instanceof BooleanValue,
1271 "WHERE clause must yield boolean result");
1272 return ((BooleanValue)result).value();
1273 }
1274 catch(ParseFailure e)
1275 { throw new ThrowableContainer(e);
1276 }
1277 }
1278 }
1279);
1280 }
1281 catch(ThrowableContainer container)
1282 { throw (ParseFailure) container.contents();
1283 }
1284 }

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 323

388x_Ch04_CMP4 8/17/04 2:27 PM Page 323

One other aspect of the doSelect(...) method at the top of Listing 4-35 (p. 316) bears
mentioning. Here’s a stripped-down version of the call to the Table’s select() method with
the interesting code in bold:

Selector selector = (where == null) ? Selector.ALL :
new Selector.Adapter()
{ public boolean approve(Cursor[] tables)

{ try
{ Value result = where.evaluate(tables);

//...
}
catch(ParseFailure e)
{ throw new ThrowableContainer(e);
}

}
};

try
{ Table result = primary.select(selector, columns, participantsInJoin);

//...
}
catch(ThrowableContainer container)
{ throw (ParseFailure) container.contents();
}

What’s that ThrowableContainer doing? The interface defined by Table and Selector is
very generic by necessity. The approve() method, for example, is not declared as throwing any
sort of exception because it’s impossible to predict what that exception may be.

The evaluate() method called in approve() throws a ParseFailure object, and Parse-
Failure is a checked exception—I have to deal with it. I want that exception toss to propagate
out of approve(...), but to do that, I’d have to add a throws ParseFailure to the approve(...)
declaration. The compiler will then (quite rightly) complain, because the definition of
approve() in the Selector interface is not declared as throwing any sort of exception at
all. I don’t want to append a throws ParseFailure the approve() definition in the Selector,
however. A ParseFailure exception is used by the current parser only; it is irrelevant to all
other implementers of Selector, and I don’t want to couple the Table/Selector interfaces to
the SQL-interpreter layer.

I’ve solved the problem with the ThrowableContainer class in Listing 4-36. This class
is quite simple; it’s nothing but a RuntimeException subclass that holds a Throwable object.
The approve(...) method packages the ParseFailure exception into the container and then
throws the container. The catch clause that surrounds the select(...) call (which calls
approve(...)) catches the container, unpacks the contained ParseException object, and
then throws the ParseException object.

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL324

388x_Ch04_CMP4 8/17/04 2:27 PM Page 324

The ThrowableContainer is effectively performing what I think of as a lateral type conver-
sion—sideways in the class hierarchy—not to a subclass or superclass type, but to a sibling
type. It’s as if I have converted an ArrayList to a LinkedList.

The obvious downside of this wrapping strategy is that it subverts the type-safety system.
For example, if doSelect(...) were behaving badly, it could just let the ThrowableContainer
propagate out to the calling method rather than catching the container and throwing the
contained object. The calling method wouldn’t have a clue what to do with the Throwable-
Container, however. Also on the downside is that I’ve converted a checked-exception object
into a RuntimeException that is not checked, which defeats the whole purpose of checked
exceptions. It would be a serious problem, in other words, if I didn’t convert the exception
object back to its original type by unwrapping it.

These negatives are pretty severe. I’m willing to put up with them in the current code
because the packaging and unpackaging operations all occur within a few lines of each other
in the source code, so the code remains reasonably maintainable.

Listing 4-36. ThrowableContainer.java

1 package com.holub.tools;
2
3 /** A convenient container for realying a checked Exception
4 * from a method that can't declare a throws clause to
5 * a calling method that can.
6 */
7
8 public class ThrowableContainer extends RuntimeException
9 { private final Throwable contents;
10 public ThrowableContainer(Throwable contents)
11 { this.contents = contents;
12 }
13 public Throwable contents()
14 { return contents;
15 }
16 }

The JDBC Layer
You’ll be happy to hear that the hard part is over (whew!). All that’s left is writing a JDBC driver,
which turns out to be a trivial enterprise. A few interesting applications of design patterns
exist in the JDBC-driver code, however.

Most of the classes in the following discussion are mine. To make the discussion clear,
however, I’ve set off any classes or interfaces that are part of Java by using their fully qualified
class name (java.sql.Xxx). If you don’t see the (java.sql), then the class is one of mine.

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 325

388x_Ch04_CMP4 8/17/04 2:27 PM Page 325

Figure 4-18 shows the structure and patterns for the JDBC layer, and I’ll explain this
diagram in depth over the course of this section.

Figure 4-18. The structure and patterns of the JDBC layer

If you’ve never used JDBC, the easiest way to learn it is to look at a simple application.
Listing 4-37 is a small test program that’s a minor adaptation of the example in Sun’s JDBC
documentation. I’ll explain this listing throughout the rest of this section.

Listing 4-37. JDBCTest.java

1 package com.holub.database.jdbc;
2
3 import java.sql.*;
4
5 public class JDBCTest
6 {

ResultSetMetadataAdapter

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL326

388x_Ch04_FINAL.qxd 1/14/05 3:59 PM Page 326

7 static String[] data =
8 { "(1, 'John', 'Mon', 1, 'JustJoe')",
9 "(2, 'JS', 'Mon', 1, 'Cappuccino')",
10 "(3, 'Marie', 'Mon', 2, 'CaffeMocha')",
11 };
12
13 public static void main(String[] args) throws Exception
14 {
15 Class.forName("com.holub.database.jdbc.JDBCDriver")
16 .newInstance();
17
18 Connection connection = null;
19 Statement statement = null;
20 try
21 { connection = DriverManager.getConnection(
22 "file:/c:/src/com/holub/database/jdbc/Dbase",
23 "harpo", "swordfish");
24
25 statement = connection.createStatement();
26
27 statement.executeUpdate(
28 "create table test (" +
29 " Entry INTEGER NOT NULL" +
30 ", Customer VARCHAR (20) NOT NULL" +
31 ", DOW VARCHAR (3) NOT NULL" +
32 ", Cups INTEGER NOT NULL" +
33 ", Type VARCHAR (10) NOT NULL" +
34 ", PRIMARY KEY(Entry)" +
35 ")"
36);
37
38 for(int i = 0; i < data.length; ++i)
39 statement.executeUpdate(
40 "insert into test VALUES "+ data[i]);
41
42 // Test Autocommit stuff. If everything's working
43 // correctly, there James should be in the databse,
44 // but Fred should not.
45
46 connection.setAutoCommit(false);
47 statement.executeUpdate(
48 "insert into test VALUES "+
49 "(4, 'James', 'Thu', 1, 'Cappuccino')");
50 connection.commit();
51
52 statement.executeUpdate(
53 "insert into test (Customer) VALUES('Fred')");
54 connection.rollback();

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 327

388x_Ch04_CMP4 8/17/04 2:27 PM Page 327

55 connection.setAutoCommit(true);
56
57 // Print everything.
58
59 ResultSet result = statement.executeQuery("select * from test");
60 while(result.next())
61 { System.out.println
62 (result.getInt("Entry") + ", "
63 + result.getString("Customer") + ", "
64 + result.getString("DOW") + ", "
65 + result.getInt("Cups") + ", "
66 + result.getString("Type")
67);
68 }
69 }
70 finally
71 {
72 try{ if(statement != null) statement.close(); }catch(Exception e)
73 try{ if(connection!= null) connection.close();}catch(Exception e)
74 }
75 }
76 }

Probably the most confusing part of using JDBC is the driver-management mechanism.
The problem Sun is trying to solve is a single program that needs to talk to a heterogeneous
set of databases. That is, you need to talk to Oracle, Sybase, and SQL Server in a single
program, and each database has a different driver.

Sun’s solution is a little odd, however. The java.sql.DriverManager class is an everything-
is-static Singleton whose job is, not surprisingly, to manage a set of JDBC drivers. Before you
can use the java.sql.DriverManager, however, you have to bring the vendor-specific drivers
into existence. These drivers typically register themselves with the java.sql.DriverManager
when they’re loaded (code in the driver’s static initializer block does the registration). So you
have to load the class files for all the JDBC drivers that you need to use before you use the
java.sql.DriverManager. That loading is done by the forName() call at the top of main()
(Listing 4-37, line 15), which loads the class file and brings an instance into existence,
causing the static-initializer block to execute as a side effect.

The JDBC driver for the current implementation is the JDBCDriver class in Listing 4-38.
There’s not much to it. The static-initializer block that registers the driver object with the
java.sql.DriverManager is on line 18. The jdbcCompliant() override (Listing 4-38, line 43) is
small but important. By returning false it tells the users of this driver that the driver is not
fully JDBC compliant. In other words, it’s perfectly okay for a JDBC implementation to be
minimal, as long as it announces this to the world. As you’ll see in a moment, attempts to
call unsupported methods in this minimal implementation result in an exception toss. Unfor-
tunately, there’s no standard for “minimal,” so every driver has to document operations it
supports. No “introspection” mechanism exists that you can use to find this information at
runtime.

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL328

388x_Ch04_CMP4 8/17/04 2:27 PM Page 328

The other critical method is the acceptsURL(...) method on line 27 of Listing 4-38. To see
why, go back to line 21 of Listing 4-37, reproduced here:

import java.sql.DriverManager;
//...

connection = DriverManager.getConnection(
"file:/c:/usr/src/com/holub/database/jdbc/Dbase",
"Harpo", "swordfish");

All calls to a database start out by getting a java.sql.Connection to that database
from the java.sql.DriverManager—you can’t talk to the database at all without a
connection to it. To get a java.sql.Connection object that represents the connection,
you call DriverManager.getConnection() with three arguments: a URL that typically
specifies both the database type (MySQL, PostgreSQL, and so on) and the name of the
database, along with a username and password. My code just uses a simple “file:” URL
with no database-identifying prefix, but a more realistic example may look like this:

jdbc:postgresql=//postgresql.holub.com:1234/sales_database

Everything between the first colon and the equals sign specifies what sort of driver to use;
the remainder of the URL identifies the server and port number on which the database resides
and the name of the database itself.

The java.sql.DriverManager chooses the correct driver using the Chain-of-Responsibility
pattern. It keeps a list of registered drivers, and when you request a connection, it passes each
driver in the list an acceptsURL(...) message. As you can see in the version in Listing 4-38
(line 27), all this method typically does is examine the first part of the URL and report true if
the current database is described. The PostgreSQL driver probably implements the method as
follows:

public boolean acceptsURL(String url) throws SQLException
{ return url.startsWith("jdbc:postgresql");
}

Once the java.sql.DriverManager has identified the correct driver, it requests a connec-
tion by calling the driver’s connect() method. The current implementation is on line 31 of
Listing 4-38. As you can see from Figure 4-18 (on p. 326), the JDBCDriver (up at the top of the
picture) is both an Abstract java.sql.Connection Factory and a Chain-of-Responsibility
Handler.

Listing 4-38. JDBCDriver.java

1 package com.holub.database.jdbc;
2
3 import java.sql.*;
4 import java.util.*;
5 import java.net.*;
6
7 /** A JDBC driver for a small in-memory database that wraps
8 * the {@link com.holub.database.Database} class. See that

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 329

388x_Ch04_CMP4 8/17/04 2:27 PM Page 329

9 * class for a discussion of the supported SQL.
10 *
11 * @see com.holub.database.Database
12 */
13
14 public class JDBCDriver implements java.sql.Driver
15 {
16
17 private JDBCConnection connection;
18 static
19 { try
20 { java.sql.DriverManager.registerDriver(new JDBCDriver());
21 }
22 catch(SQLException e)
23 { System.err.println(e);
24 }
25 }
26
27 public boolean acceptsURL(String url) throws SQLException
28 { return url.startsWith("file:/");
29 }
30
31 public Connection connect(String uri, Properties info)
32 throws SQLException
33 { try
34 { return connection = new JDBCConnection(uri);
35 }
36 catch(Exception e)
37 { throw new SQLException(e.getMessage());
38 }
39 }
40
41 public int getMajorVersion() { return 1; }
42 public int getMinorVersion() { return 0; }
43 public boolean jdbcCompliant() { return false; }
44
45 public DriverPropertyInfo[]
46 getPropertyInfo(String url, Properties info) throws SQLException
47 { return new DriverPropertyInfo[0];
48 }
49 }

The next step in the JDBC process is to create a java.sql.Statement object that encapsu-
lates the SQL processing. You get a java.sql.Statement from a java.sql.Connection and then
use the java.sql.Statement to issue a SQL request like this:

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL330

388x_Ch04_CMP4 8/17/04 2:27 PM Page 330

java.sql.Statement SQLStatement = connection.createStatement();

SQLStatement.executeUpdate
("create table test (" +

" Entry INTEGER NOT NULL" +
", Customer VARCHAR (20) NOT NULL" +
", Cups INTEGER NOT NULL" +
", Type VARCHAR (10) NOT NULL" +
", PRIMARY KEY(Entry)" +
")"

);

A java.sql.Connection is an Abstract java.sql.Statement Factory, which is interesting
because the single class serves in different roles in two separate reifications of Abstract
Factory. JDBConnection is a Concrete Product (created by the JDBCDriver factory) in one reifi-
cation and a Concrete Factory (of java.sql.Statement objects) in the other. Looking at Figure
4-11, you’ll see that the same dual participation occurs with several other JDBC classes as well.
A JDBCDriver is a factory of JDBCConnection objects, which are, in turn, JDBCStatement factories,
which are themselves JDBCResultSet factories.

The JDBCConnection class that I’ll describe in the following section (in Listing 4-40) imple-
ments the java.sql.Connection interface, but it does so indirectly. JDBCConnection extends
com.holub.database.jdbc.adapters.ConnectionAdapter (in Listing 4-39), which implements
java.sql.Connection. The ConnectionAdapter class implements all the interface methods with
versions that throw exceptions. It provides a way of not cluttering up the real code with methods
that aren’t implemented. I’ve used the same strategy to handle unsupported methods in the
java.sql.ResultSet, java.sql.ResultSetMetaData, and java.sql.Statement interfaces. The
ResultSetAdapter, ResultSetMetaDataAdapter, and StatementAdapter classes implement the
matching interface with methods that do nothing but throw an exception. I haven’t bothered
to provide listings for these classes here, but they’re in the source code on the web site.

Listing 4-39. ConnectionAdapter.java (Partial Listing)

1 package com.holub.database.jdbc.adapters;
2 import java.sql.*;
3 public class ConnectionAdapter implements java.sql.Connection
4 {
5 public ConnectionAdapter()
6 throws SQLException
7
8 public ConnectionAdapter(java.sql.Driver driver, String url,
9 java.util.Properties info)
10 throws SQLException
11 {throw new SQLException("unsupported"); }
12
13 public void setHoldability(int h)
14 throws SQLException

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 331

388x_Ch04_CMP4 8/17/04 2:27 PM Page 331

15 {throw new SQLException("unsupported"); }
16
17 public int getHoldability()
18 throws SQLException
19 {throw new SQLException("unsupported"); }
20
21 //...
22
23 public void setTypeMap(java.util.Map map)
24 throws SQLException
25 {throw new SQLException("unsupported"); }
26 }
27

The State Pattern and JDBCConnection
The JDBCConnection class (Listing 4-40) serves as a wrapper for the Database class. It imple-
ments that part of the JDBC bridge that represents the database itself. The Database object is
created by the JDBCConnection constructors, and the database contents are dumped to disk
when the connection is closed.

Most of the methods of JDBCConnection implement JDBC’s rather odd (to me) transaction
mechanism: When you set auto-commit mode off by calling setAutoCommit(false), the system
issues a BEGIN request. Subsequent calls to commit() or rollback() issue the matching SQL and
then issue another BEGIN request. No begin()method exists. If you never call setAutoCommit(false),
then every SQL request you issue is treated as a transaction and cannot be rolled back. JDBC
does not support nested transactions. Nonetheless, you can ignore all the methods I’ve just been
discussing and do transactions using executeUpdate(...) to issue BEGIN, COMMIT, and ROLLBACK
requests at the SQL level.

I’ve implemented the auto-commit behavior using the Gang-of-Four State pattern,
pictured in Figure 4-19. The State pattern provides a way of organizing a class whose objects
change behavior when they change state. In the current example, the behavior of four methods
(close(), commit(), rollback(), and setAutoCommit(...)) changes, depending on whether the
connection is in the auto-commit-enabled state.

The naïve way to implement behavior that changes with state is to put a field in the class
that indicates the current state and then put a switch statement or equivalent in every method,
with the state-related behavior put into the case statements. Here’s a simplistic example:

class ChangesBehaviorWithState
{

private static int state = 0;

public void methodOne()
{ switch(state)

{
case 0: /* behavior for state 0 goes here */ break;
case 1: /* behavior for state 1 goes here */ break;
case 2: /* behavior for state 2 goes here */ break;

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL332

388x_Ch04_CMP4 8/17/04 2:27 PM Page 332

}
}

public void methodTwo()
{ switch(state)

{
case 0: /* behavior for state 0 goes here */ break;
case 1: /* behavior for state 1 goes here */ break;
case 2: /* behavior for state 2 goes here */ break;
}

}
//...

}

Figure 4-19. The State pattern in com.holub.database.jdbc.JDBCConnection

This approach has two problems. First, all those switch statements add a lot of clutter to
the code and make it hard to read. Second, the code is inherently difficult to maintain since
the behavior associated with a given state is scattered all over the class definition. Changing
the underlying state machine (the rules that determine how you get from one state to another
and definitions of the behavior associated with each state) is particularly difficult.

State
State

Context

Concrete
State

Concrete
State

Statement Adapter

JDBCStatement

java.sql.Statement

Database

AutoCommitBehavior

Enabled

JDBStatement.this.database

Disabled

(Disabled)

AutoCommitBehavior «interface»

close()
commit()
rollback()
setAutoCommit(boolean enable)

«Anonymous»

close()
commit()
rollback()
setAutoCommit(boolean enable)

«Anonymous»

close()
commit()
rollback()
setAutoCommit(boolean enable)

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 333

388x_Ch04_CMP4 8/17/04 2:27 PM Page 333

The State pattern solves both problems. Here’s the structure:
First create an interface that contains definitions for those methods whose behavior

changes with state. I’ve done that in Listing 4-40 with the AutoCommitBehavior interface on line
104. In the State pattern, this interface has the role of State.

Next, implement that interface as many times as there are states. Each implementation
defines the behavior associated with one and only one state. In Listing 4-40, the auto-commit-
enabled behavior is defined in the anonymous inner class assigned to enabled on line 111; the
auto-commit-disabled behavior is defined in the anonymous inner class assigned to disabled
on line 124. In the State pattern, these implementers of the State have the role of Concrete State.

Next, define a variable that points at an object representing the behavior associated
with the current state. I’ve done that with the autoCommitState field declared on line 165 in
Listing 4-40.

Finally, in the methods whose behavior changes with state, you delegate to the object that
represents the current-state’s behavior. For example, rollback() (on line 143 of Listing 4-40) just
calls autoCommitState.rollback(). The class that uses the State objects (the JDBCConnection) has
the role of Context in the pattern.

In the current implementation, state changes are accomplished by the setAutoCommit()
calls in the Concrete State objects. The pattern does not require that you change state in this
particular way, however.

As a final observation on State, you often find State and Proxy combined. Consider a
proxy for a slowly loading object such as Java’s Image class. (To remind you, the getImage()
method returns a proxy for the real image that is being downloaded slowly in the background.
You can use the Image proxy even before the entire actual image has been pulled across the
network.) This sort of Proxy can be in two states (Real Subject available and Real Subject
unavailable), and you can use the State pattern for the code that handles these states.

Listing 4-40. JDBCConnection.java

1 package com.holub.database.jdbc;
2
3 import java.io.*;
4 import java.net.*;
5 import java.util.*;
6 import java.sql.*;
7
8 import com.holub.database.*;
9 import com.holub.database.jdbc.adapters.*;
10 import com.holub.text.ParseFailure;
11
12 /** A limited version of the Connection class. All methods
13 * undocumented base-class overrides throw a
14 * {@link SQLException} if called.
15 * <p>
16 * Note that you can't
17 * mix non-autocommit behavior with explicit
18 * SQL begin/commit statements. For example, if you
19 * turn off autocommit mode (which causes a SQL begin

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL334

388x_Ch04_FINAL.qxd 1/12/05 11:02 AM Page 334

20 * to be issued), and then execute a SQL begin manually,
21 * a call to <code>commit</code> will commit the inner transaction,
22 * but not the outer one. In effect, you can't do
23 * nested transactions using the JDBC {@link commit} or
24 * {@link rollback} methods.
25 */
26
27 public class JDBCConnection extends ConnectionAdapter
28 {
29 private Database database;
30
31 // Establish a connection to the indicated database.
32 //
33 public JDBCConnection(String uri) throws SQLException,
34 URISyntaxException,
35 IOException
36 { this(new URI(uri));
37 }
38
39 public JDBCConnection(URI uri) throws SQLException,
40 IOException
41 { database = new Database(uri);
42 }
43
44 /** Close a database connection. A commit is issued
45 * automatically if auto-commit mode is disabled.
46 * @see #setAutoCommit
47 */
48 public void close() throws SQLException
49 { try
50 {
51 autoCommitState.close();
52
53 database.dump();
54 database=null; // make the memory reclaimable and
55 // also force a nullPointerException
56 // if anybody tries to use the
57 // connection after it's closed.
58 }
59 catch(IOException e)
60 { throw new SQLException(e.getMessage());
61 }
62 }
63
64 public Statement createStatement() throws SQLException
65 { return new JDBCStatement(database);
66 }

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 335

388x_Ch04_CMP4 8/17/04 2:27 PM Page 335

67
68 /** Terminate the current transactions and start a new
69 * one. Does nothing if auto-commit mode is on.
70 * @see #setAutoCommit
71 */
72 public void commit() throws SQLException
73 { autoCommitState.commit();
74 }
75
76 /** Roll back the current transactions and start a new
77 * one. Does nothing if auto-commit mode is on.
78 * @see #setAutoCommit
79 */
80 public void rollback() throws SQLException
81 { autoCommitState.rollback();
82 }
83
84 /**
85 * Once set true, all SQL statements form a stand-alone
86 * transaction. A begin is issued automatically when
87 * auto-commit mode is disabled so that the {@link #commit}
88 * and {@link #rollback} methods will work correctly.
89 * Similarly, a commit is issued automatically when
90 * auto-commit mode is enabled.
91 * <p>
92 * Auto-commit mode is on by default.
93 */
94 public void setAutoCommit(boolean enable) throws SQLException
95 { autoCommitState.setAutoCommit(enable);
96 }
97
98 /** Return true if auto-commit mode is enabled */
99 public boolean getAutoCommit() throws SQLException
100 { return autoCommitState == enabled;
101 }
102
103 //--
104 private interface AutoCommitBehavior
105 { void close() throws SQLException;
106 void commit() throws SQLException;
107 void rollback() throws SQLException;
108 void setAutoCommit(boolean enable) throws SQLException;
109 }
110
111 private AutoCommitBehavior enabled =
112 new AutoCommitBehavior()
113 { public void close() throws SQLException {/* nothing to do */}

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL336

388x_Ch04_CMP4 8/17/04 2:27 PM Page 336

114 public void commit() {/* nothing to do */}
115 public void rollback() {/* nothing to do */}
116 public void setAutoCommit(boolean enable)
117 { if(enable == false)
118 { database.begin();
119 autoCommitState = disabled;
120 }
121 }
122 };
123
124 private AutoCommitBehavior disabled =
125 new AutoCommitBehavior()
126 { public void close() throws SQLException
127 { try
128 { database.commit();
129 }
130 catch(ParseFailure e)
131 { throw new SQLException(e.getMessage());
132 }
133 }
134 public void commit() throws SQLException
135 { try
136 { database.commit();
137 database.begin();
138 }
139 catch(ParseFailure e)
140 { throw new SQLException(e.getMessage());
141 }
142 }
143 public void rollback() throws SQLException
144 { try
145 { database.rollback();
146 database.begin();
147 }
148 catch(ParseFailure e)
149 { throw new SQLException(e.getMessage());
150 }
151 }
152 public void setAutoCommit(boolean enable) throws SQLException
153 { try
154 { if(enable == true)
155 { database.commit();
156 autoCommitState = enabled;
157 }
158 }
159 catch(ParseFailure e)
160 { throw new SQLException(e.getMessage());

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 337

388x_Ch04_CMP4 8/17/04 2:27 PM Page 337

161 }
162 }
163 };
164
165 private AutoCommitBehavior autoCommitState = enabled;
166 }

Statements
As you saw earlier, you issue a SQL request through a java.sql.Statement object that is manu-
factured by the java.sql.Connection’s createStatement() call. (The version on line 64 of
Listing 4-41, discussed next, just hides a call to new.)

The JDBCStatment class (my implementation of java.sql.Statement) is laid out in Listing
4-41. There’s not much to it. The executeUpdate(...) method is used for all SQL statements
that don’t return a value (everything except a SELECT); executeQuery(...) is used for SELECT.
Both methods just delegate to the underlying Database object, though executeQuery(...)
wraps in a java.sql.ResultSet object the Cursor across the rows of the Table object that
holds the query results.

Listing 4-41. JDBCStatement.java

1 package com.holub.database.jdbc;
2
3 import java.sql.*;
4 import java.io.*;
5
6 import com.holub.database.*;
7 import com.holub.database.jdbc.adapters.*;
8
9 public class JDBCStatement extends StatementAdapter
10 { Database database;
11
12 public JDBCStatement(Database database)
13 { this.database = database;
14 }
15
16 public int executeUpdate(String sqlString) throws SQLException
17 { try
18 { database.execute(sqlString);
19 return database.affectedRows();
20 }
21 catch(Exception e)
22 { throw new SQLException(e.getMessage());
23 }
24 }
25
26 public ResultSet executeQuery(String sqlQuery) throws SQLException
27 { try

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL338

388x_Ch04_CMP4 8/17/04 2:27 PM Page 338

28 { Table result = database.execute(sqlQuery);
29 return new JDBCResultSet(result.rows());
30 }
31 catch(Exception e)
32 { throw new SQLException(e.getMessage());
33 }
34 }
35 }

The Adapter Pattern (Result Sets)
The only Gang-of-Four design pattern I haven’t yet covered is Adapter, and the JDBCResultSet
class has an example of it (Listing 4-42). Figure 4-20 shows the generalized form of the pattern.

Figure 4-20. Object and class forms of Adapter

The term Adapter stems from an electrical adapter. You want to plug your 110v-60Hz-
3-prong-plug radio into a European 220v-70Hz-2-cylindrical-prong outlet, so you use an
adapter. This way, your radio’s interface to the power system appears to be the interface that
the power system expects. Adapting this notion to software (so to speak), an Adapter makes
an existing object of some class appear to implement an interface that it doesn’t actually
implement (a “foreign” interface).

In the current situation, no difference really exists at all between a Cursor and a java.sql
.ResultSet, at least in terms of core functionality. The JDBCResultSet class wraps a Cursor
object so that the Cursor object can appear to implement the JDBCResultSet interface. The
JDBCResultSet is an Adapter that makes a Cursor (the Adaptee) implement a foreign (or
Target) interface (the java.sql.ResultSet).

Another example of Adapter is the ArrayIterator class (in Listing 4-10) you saw earlier.
This Adapter lets you access an array as if it implements the Iterator interface.

AClassAdapter

+add (arg)

Adapter

Adaptee

Adapter

Adaptee

Target

Target

Class
Adapter

Object
Adapter

MyClass ForeignInterface
«interface»

+insert (arg)

+insert (arg)

AnObjectAdapter

Public void insert(Object arg)
{ wrapped.add(arg);
}

+insert (arg)
Public void insert(Object arg)
{ super.add(arg);
}

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 339

388x_Ch04_CMP4 8/17/04 2:27 PM Page 339

The flavor of Adapter characterized by JDBCResultSet—which uses a wrapping strategy—
is called an Object Adapter. Adapter has two other flavors, one identified by the Gang of Four
and another that they don’t talk about but is worth examining. A Class Adapter uses extends
relationships rather than wrapping.

If the Results class (the Concrete Class implemented by the Cursor returned from the
ConcreteTable) was public, I could implement a Class-Adapter version of JDBCResultSet like
this:

class ClassAdapterResultSet extends Results implements java.sql.ResultSet
{

// Implement all methods of ResultSet here, delegating to
// superclass (Results) methods whenever possible.

}

Class Adapters do have the advantage of simultaneously being the Adapter and Adaptee.
(I could pass a ClassAdapterResultSet object to a method that took a Result or Cursor argu-
ment, and I could also pass it to a method that took a ResultSet argument.) Nonetheless, I
haven’t used them much in practice, primarily because of the overhead of creating one. That
is, if you have a Cursor in hand, and you need a JDBCResultSet, you must copy all the state
data from the Cursor object to the JDBCResultSet object if it’s a class adapter. This copying
also usually mandates a tight coupling relationship that makes me uncomfortable.

A third possibility would work just fine in the current context. I think of it as an Interface
Adapter (not a Gang-of-Four variant of Adapter). Since the Results object implements Cursor,
I could get the advantages of both the Class- and Object-Adapter forms like this:

class InterfaceAdapterResultSet implements Cursor, java.sql.ResultSet
{

private Cursor adaptee;

public InterfaceAdapterResultSet(Cursor adaptee)
{ this.adaptee = adaptee;
}

// Implement all methods of both interfaces here. Cursor
// methods do nothing but delegate to the adaptee.

}

This way, I’m still using containment rather than implementation inheritance, so none of
the copying and the tight coupling that the copying implies is required. I implement both the
Target and Adaptee interfaces, however, so I have the flexibility of the Class Adapter. You obvi-
ously can’t use this form of Adapter if the Adaptee doesn’t implement a well-defined interface.

The only use of Adapter in the Java libraries that comes to mind are the I/O system
adapters, some of which were shown in Figure 4-9. A StringBufferInputStream, for example,
is adapting StringBuffer so that it appears to implement the InputStream interface. String-
BufferInputStream effectively changes the interface to a StringBuffer so that it can be treated
as an InputStream.

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL340

388x_Ch04_CMP4 8/17/04 2:27 PM Page 340

The Java libraries don’t have many other Adapters, primarily because Adapters are usually
used to force-fit a library into an existing context. You’ll typically find them in the code that
uses the library, not in the library itself. Let’s say, for example, that you had written an applica-
tion that used AWT for its user interface and that your boss suddenly announced that AWT
was garbage, and you had to reimplement the application in terms of some off-the-wall
library written by your boss’s brother-in-law. Refactoring 100,000 lines of code is one possi-
bility, but it’s easier to write a set of Adapters that make the brother-in-law library appear to be
AWT. This way you don’t have to rewrite your existing code.

People often confuse Bridge and Adapter. Keep things straight by keeping the intent of the
pattern in mind. The point of Bridge is to isolate subsystems. The point of Adapter is to shoe-
horn a class into a program that was written in terms of an interface that the class doesn’t
implement. Also, Bridges are big things, and Adapters are little things.

People also confuse Adapters and Decorators since they’re both wrappers. The point of a
Decorator, however, is to change the behavior of one or more methods of some class without
using extends. In terms of structure, a Decorator will always implement the same interface as
the object it’s decorating. An Adapter probably won’t implement the interface of the wrapped
object (though it may).

Getting back to the JDBC-layer code, the JDBCResultSet class (in Listing 4-42) is interesting
in that it’s a true Gang-of-Four Object Adapter. It makes objects that implement Cursor appear
to implement the ResultSet interface. For example, it changes the name of the advance()
method to next(), and it hides the generic column(...) method (which gets a specified column
of the current row) in a set of methods that get the column and do a type conversion as well
(getString(), getDouble(), and so on). It also provides a few type-safe updatexxx() methods.
These database accessors are useful in that they provide a modicum of type safety when the
underlying system provides no type safety at all. (The Table stores everything as an Object, and
the Database stores everything as a String.)

One final word on the subject of adapters is in order. My earlier use of the word Adapter in
the JDBC-interface-implementation-class names (for example, ConnectionAdapter) is somewhat
misleading. I’ve used the word Adapter because Java uses a similar default-implementation-that-
does-nothing strategy in the AWT event model, and all those classes are called Adapters. (For
example, MouseAdapter implements MouseListener.) These “Adapter” classes are not Adapters in
the design-pattern sense of a class that makes an object appear to implement a foreign interface.
This use of “Adapter” is just an unfortunate Java naming convention.

Listing 4-42. JDBCResultSet.java

1 package com.holub.database.jdbc;
2
3 import java.sql.*;
4 import java.text.*;
5
6 import com.holub.database.*;
7 import com.holub.database.jdbc.adapters.*;
8
9 /** A limited version of the result-set class. All methods

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 341

388x_Ch04_CMP4 8/17/04 2:27 PM Page 341

10 * not shown throw a {@link SQLException} if called. Note
11 * the underlying table actually holds nothing but
12 * strings, so the numeric accessors and mutators
13 * (e.g. {@link getDouble} and {@link setDouble})
14 * are doing string-to-number and number-to-string
15 * conversions. These conversions might fail if the
16 * underlying String doesn't represent a number.
17 */
18
19 public class JDBCResultSet extends ResultSetAdapter
20 {
21 private final Cursor cursor;
22 private static final NumberFormat format =
23 NumberFormat.getInstance();
24
25 /** Wrap a result set around a Cursor. The cursor
26 * should never have been advanced; just pass this constructor
27 * the return value from {@link Table#rows}.
28 */
29 public JDBCResultSet(Cursor cursor) throws SQLException
30 { this.cursor = cursor;
31 }
32
33 public boolean next()
34 { return cursor.advance();
35 }
36
37 public String getString(String columnName) throws SQLException
38 { try
39 { Object contents = cursor.column(columnName);
40 return (contents==null) ? null : contents.toString();
41 }
42 catch(IndexOutOfBoundsException e)
43 { throw new SQLException("column "+columnName+" doesn't exist");
44 }
45 }
46
47 public double getDouble(String columnName) throws SQLException
48 { try
49 { String contents = getString(columnName);
50 return (contents == null)
51 ? 0.0
52 : format.parse(contents).doubleValue()
53 ;
54 }
55 catch(ParseException e)
56 { throw new SQLException("field doesn't contain a number");

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL342

388x_Ch04_CMP4 8/17/04 2:27 PM Page 342

57 }
58 }
59
60 public int getInt(String columnName) throws SQLException
61 { try
62 { String contents = getString(columnName);
63 return (contents == null)
64 ? 0
65 : format.parse(contents).intValue()
66 ;
67 }
68 catch(ParseException e)
69 { throw new SQLException("field doesn't contain a number");
70 }
71 }
72
73 public long getLong(String columnName) throws SQLException
74 { try
75 { String contents = getString(columnName);
76 return (contents == null)
77 ? 0L
78 : format.parse(contents).longValue()
79 ;
80 }
81 catch(ParseException e)
82 { throw new SQLException("field doesn't contain a number");
83 }
84 }
85
86 public void updateNull(String columnName)
87 { cursor.update(columnName, null);
88 }
89 public void updateDouble(String columnName, double value)
90 { cursor.update(columnName, format.format(value));
91 }
92 public void updateInt(String columnName, long value)
93 { cursor.update(columnName, format.format(value));
94 }
95 public ResultSetMetaData getMetaData() throws SQLException
96 { return new JDBCResultSetMetaData(cursor);
97 }
98 }

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 343

388x_Ch04_CMP4 8/17/04 2:27 PM Page 343

Finishing Up the Code
The final implementation class is JDBCResultSetMetaData in Listing 4-43, which normally
provides metadata information about the columns. Since there is no typing in the current
implementation, all columns are treated as a SQL VARCHAR.

Listing 4-43. JDBCResultSetMetaData.java

1 package com.holub.database.jdbc;
2
3 import java.sql.*;
4 import java.util.*;
5
6 import com.holub.database.*;
7 import com.holub.database.jdbc.adapters.*;
8
9 /** A limited version of the result-set metadata class. All methods
10 * not shown throw a {@link SQLException} if called.
11 */
12 public class JDBCResultSetMetaData extends ResultSetMetaDataAdapter
13 {
14 private final Cursor cursor;
15
16 public JDBCResultSetMetaData(Cursor cursor)
17 { this.cursor = cursor;
18 }
19
20 public int getColumnType(int column) throws java.sql.SQLException
21 { return java.sql.Types.VARCHAR;
22 }
23
24 public String getColumnTypeName(int column)throws java.sql.SQLException
25 { return "VARCHAR";
26 }
27 }

When Bridges Fail
The JDBC layer that you’ve been looking at is another example of the Bridge pattern discussed
earlier (in “The Bridge Pattern” section). You’re seeing only the implementation half of the
Bridge, however (see Figure 4-4, on p. 199). As a Bridge, JDBC does serve to isolate your code
from some of the problems that can emerge when you change databases.

JDBC is also a good example of how the Bridge pattern can fail, however. The problem is
the SQL itself. Every database seems to use a different dialect of SQL, which is an enormous
problem from a portability perspective. The whole point of Bridge is to replace some subsystem
(for example, a database) with a completely different implementation (for example, a different
database) without impacting your application code. You can certainly replace a SQL Server
driver with a PostgreSQL driver with no difficulty. Unfortunately, though your code will still

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL344

388x_Ch04_FINAL.qxd 1/12/05 10:59 AM Page 344

compile just fine, it probably won’t work anymore because PostgreSQL won’t recognize the SQL
Server SQL dialect.

This problem has some solutions, but nobody has implemented them. One solution is to
eliminate SQL altogether and provide a set of methods in the Bridge that does everything that
you would normally do with SQL. A conforming driver would then have to implement these
methods appropriately for its database. The main (significant) downside to this approach is
that you can’t get a DBA to write SQL for you anymore; everything has to be done in Java.

A second “solution” is to require all drivers to support some defined standard SQL and
to map this standard SQL to the native dialect as necessary. To really guarantee portability,
the driver would also have to detect an attempt to issue a nonstandard SQL request and refuse
to execute the request. The problem with this approach is a practical one. Most databases
support a host of useful nonstandard features, and it’s often these nonstandard features that
drive the decision to adopt a particular database. It’s simply not practical or appropriate to
prevent a user of JDBC from using the very features that led him or her to select a particular
database. It’s true that there’s a nontrivial common intersection between major SQL dialects,
but you have to give up too much if you restrict yourself to that subset.

The same problem exists with the AWT bridge I mentioned earlier in the chapter. In both
the JDBC and AWT case, you can even change runtime environments (or databases) on the fly
as the program works. You certainly don’t have to recompile if you’re using a Bridge. However,
as with JDBC, the behavior of the UI under AWT will change with the new environment, and
things that used to work don’t work anymore. People used to jokingly call AWT the Write-
Once-Test-Everywhere environment (as a foil to Sun’s Write-Once-Run-Everywhere slogan).
The fact that Bridge rarely gives you complete isolation between subsystems is not insur-
mountable. Eclipse’s SWT library uses the Bridge pattern more effectively than did AWT, for
example, primarily by making the Bridge so powerful that nobody needs to use OS-specific
features. It is difficult to achieve true independence between subsystems, however.

Whew!
So, that’s all of the Gang-of-Four design patterns, all tangled together in two programs. As I
said back in the preface, this is the way the patterns appear in the real world, and I hope you’ll
develop a better understanding of the patterns by looking at them in a realistic context than
you would by looking at a catalog. (Nonetheless, I’ve provided a catalog as an Appendix so
that you can have a quick pattern reference.)

You’ll find two things start to happen as you become more familiar with the patterns.
First, it will be a lot easier to talk about your code to other pattern-savvy programmers. It’s a
lot easier to say “this is a Visitor” than it is to describe the structure of the code every time you
talk about it.

The second emanation of pattern savvy is more important. As you build a mental catalog
of not only the Gang-of-Four patterns but also the myriad other patterns that are documented
in the literature, you’ll find that you code more effectively. You’ll be able to see where a pattern
applies before you write the code and then write it “right” from the beginning.

So, go forth and program!

CHAPTER 4 ■ IMPLEMENTING EMBEDDED SQL 345

388x_Ch04_CMP4 8/17/04 2:27 PM Page 345

388x_Ch04_CMP4 8/17/04 2:27 PM Page 346

A Design-Pattern
Quick Reference

This appendix is a reference of the Gang-of-Four design patterns, intended to jog your
memory about how the patterns work. Ironically, the original Gang-of-Four presentation was
this brief, but they expanded things in the book to make it more accessible. Once you know
the patterns, however, brevity is good. This catalog probably won’t be of much use if you don’t
already have some familiarity with the patterns, however. A lot of the material you’d find in an
introductory-level discussion is either missing or condensed in this appendix.

Though I’ve followed the Gang-of-Four organization (alphabetical by category), I have
deliberately not followed the Gang-of-Four format for the pattern description itself. In partic-
ular, I’ve restated their “intent” section to make it more understandable. I’ve also used stripped-
down examples, and my examples are not the same as the Gang-of-Four examples. In particular,
since most of us aren’t doing GUI work, I’ve tried to eliminate GUI-related example code.

I’ve tried to make up for some of this brevity by listing places where the design patterns are
found in the Java packages so you can see how they’re applied in practice. (Some patterns don’t
appear in Java, in which case the “Usage” example will say so). Also, you can find detailed code
similar to my stripped-down examples in one of the volumes of Chan, Lee, and Kramer’s The
Java Class Libraries (Addison-Wesley, various editions) or in the Java documentation or tutorials
available on the Sun web site.

I’ve played fast and loose with the code in the interest of saving space—I’ve omitted required
import statements, access privileges, exceptions, and so on. The formatting isn’t ideal in places.
I’m assuming you know what you’re doing in the Java-programming department and are more
interested in the clarity of the example than in having cut-and-paste code. The code won’t always
compile cleanly as it stands.

Finally, I’ve said a few things in these notes that you may find shocking if you haven’t read
the rest of the book or some of my other work—things such as “objects must be responsible
for building their own user interfaces.” I simply have no room to explain this sort of thing in
a quick reference; you have to read the rest of the book.

347

A P P E N D I X

■ ■ ■

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 347

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE348

[This page intentionally left blank1]

1. Rather an odd thing to say, since the page isn’t blank at all—it contains the text “This page intention-
ally left blank” —but imagine that it’s blank.

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 348

Creational Patterns
The creational patterns are all concerned with object creation (fancy that!). Most of them provide
ways to create objects without knowing exactly what you’re creating (beyond the interfaces supported
by the created objects). Programming in terms of interfaces rather than concrete-classes is essential if
you intend to write flexible, reusable code. My rule of thumb is that as much as 80 percent of my code
should be written in terms of interfaces.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE 349

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 349

What Problem Does It Solve?
Abstract Factory makes it easy to create
and manipulate objects without knowing
exactly what they are. (This example uses an
Iterator—it doesn’t care what kind.) This way,
it’s easy to add new sorts of concrete products
to the system without changing any of the code
that uses those products.

Abstract Factory also makes it easy for
your code to operate in diverse environments.
The system creates a unique Concrete Factory
(which creates unique Concrete Products)
for each environment, but since you use the
interface, you don’t actually know which envi-
ronment (or which Concrete Product) you’re
using.

Pros (✔) and Cons (✖)
✔ The anonymity of the Concrete Factory and

Product promotes reuse—the code that uses
these objects doesn’t need to be modified if
the Factory produces instantiations of
different classes than it used to do.

✖ If the product doesn’t do what you want, you
may have to change the Abstract Product
interface, which is difficult. (You have to
change all the Concrete Product definitions.)

Often Confused With
Builder: Builder’s Director may use an Abstract
Factory to create Builder objects, but the point
of Builder is that the Director doesn’t know
what it’s building.

Factory Method: A Factory Method—an unfor-
tunate choice of pattern name on the part of
the Gang of Four—is an abstract method that a
subclass overrides. The Abstract-Factory method
that creates objects is only rarely a Factory
Method.

See Also
Singleton, Factory Method, Builder

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE350

Abstract Factory
Create objects knowing only the interfaces they implement (without knowing the actual class).
Typically, create one of a “family” of objects (one of several kinds of Iterators, one of several kinds of
graphical widgets, and so on).

Abstract Factory: Interface to
the actual factory.

Concrete Factory: Implements
the Abstract Factory interface
to create a specific class of
object.

Abstract Product: The sort
of product that the Abstract
Factory creates.

Concrete Product: The actual
object (whose class you don’t
know) created by the factory.
Client: Uses the created objects
only through their interfaces.

Collection «interface»

+iterator () :Iterator

Iterator «interface»

+hasNext () :boolean
+next (): Object
+remove (): void

LinkedList

+iterator () :Iterator

LinkedListIterator

+hasNext () :boolean
+next(): Object
+remove (): void

Tree

+iterator () :Iterator

TreeIterator «anonymous»

+hasNext () :boolean
+next(): Object
+remove (): void

User

creates

creates

Concrete
Product

Abstract
Product

Client

Concrete
Factory

Abstract
Factory Abstract

Factory

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 350

Implementation Notes and Example
interface Collection
{ Iterator iterator();

//...
}
interface Iterator
{ boolean hasNext();

Object next();
//...

}
class Tree implements Collection
{ public Iterator iterator()

{ return new Iterator()
{ // Implement Iterator interface

// here (to traverse a Tree).
// (See description of Iterator
// pattern for implemenation.)

}
}

}
class User // uses only interfaces
{

public void operation(Collection c)
{ Iterator i = c.iterator();

while(i.hasNext())
doSomethingWith(i.next());

}
}

Collection is the Abstract Factory, Iterator
is the Abstract Product, Tree is the Concrete
Factory, and the anonymous-inner-class
Iterator implementation is the Concrete
Product.

Abstract Factory has many variants, prob-
ably the most common of which is a Concrete
Factory that comprises its own interface—no
“Abstract Factory” interface as such exists. This
Concrete Factory is typically a Singleton. The
methods of the class effectively comprise
the Abstract Factory interface.

class SingletonFactory
{ private static instance=newSingletonFactory();

public static SingletonFactory instance()
{ return instance;
}

void factoryOperation1(){/*...*/}
void factoryOperation2(){/*...*/};

}

A similar, though more abstract, example
is described in the entry for Factory Method.

No reason exists why, in the no-Abstract-
Factory variant, the Concrete Factory cannot
create a user interface that allows the physical
user to select which of several possible concrete
products to create. Consider a drawing program
whose “shape” factory creates a user interface
showing a palate of possible shapes. The user
can then click a shape to determine which
Concrete Product (shape derivative) to create
in response to a newShape() request.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE 351

Usage

f(Collection c)
{ Iterator i = c.iterator();

//...
}

ButtonPeer peer =
Toolkit.getDefaultToolkit().

createButton(b);

URL home = new URL("http://www.holub.com");
URLConnection c = home.getConnection();
InputStream in = c.getInput();

Collection and Iterator are the Abstract Factory
and Product. Concrete Factories and Products
are anonymous.

Toolkit is both a Singleton and an Abstract
Factory. Most of the methods of Toolkit are
abstract, and getDefaultToolkit() returns an
unknown derivative of Toolkit. No need exists
for an Abstract Factory interface per se.

URL is a concrete URLConnection factory, and
URLConnection is an abstract InputStream factory,
so URLConnection is both an Abstract Product and
an Abstract Factory, depending on context. URL,
URLConnection, and InputStream are interfaces by
use, not by declaration.

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 351

http://www.holub.com

Builder
Separate the construction of a complex object from its representation so that the same construction
process can create different representations without having to modify the constructing object.

Director: Builds an object without
knowing exactly what it’s building.

Builder: Interface used by the
Director to do the construction.

Concrete Builder: Actually builds
the product by following directions
given by the Director. Typically
created externally (by the Client)
or by an Abstract Factory.

Product: The object built by the
Builder under the direction of
the Director.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE352

What Problem Does It Solve?
It’s desirable to separate business logic from UI
logic, but in an OO system you cannot expose
implementation details. A well-done class defi-
nition will not have “get” methods that return
state information, so an object must build its
own UI. Nonetheless, it’s sometimes necessary
for an object to build more than one represen-
tation of itself, and it’s undesirable to clutter
up the business-logic code with the details
needed to build multiple representations.

Builder solves this problem by putting
the representation-specific code into a Builder
object that’s distinct from a Director (“busi-
ness”) object. Builder also easily lets you add
representations later without impacting
existing code at all.

Non-UI applications: credit-card process-
ing; for example, every credit-card-payment
processor requires a different protocol, with
identical information presented in different
ways. Builder separates you from the needs
of the credit-card processor, letting you build
a packet of information without needing to
know which processor will receive that infor-
mation. The organization of the data is hidden
from you in the “concrete builder” that you talk
to via a public, processor-independent, interface.

Pros (✔) and Cons (✖)
✔ Builder nicely isolates the representation

of an object from the associated “business”
logic, making it easy to add new (or change)
representations of an object without modi-
fying business logic.

✖ A change in the Builder interface mandates
changes in all implementing classes.

✖ It’s awkward to represent some UI elements
cleanly in all representations (for example,
HTML vs. Swing).

Often Confused With
Bridge: An application building a UI using
AWT is a Director—the actual representation
is unknown to the application. In this way,
AWT reifies both Builder and Bridge.

Visitor: A visitor could build a UI by visiting
every element of a data structure. It is “pulling”
information for UI construction from the
model rather than having that information
“pushed” onto it.

See Also
Bridge, Visitor

Client

Customer

Name, Address

+exportUI (b: Exporter)

HTMLExporter

+addName (text: String)
+addAddress (addr: String)
+getProduct(): String

JComponentExporter

+addName (text: String)
+addAddress (addr: String)
+getProduct (): JComponent

Customer.Exporter
«interface»

+addName (text: String)
+addAddress (addr: String)

Product

Builder

Client

Director
Builder

String«create»
Concrete Builder

JComponent«create»

«use»

«create»

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 352

Implementation Notes and Example
class Customer
{ private Address address;

Private String name;
public void exportUI(Exporter b)
{ b.addName(name);

b.addAddress(address.toString());
//...

}
public interface Exporter
{ void addName(String text);

void addAddress(String addr);
//...

}
}
class HTMLExporter implements Customer.Exporter
{ // Implement Builder methods here. This

// Implementation creates an HTML
// representation of the object.
//...
public String getProduct()
{ // Return HTML String.
}

}
class JComponentExporter implements Customer.Exporter
{ JComponent product;

// Implement Builder methods here. This
// Implementation creates a Jcomponent
// that represents the object.
//...
public JComponent getProduct()
{ return product;
}

}
class Client
{ Employee director;

//...
public void addYourUITo(JPanel someWindow)
{ Customer.Exporter b =

JComponentExporter();
director.exportUI(b);
someWindow.add(b.getProduct());

}
}

The createUI() method is passed a Builder
that could be an HTMLExporter (that creates an
HTML representation) or a JComponentExporter
(that produces a JComponent). The Director
object doesn’t know which of these products
it is building—it just calls interface methods.

The Client object that’s driving this process
does know what it’s building since it created the
Builder. Consequently, it’s reasonable for it to
extract the correct product.

You could get better abstraction by using
an Abstract Factory to create the Builder objects
rather than new. By the same token, if all output
was going to a file, you could add a print-
YoursefToFile(String name) method to the
Builder interface; the Director could call that
method at an appropriate time, and the Client
wouldn’t have to extract anything; it would just
supply a filename.

Builder implementations could be public
inner classes of the Director. I’d probably do it
that way unless I expected that Builders would
be defined elsewhere in the code.

The Director is “pushing” information into
the Builder. Consequently, you have no need
for accessors (get methods) in the Director,
and the coupling between the Builder and
Director is very light. In general, accessors
violate the integrity of the object by exposing
implementation detail. Avoid them.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE 353

Usage

URL url = new URL("http://www.holub.com");
URLConnection connection = url.openConnection();
connection.setDoOutput(true);
connection.connect();
OutputStream out = connection.getOutputStream();
while(c = getCharacterFromSomewhere())

out.write(c);
out.close();

This code comprises a Director. It uses
Abstract Factory (URLConnection) to get a
Builder (the OutputStream), which builds an
HTTP packet. The Director doesn’t know
that it’s building an HTTP packet, however.
(If an ftp:// URL had been specified, it
would be building an FTP packet.) The
close() call, instead of getting the product,
just sends it off.

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 353

http://www.holub.com
ftp://URL

Factory Method
Let subclasses decide which objects to instantiate.

Creator: Defines a method that needs
to create an object whose actual type is
unknown. Does so using abstract-method
call.

Concrete Creator: Subclass that overrides
the abstract object-instantiation method
to create the Concrete Product.

Product: Interface implemented by the
created product. Creator accesses the
Concrete Product object through this
interface.

Concrete Product: Object used by the
Creator (superclass) methods. Implements
the Product interface.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE354

What Problem Does It Solve?
This pattern is useful when you can do all (or
most) of the work at the superclass level but
want to put off deciding exactly which sort
of object you’ll be working on until runtime.
(You’ll manipulate objects that a derived-class
creates through an interface that you define.)

It is often the case that a superclass object
needs to create worker objects of some default
type, but the superclass can work equally well
using worker objects that are extensions of the
original type. This pattern lets you create
specialized worker objects in a specialized
subclass.

This way of doing things is often useful
when you create an implementation-inheri-
tance-based “framework” that you expect
users to customize using derivation.

Pros (✔) and Cons (✖)
✔ Easy to implement when a full-blown

Abstract Factory is overkill.

✖ This pattern forces you to use implementa-
tion inheritance, with all its associated
maintenance problems.

✖ Inheritance-based framework architectures,
in which Factory Methods are usually
found, are not the best way to achieve reuse.
Generally, it’s best if a framework class can
simply be instantiated and used directly,
without forcing a programmer to create a
subclass to make the superclass useful.
Implementation inheritance should be
reserved for situations where you need to
modify superclass behavior to perform
in an unusual way.

Often Confused With
Abstract Factory: The Concrete Factory can
use Factory Method to create Concrete Prod-
ucts. The creational method does not have to
use this design pattern, though. A method is
not a Factory Method simply because it manu-
factures objects. (I’ve seen the term misused in
the Java documentation, among other places.)
In Factory Method, a derived-class override
makes the object.

See Also
Abstract Factory, Template Method

BusinessObject

+doSomething ()
#createDefaultElement () :Element

SpecializedBusinessObject

#createDefaultElement () :Element

Element

SpecializedElement

«use»

«create»

public void doSomething()
{ Element e = createDefaultElement();
 //...
}
protected Element createDefaultElement()
{ return new Element();
}

protected Element createDefaultElement()
{ return new SpecializedElement();
}

Factory
Method

Concrete
Product

Product

Creator

Concrete
Creator

388x_Ch05_Appendix_FINAL.qxd 1/12/05 11:41 AM Page 354

Implementation Notes and Example
public class BusinessObject
{ public void doSomething()

{ Element e = createDefaultElement();
//…

}
protected Element createDefaultElement()
{ return new Element();
}

}
public class Element
{ public void f(){/*…*/}
}

public class SpecializedBusinessObject
{ protected Element createDefaultElement()

{ return new SpecializedElement();
}
private class SpecializedElement extends Element
{ public void f(){ /*…*/ }
}

}

You can sometimes customize superclass
behavior by providing nonstandard objects for it
to work with. In this example, a specialized form
of a business object is created by extending the
generalized version in such a way that it provides
a specialized element rather than the default
element.

The negative side to this architecture is that
you often must modify the superclass if you add
a subclass. The java.awt.Toolkit Abstract
Factory overcomes this problem while still using
an abstract-superclass architecture by instanti-
ating objects with Class.forname() rather than
an abstract-method call. This structure is still
Factory Method, since the decision about which
class to instantiate is deferred to runtime—it’s
just not a subclass that’s making the decision.

It is often inappropriate to use Factory
Method if the only method provided by the
subclass is the Factory Method itself. You’re
adding complexity with little commensurate
benefit.

Never leverage the fact that protected
grants package access in Java. The create-
DefaultElement() method is protected only
because I expect it to be overridden by a
subclass (otherwise it would be private). This
method should not be called from anywhere
other than the BusinessObject superclass. The
language, unfortunately, grants package access
to protected members, but it’s best to pretend
that package access is not possible.

This pattern is so trivial as to almost not be
worth calling it a pattern. It’s more interesting in
C++, where it’s called a virtual constructor and is
implemented by overriding operator new().

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE 355

Usage

public class MarkupPanel extends JEditorPane
{ public MarkupPanel()
{ setEditorKit(

new HTMLEditorKit()
{ public ViewFactory getViewFactory()
{ return new CustomViewFactory();
}

}
);

}
private class CustomViewFactory

extends HTMLEditorKit.HTMLFactory
{ public View create(Element e)
{ return new View()
{ protected Component createComponent()
{ return new Component(){/*...*/};
}

}
}

}
}

In Swing’s JEditorPane, various HTML
elements are displayed as “views.”
When a parser recognizes an HTML
element, it requests a “view” that
renders the component. You specify
a custom representation of an HTML
element by providing a derived-class
override of a create() method that
returns a component of your choice.

Component is the Product. The
(anonymous) implementation of
Component is the Concrete Product.
The MarkupPanel is the Creator, and
the CustomViewFactory is the Concrete
Creator. createComponent() is the Factory
Method. Similarly, getViewFactory() is a
Factory Method that produces custom
view factories. A subclass specifies
alternative view factories by overriding
getViewFactory().

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 355

Prototype
Create objects by making copies of (cloning) a prototypical object. The prototype is usually provided
by an external entity or a Factory, and the exact type of the prototype (as compared to the interfaces
it implements) may not be known.

Prototype: Interface of object to copy;
must define a mechanism for cloning
itself.

ConcretePrototype: Object that’s copied;
implements cloning mechanism.

Client: Creates a new object by asking the
Prototype for a clone.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE356

What Problem Does It Solve?
1. Allows you to create several objects of the

same type, even if you don’t know exactly
what that type is.

2. In Abstract Factory, information needed to
initialize the Concrete Product (constructor
arguments, for example) must be known at
compile time. Most Abstract Factory reifica-
tions use the default, no-arg constructor.
When you use Abstract Factory to make
objects that must be in a nondefault state,
you must first create the object and then
modify it externally, and this external modi-
fication may happen in many places in the
code. It would be better to create objects
with the desired initial (nondefault) state
and simply copy those objects to make addi-
tional ones. You may use Abstract Factory to
make the prototype object.

3. Sometimes objects will be in only a few
possible states, but you have many objects
in each state. (The Gang of Four describe a
Note class in a music-composition system;
many instances of whole-note, half-note,
and quarter-note objects exist—all whole
notes are in an identical state.

4. Sometimes classes are specified at runtime
and are created with dynamic loading (for
example, Class.forname("class.name")) or
a similarly expensive process (when initial
state is specified in an XML file, for

example). Rather than repeatedly going
through the expense of creating an object,
create a single prototype and copy it
multiple times.

Pros (✔) and Cons (✖)
✔ You can install a new concrete product into

a Factory simply by giving the Factory a
prototype at runtime. Removal is also easy.

✔ Prototype can reduce object-creation time.

✔ Abstract Factory forces you to define classes
with marginally different behavior using
subclassing. Prototype avoids this problem
by using state. When an object’s behavior
changes radically with state, you can look
at the object as a dynamically specifiable
class, and Prototype is your instantiation
mechanism.

✖ You must explicitly implement clone(),
which can be quite difficult. Also, think about
deep-vs.-shallow copy issues. (Should you
copy a reference, or should you clone the
referenced object?) Finally, sometimes the
clone method should act like a constructor
and initialize some fields to default values.
A clone of a list member cannot typically be
in the list, for example.

See Also
Abstract Factory, State

Handler «interface»

+sendData (data: byte[], host: URL)
+clone (): Object

Cloneable

HTTPHandler

+sendData (data: byte[], host: URL)
+clone (): Object

FTPHandler

+sendData (data: byte[], host: URL)
+clone (): Object

AsynchronousStorage

+AsynchronousStorage (protocol: Handler)
+store (data: Collection, URL host)

protocol

User

cr
ea

te
s

passes prototype to
cl

on
es

Prototype

Concrete
Prototype

Client

Prototype
store(...)
{ //...
 protocol.clone()
 .sendData(...);
}

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 356

Implementation Notes and Example
class AsynchronousStorage
{ private Handler protocol;

public AsynchronousStorage(Handler protocol)
{ this.protocol = protocol;
}

void store(Collection data, URL host)
{ byte[] bytes = new byte[128];

//...
Handler handler=(Handler)protocol.clone();
handler.sendData(bytes, host);

}
}

interface Handler extends Cloneable
{ void sendData(byte[] data, URL host);

Object clone();
}

class HTTPHandler implements Handler
{ public void sendData(byte[] data, URL host)

{ // Send data asynchronously to
// host using HTTP protocol, creating
// background thread if necessary

}
public Object clone(){ /*...*/ }

}

class FTPHandler implements Handler
{ public void sendData(byte[] data, URL host)

{ // same as above, but use FTP protocol
}
public Object clone(){ /*...*/ }

}

class User
{ private Collection theData;

private AsynchronousStorage dataStore =
new AsynchronousStorage(

new HTTPHandler());
public void flush()
{ dataStore.store(theData, new URL(/*...*/));
}

}

In this example, HTTPHandler talks asynchro-
nously to a remote host using HTTP, and
FTPHandler talks using FTP. One handler exists
for each communication; several handlers can
be active simultaneously, each talking to their
respective hosts. Prototype is used to decouple
the protocol from the AsynchronousStorage
class. The User class decides which protocol to
use and then passes an appropriate handler
to the AsynchronousStorage object, which uses
clones of the prototype to do the actual work.

You cannot use new to implement a “clone”
method. The following code won’t work:

Class Grandparent
{ public Grandparent(Object args){/*...*/}

Base myClone(){ return new Base(args);}
}
Class Parent
{ public Parent(){ super("arg");}

Derived myClone(){return new Parent(args)}
}
Class Child
{ public Child(){ super(); }

/* inherit the superclass myClone */
}
//...
Grandparent g = new Child();
//...
g.myClone(); // Returns a Parent, not Child!

Using Java’s clone() solves this problem by
getting memory from super.clone().

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE 357

Usage

(Not used) Prototype is used in the implementations of several classes but not in
the external interfaces to any of the Java classes. You do see it in the
Bean Box application that demonstrates GUI-style JavaBeans. When
you customize an object and put it on the palate, you’re creating a
prototype. When you drag the customized object from the palate to
the dialog box that you’re constructing, you’re making a copy of the
prototype.

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 357

Singleton
A class with a constrained number of instances (typically one). The instance is globally accessible.

Singleton: The object being created; defines a
class-level (static) get-instance method that
returns the instance. The class-level get-
instance method may create the object if
necessary.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE358

What Problem Does It Solve?
Programs often have a need for single-instance
objects. Objects, for example, may represent a
single database, a single company, and so forth.

Pros (✔) and Cons (✖)
✔ Better than a global object in that access is

controlled, and the global namespace isn’t
cluttered with hard-to-find objects.

✔ Singleton guarantees that the object is
created (and destroyed) only once—essen-
tial when the Singleton manages a global
resource such as a database connection.

✖ Easy to abuse. A Singleton called Globals
that contains nothing but public variables
is an abomination. (A Singleton containing
global constants is reasonable if the values
of the constants need to be initialized at
runtime. If the values are known at compile
time, use an interface made up solely of
static final fields.)

✖ Another common abuse of Singleton
defines a User object that contains all the
user-interface code. In a properly done
OO system, objects must be responsible for
building their own user interfaces. Similarly,
you should not have a “system” or “main”
singleton. The system is the entire program,
not a single object. System objects are what
Arthur Riel calls god classes (in his book
Object-Oriented Design Heuristics,
(Addison-Wesley, 1996). Avoid them.

Often Confused With
Utility: A Utility is a class comprised solely
of static methods, the purpose of which is to
provide a grab bag of global methods that
often compensate for some deficiency in the
language or libraries. Examples include Java’s
Math and Arrays utilities.

Singleton can be implemented the same way
as Utility—as a class made up solely of static
methods. That is, when all fields of a class are
static, the class is effectively an object: It has
state and methods. The main disadvantage to
this everything-is-static approach is that you
can’t change the behavior of a Singleton using
derivation.

See Also
Abstract Factory

Singleton

+ «static» instance () : Singleton
+otherMethods ()

«static» -instance

1

public static synchronized Singleton instance()
{ if(instance == null)
 instance = new Singleton()
 return instance;
}

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 358

Implementation Notes and Examples
Class Singleton1
{ private static Singleton instance;

private Singleton1()
{ Runtime.getRuntime().addShutdownHook

(new Thread()
{ public void run()

{ /* clean-up code here */
}

}
);

}
public static synchronized Singleton instance()
{ if(instance == null)

instance = new Singleton();
return instance;

}
}
class Singleton2
{ private static final Singleton instance =

new Singleton2();
public static Singleton instance()
{ return instance;
}
//...
//Other than creating object in static
//initializer, is identical to Singleton1

}
class Singleton3
{ static Type allFields;

static Type allOperations();
// No instance() method, just use the
// class name to the left of the dot.

}

Use the Singleton1 form when you can’t
create the object at class-load time (for example,
you didn’t have information that’s determined
by program state or is passed to the creation
method).

You must synchronize the instance() method
of Singleton1 as shown. “Clever” ways to elimi-
nate synchronization such as “double-checked
locking” don’t work. (Period. Don’t do it!)

Use the Singleton2 or Singleton3 form
when possible; synchronization is not required
during access. (The JVM may load the class at
any time, but it shouldn’t initialize the Class
object until first use (Java Language Specifica-
tion, 12.4.1); static initializers shouldn’t execute
until first use.

Call addShutdownHook() in the constructor
when program-shut-down cleanup activities
(such as shutting down database connections
in an orderly way) are required. Do not use a
finalizer, which may never be called.

A private constructor prevents someone
from saying new Singleton(), thereby forcing
access through instance().

You have no requirement that only one
instance of the Singleton exists, only that the
number of instances are constrained and that
access to the instances are global. For example,
a DatabaseConnection.getInstance() method
may return one of a pool of database connec-
tions that the Singleton manages.

In UML, the role associated with the
Singleton is usually also the class name.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE 359

Usage

Image picture =
Toolbox.getDefaultToolbox().getImage(url);

The Toolbox is a classic form of Singleton1 in the
“Examples” section. getDefaultToolbox() returns
a Toolbox instance appropriate for the operating
system detected at runtime.

Border instance =
BorderFactory.createBevelBorder(3);

Class classObject =
class.forName("com.holub.tools.MyClass");

Manages several Border instances, but only
one instance of a Border object with particular
characteristics (in this case, a three-pixel
beveled border) will exist, so it’s a Singleton.
All subsequent requests for a three-pixel
beveled border return the same object.

There’s only one Class object for a given class,
which effectively contains all static members.

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 359

[This page intentionally left blank.2]

Structural Patterns

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE360

2. Here, we have the second reification of the this-page-intentionally-left-blank pattern.

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 360

Structural Patterns
The structural patterns concern themselves with the organization of the program. I think of them as
static-model patterns. Their intent is always to organize classes so that certain structural ends can
be achieved. For example, the purpose of Bridge is to organize two subsystems in such a way that
one subsystem can change radically (even be replaced entirely) without affecting the code in the
other subsystem. The whole point of this organization is that you can make changes to the program
without having to change the dynamic model at all.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE 361

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 361

Adapter
Make a class appear to support a familiar interface that it doesn’t actually support. This way,
existing code can leverage new, unfamiliar classes as if they are existing, familiar classes, elimi-
nating the need to refactor the existing code to accommodate the new classes.

Adaptee: An object that doesn’t support
the desired interface

Target: The interface you want the
Adaptee to support.

Adapter: The class that makes the
Adaptee appear to support the Target
interface. Class Adapters use derivation.
Object Adapters use containment.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE362

What Problem Does It Solve?
1. A library that you’re using just isn’t working

out, and you need either to rewrite it or to
buy a replacement from a third party and
slot this replacement into your existing
code, making as few changes as possible.

2. You may need to refactor a class to have a
different interface than the original version
(you need to add arguments to a method or
change an argument or return-value type).
You could have both old-style and new-style
versions of the methods in one giant class,
but it’s better to have a single, simpler class
(the new one) and use Adapter to make the
new object appear to be one of the old ones
to existing code.

3. Use an Adapter to make an old-style object
serialized to disk appear to be a new-style
object when loaded.

Pros (✔) and Cons (✖)
✔ Makes it easy to add classes without

changing code.

✖ Identical looking Object and Class Adapters
behave in different ways. For example, new
ObjectAdapter(obj)and new ClassAdapter(obj)
are both supported; the Object Adapter simply
wraps obj, but the Class Adapter copies the
fields of obj into its superclass component.
Copying is expensive. On the plus side, a Class
Adapter is an Adaptee, so it can be passed to
methods expecting an object of the Adaptee
class and also to methods that expect the
Target interface. It’s difficult to decide whether

an Object or Class Adapter is best. It’s a main-
tenance problem to have both.

✖ Difficult to implement when the library is
designed poorly. For example, java.io.Input-
Stream is an abstract class, not an interface,
so you can’t use the Class-Adapter pattern to
create a RandomAccessFile that also supports
the InputStream interface (you can’t extend
both RandomAccessFile and InputStream). You
can use Object Adapter, or you can refactor
the code to make InputStream an interface (as
it should have been) and then implement that
interface in an AbstractInputStream that has
all the functionality now in InputStream.
Collections do it correctly.

Often Confused With
Mediator: Mediator is the dynamic-model
equivalent of Adaptor. Adapters are passive,
passing messages to single Adaptees. Mediators
interact with many colleagues in complex ways.

Bridge: Adapters change interfaces. Bridges
isolate subsystems. Adapters are little things;
Bridges are big.

Decorator: The encapsulated object in Deco-
rator has the same interface as the container.
Decorator modifies the behavior of some
method or adds methods, but otherwise
looks exactly like the wrapped object. Object
Adapters have different interfaces than the
wrapped object and don’t change its behavior.

See Also
Mediator, Bridge, Decorator

ObjectInputStream

+readObject ()
+writeObject();
//...

Iterator

+hasNext (): boolean
+next (): Object
+remove (): void

public Object next()
{ return in.readObject();
}

ObjectIterator

+hasNext (): boolean
+next(): Object
+remove (): void

Object
AdapterAdaptee

Target

Adapter

Class
Adapter

Target

Adapter

Adaptee

WrappedObjectIterator

+hasNext (): boolean
+next(): Object
+remove (): void

in

public Object next()
{ return super.readObject();
}

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 362

Implementation Notes and Example
class ObjectIterator extends ObjectInputStream

implements Iterator
{ private boolean atEndOfFile = false;

public ObjectIterator(InputStream src)
throws IOException

{ super(src);
}
public boolean hasNext()
{ return atEndOfFile == false;
}
public Object next()
{ try

{ return readObject();
}
catch(Exception e)
{ atEndOfFile = true;

return null;
}

}
public void remove()
{ throw new UnsupportedOperationException();
}

}
class WrappedObjectIterator implements Iterator
{ private boolean atEndOfFile = false;

private final ObjectInputStream in;
public
WrappedObjectIterator(ObjectInputStream in)
{ this.in = in;
}
public boolean hasNext()
{ return atEndOfFile == false;
}
public Object next()
{ try

{ return in.readObject();
}
catch(Exception e){/* as above */}

}
public void remove()
{ throw new UnsupportedOperationException();
}

}

ObjectIterator is a Class Adapter that
adapts an ObjectInputStream to implement
the Iterator interface. This way, you can use
existing methods that examine a set of objects
by using an Iterator to examine objects directly
from a file. The client doesn’t know or care
whether it’s reading from a file or traversing a
Collection of some sort. This flexibility can be
useful when you’re implementing an Object
cache that can overflow to disk, for example.
More to the point, you don’t need to write two
versions of the object-reader method, one for
files and one for collections.

WrappedObjectIterator is an Object
Adapter version of ObjectIterator that uses
containment rather than inheritance.

The Class Adapter, since it is an Object-
InputStream that implements Iterator, can
be used by any method that knows how to
use either ObjectInputStream or Iterator. The
Object Adapter, since it encapsulates the input
stream, cannot be used as an ObjectInput-
Stream, but you can use the input stream for a
while, temporarily wrap it in a WrappedObject-
Iterator to extract a few objects, and then pull
the input stream out again.

The two implementations require about
the same amount of work so it’s a judgment call
which one is best. It all depends on what you’re
using it to do.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE 363

Usage

InputStream in = new StringInputStream("hello"); Adapter lets you access a String as if it were
a file (InputStream). Similar adapters include
ByteArrayInputStream, CharArrayReader, PipedInput-
Stream, PipedReader, and StringReader. Don’t
confuse these adapters with the Decorators in
java.io (BufferedInputStream, PushbackInputStream,
and so on).

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 363

Bridge
To decouple subsystems so that either subsystem can change radically without impacting any code
in the other one, put a set of interfaces between two subsystems and code to these interfaces.

Abstraction: A subsystem-
independent portal into
subsystem-specific code.

Implementor: An interface used
by the Abstraction to talk to a
subsystem-specific implementa-
tion. Typically is also the Abstract
Product of an Abstract Factory.

Refined Abstraction: Often
omitted, a version of the Abstrac-
tion, customized for a particular
application.

Concrete Implementor: A
subsystem-specific implementa-
tion of the Implementor.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE364

What Problem Does It Solve?
Often used to achieve platform independence.
Application-specific code on one side of the
bridge uses platform-dependant code on the
other side. Reimplement that interface, and
the “business” logic doesn’t know or care.
Change the business logic, and the platform-
specific interface implementations don’t care.
Often, you’ll combine Bridge and Abstract
Factory so that the Factory can supply the
correct set of implementers at runtime, further
isolating the two sides of the bridge. Examples
of Bridge in Java are AWT and JDBC.

Pros (✔) and Cons (✖)
✔ In a pure inheritance model, you’d have a

superclass that implemented some behavior
and subclasses that customized this behavior
for a specific platform. In Bridge, the super-
class is effectively replaced by an interface,
so the problems associated with implemen-
tation inheritance are minimized, and the
total number of classes are reduced.

✖ It’s difficult to implement interfaces so that
each implementation behaves identically.
Java’s AWT Bridge implements windowing
components for different operating envi-
ronments, but the Motif implementation
behaved differently on the screen than the
Windows implementation.

Often Confused With
Bridge is more of an architecture than a design
pattern. A Bridge is often a set of interfaces and
classes (called abstractions, unfortunately—
they’re typically not abstract) that contain
references to objects that implement a plat-
form-independent interface in a platform-
dependant way (Adapters). The Adapters are
typically created by the Abstraction object
using a Singleton-based Abstract Factory.

Adapter: Bridges separate subsystems, and
Adapters make objects implement foreign
interfaces. A one-interface bridge looks like
a Class Adapter, however.

Facade: Facade simplifies the interface to a
subsystem but may not isolate you from the
details of how that subsystem works. Changes
made on one side of the facade might mandate
changes both to the other side of the facade
and to the facade itself.

See Also
Abstract Factory, Singleton, Adapter, Facade,
Mediator

SmartConnection

+connect (databaseURL)

com.holub.PersistentConnection

+setLifetime(maxLifetime)

com.holub.DropableConnection

+notifyOnDrop(listener)

java.sql.Connection
«interface»

+createStatement ()
+prepareStatement ()
. . .

com.microsoft.SQLServerConnection

+createStatement ()
+prepareStatement ()
. . .

com.oracle.OracleConnection

+createStatement ()
+prepareStatement ()
. . .

Bridge

Bridge

Abstraction

Refined Abstraction

Implementor

Concrete
Implementor

Client

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 364

Implementation Notes and Example
class SmartConnection
{ String username, password;

java.sql.Connection connection;
//...
public void connect(String databaseURL)

throws Exception
{ Class.forName(databaseURL).newInstance();

Connection connection = null;
Statement statement = null;
//...
connection =

DriverManager.getConnection(
databaseURL, username, password);

}
}

class PersistentConnection extends SmartConnection
{ long maxLifetime;

public void setLifetime(long maxLifetime)
{ // Arrange for connection to time

// out after lifetime expires.
}

}

class PooledConnection extends SmartConnection
{ public void notifyOnDrop(Runnable dropped)

{ // Arange to call dropped.run()
// when connection is dropped.

}
}

//--

class SQLServerConnection
implements java.sql.Connection

{ // Implementation that support SQL Server
// interface.

}

class OracleConnection implements
java.sql.Connection
{ // Implemenation that supports Oracle's
interface.
}

The abstraction classes (SmartConnection,
PersistentConnection, and DropableConnection)
use the Bridge interface (java.sql.Connection)
to talk to the implementation classes (Oracle-
Connection, SQLServerConnection).

The two sides of the Bridge can change
independently. For example, I can change
OracleConnection radically, and the classes on
the other side of the Bridge (SmartConnection,
for example) are completely unaware of that
change. This isolation is possible because
Factory is used to create the Concrete Imple-
menters.

I can even support additional databases
(by extending java.sql.Connection) without
affecting the other side of the Bridge. By the
same token, I can modify the SmartConnection
class (and its subclasses) and even add addi-
tional subclasses, without impacting the other
side of the bridge (the java.sql.Connection
implementers).

Note that the Bridge completely isolates
the subsystems from each other. The Client
class knows only about the abstraction classes.

A Bridge is often very large. The JDBC Bridge
consists of many Implementor interfaces and
associated Concrete Implementations, and
some of these interfaces are very large.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE 365

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 365

Composite
Organize a runtime hierarchy of objects that represent container/content (or whole/part) relation-
ships as a collection of objects that implement a common interface. Some of the implementers of
this interface define stand-alone objects, and others define containers that can hold additional
objects, including other containers.

Component: An interface or
abstract class that repre-
sents all objects in the
hierarchy.

Composite: A Component
that can hold other Compo-
nents. It doesn’t know
whether these subcompo-
nents are other Composites
or are Leaves.

Leaf: A Component that
stands alone; it cannot
contain anything.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE366

What Problem Does It Solve?
Often data structures can be organized into
hierarchies in which everything in the hier-
archy has a common subset of similar proper-
ties. For example, directories are files that
can contain other files; a file can be atomic
(a simple file not containing anything) or a
subdirectory (a file that holds references to
other files, including subdirectories).
Composite lets you create these sort of
containment hierarchies in such a way that a
given container doesn’t need to know whether
its contents are atomic or composite objects.
They both implement the same interface, so
can be treated identically.

Pros (✔) and Cons (✖)
✔ The container is simple to implement

because it treats all contents uniformly.

✔ It’s easy to add new Component classes,
just derive another class from the Component
class (or interface).

✖ The Component tends to specify an unsatis-
factory least-common-denominator inter-
face.

✖ It’s not always meaningful or appropriate
for every Composite or Leaf to implement
every method of the Component. It’s an
awkward runtime error if an unimple-
mentable method throws an exception.

Often Confused With
Chain of Responsibility: Chain of Responsi-
bility is also implemented using a runtime
hierarchy of objects, but the point of Chain of
Responsibility is to catch messages in appro-
priate places.

Decorator: Decorator also uses a containment
strategy, but Decorators add or modify func-
tionality of a single containee. The point of
Composite is to make it easier to manipulate
a set of contained objects.

See Also
Chain of Responsibility, Decorator, Flyweight

Form

+add (subelement: Element)
+renderTo (surface: Graphics)

Element «abstract»

-position: Rectangle

+Element (position: Rectangle)
+prepare (surface: Graphics)
+renderTo (surface: Graphics)

StaticTextElement

-text: String

 +renderTo (surface: Graphics)

Picture

-image: Image

+renderTo (surface:Graphics)

container subelementsubelements

Composite

Composite Component

Leafforeach(subelement in container)
 subelement.render(surface);

super.prepare(surface);
// draw the text

Leaf

*

388x_Ch05_Appendix_FINAL.qxd 1/14/05 2:34 PM Page 366

Implementation Notes and Example
abstract class Element
{ private Rectangle position;

public Element(Rectangle position)
{ this.position = position;
}
protected void prepare(Graphics surface)
{ // modify the surface's coordinate

// system so that (0,0) is at the
// current Element's position.

}
public abstract void renderTo(Graphics surface);

}

class Form extends Element
{ private Collection subelements

= new ArrayList();
public Form(Rectangle position)
{ super(position);
}
public void add(Element subelement)
{ subelements.add(subelement);
}
public void renderTo(Graphics surface)
{ prepare(surface);

Iterator i = subelements.iterator();
while(i.hasNext())

((Element)i.next()).render(surface);
}

}
class StaticText extends Element
{ private String text;

public StaticText(Rectangle position,
String text)

{ super(position);
this.text = text;

}
public void renderTo(Graphics surface)
{ prepare(surface);

surface.drawText(text);
}

}

Element, is an abstract class that defines
operations common to all Element objects (for
example, the Element’s relative position on the
form). I’ve avoided making this information
public (thereby damaging the integrity of the
object) by providing a prepare() method that
modifies the coordinate system of the Graphics
object so that the current object can render itself
in the upper-left corner of the surface. This way
a getPosition() method is unnecessary, and the
resulting class system is more robust.

The Form class has the role of Composite
in the pattern. It’s an Element that holds other
Elements, some of which may be Forms and
some of may might be StaticText. The point
is that the Form class’s render() method doesn’t
know or care about the actual type of the sub-
element. The subelements may be Elements,
or they may be sub-Forms. All subelements
are rendered identically (by passing them
render() messages).

The StaticText class is a Leaf. It is an
Element that doesn’t contain other Elements
and thus forms a leaf on the runtime-hierarchy
tree. It has to know how to render itself, of
course. Here, it just delegates to the Surface
object.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE 367

Usage

Dialog box = new Dialog();
box.add(new Label("Lots of information"));

Panel subpanel = new Panel();
subpanel.add(new Label("Description"));
subpanel.add(new TextField());
box.add(subpanel);

A Dialog is a Composite that can hold Leaves
(such as Label) and other Composites (such as
Panel). This example also nicely demonstrates
the affinity between Composite and Bridge,
since AWT is also a bridge. (A DialogFrame, for
example, is simultaneously a Composite in
Composite and an Abstraction in Bridge.

Another good example of Composite is the
new JDOM classes (http://www.jdom.org). An
XML document is a list of Elements.

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 367

http://www.jdom.org

Decorator
Attach new responsibilities to (or modify the behavior of) an object at runtime. Decorators can
simplify class hierarchies by replacing subclassing with containment.

Component: An interface for objects
that can have responsibilities added to
them (or have behavior modified) at
runtime.

Concrete Component: An object to
which additional responsibilities or new
behavior is attached.

Decorator: Wraps a Component and
defines an interface that conforms to
the Component’s interface but behaves
differently.

Concrete Decorator: Extends the Deco-
rator to define the additional behavior.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE368

What Problem Does It Solve?
Using derivation hierarchies to add features
is not a great idea. Consider an input stream.
To add buffering, you’d derive a class that
overrode the input() method to do buffering
(doubling the number of classes). To add push-
back, you’d have to derive from both classes,
providing buffered and nonbuffered versions
of input() that pushed characters back. In fact,
every feature that you add through subclassing
will require you to double the size of the class
hierarchy. Decorator, on the other hand, is
linear. To add a feature, you add exactly one
Decorator class, no matter what the size of
the original hierarchy.

Decorator also nicely solves the problem
of runtime configuration. Sometimes, you don’t
know exactly how an object should behave until
runtime. Behavior may be specified in a config-
uration file, for example. Decorator allows you
to assemble (at runtime) a composite object
that contains exactly the mix of capabilities you
need without having to know which of these
capabilities will be needed when you write
the code.

Decorator helps you break up large
complex operations into small simple
operations.

Pros (✔) and Cons (✖)
✔ The size and complexity of the class hierarchy

is considerably reduced.

✖ A feature introduced in a Decorator (such as
pushback) is at best hard (or even dangerous)
to access if the decorator is itself decorated.
The system is sensitive to the order in which
Decorators are applied. Java’s PushbackInput-
Stream works well at the outermost layer,
but a PushbackInputStream wrapped with a
BufferedInputStream doesn’t work. (It doesn’t
push back into the buffer.)

Often Confused With
Adapter: Changes an interface; Decorator
changes behavior.

Chain of Responsibility: Passes messages to
the most appropriate handler. In Decorator,
messages are handled by the outermost
Concrete Decorator.

Composite: Decorators add responsibilities.
Composites never do.

See Also
Strategy

java.util.List «interface»

+add(item: Object): boolean
+remove(item: Object): boolean
+size(item: Object): int
//...

BlockingList

+add(item: Object): boolean
+remove(item: Object): boolean
+size(item: Object): int
//...

Component

java.util.LinkedList

+add(item: Object): boolean
+remove(item: Object): boolean
+size(item: Object): int
//...

Decorator

Concrete
Component

Component

(Concrete)
Decorator

If BlockingList were an interface, it would be the "Decorator" and
itís implementers would be the "Concrete Decorators." In this
example, it serves both roles.

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 368

Implementation Notes and Example
import java.util.*;

/* I would prefer for this class to be a LinkedList,
* but LinkedList is not an interface, and
* useful methods like addFirst() and removeFirst()
* are not defined in an interface.
*/

public class BlockingList implements List
{ private final List component;

public BlockingList(List component)
{ this.component = component;
}

private boolean noLongerEmpty()
{ try

{ while(component.size() == 0)
wait();

return true;
}
catch(InterruptedException e)
{ return false;
}

}

synchronized public boolean add(Object o)
{ boolean toReturn = component.add(o);

notifyAll();
return toReturn;

}

synchronized public boolean remove(Object o)
{ if(noLongerEmpty())

return component.remove(o);
return false;

}

synchronized public int size()
{ return component.size();
}

/* Syncrhonized versions of all other methods of
* the List interface are implemented here ...
*/

}

Think fish. Bigger fish are Decorators that
implement the same interfaces as the smallest
fish (the Component). If a smaller fish has
swallowed a hook and line, talk to it by yanking
the string.

BlockingList is a
Decorator that modifies the
behavior of any List imple-
mentation so that a thread
that tries to remove something from an empty
list will block (be suspended) until some other
thread adds something to the list—a common
interthread communication architecture. Use a
BlockingList to add this behavior to any class
of objects that implement the List interface.
Create a blocking list like this:
List blockingList =

new BlockingList(
new LinkedList());

Many methods (such as size() and
contains()) behave exactly as they do in the
List, so they are implemented as simple pass-
through methods. Other methods (such as
add() and remove()) implement different
behavior, so must be implemented at length
in the Concrete Decorator.

The behavior of every method in the
blocking version at left has changed, however:
Everything is now synchronized. If only a hand-
ful of methods change behavior (or a Decorator
just adds a method), simplify implementation
with an abstract Decorator class that does
nothing but define simple pass-through
methods to the contained object. Extend the
abstract class to form a Concrete Decorator,
overriding those methods whose behavior
changes.

Other Decorators may add other features.
A LazyList may add a close() method that
allows subsequent removals from the list but
disallows additions, for example.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE 369

Usage

JComponent widget = new JtextArea(80,200);
widget = new JScrollPane(widget);
Jframe frame = new JFrame();
Frame.getContentPane().add(widget);

InputStream in = new FileInputStream("x.txt");
in = new BufferedInputStream(in);
in = new PushBackInputStream(in);

Combines Decorator and Composite: Composite
because everything’s a JComponent; Decorator
because each successive layer adds functionality
(and changes appearance).

The data source is wrapped by a Decorator that
adds buffering, which is in turn wrapped by a
decorator that supports pushback. Could add
decompression, and so on, with additional
decorators (GzipInputStream, and so on).

388x_Ch05_Appendix_FINAL.qxd 1/12/05 11:44 AM Page 369

Facade
Provide a single interface through which all the classes in a complex subsystem are manipulated.
Facade allows you to treat a complex subsystem as if it were a single course-grained object with a
simple easy-to-use interface.

Facade: Provides a simple
interface to a complex
subsystem.

Subsystem Classes: Classes
that comprise one or more
complex subsystems.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE370

What Problem Does It Solve?
Facade simplifies complex code, making it easier
to use poorly designed, overcomplex subsystems.

Subsystems, especially older ones, are
masses of spaghetti code. When two subsystems
must interact, they often make calls directly into
each other, and these myriad tendrils of connec-
tivity are a maintenance nightmare. The sub-
systems become very delicate since making
seemingly insignificant changes in a single
subsystem can affect the entire program. Facade
addresses the problem by forcing programmers
to use a subsystem indirectly through a well-
defined single point of access, thereby shielding
the programmers from the complexity of the
code on the other side of the facade.

Facade improves the independence of the
subsystems, making it easy to change—or even
replace—them without impacting outside code.

Facade also provides a manageable way to
migrate legacy code to a more object-oriented
structure. Start by breaking up the existing code
into a small number of independent subsys-
tems, modeled as very heavyweight objects
with well-defined, simple interfaces. Eliminate
all “end runs” around these interfaces. Then
systematically replace each subsystem. This
evolutionary approach significantly reduces
the risk inherent in an all-at-once rewrite.

Facade hides badly done, overly complex
legacy code.

Facade lets you treat an entire legacy
system as if it were a single, coarse-grained
object.

Pros (✔) and Cons (✖)
✔ Coupling relationships between subsystems

are weakened, improving maintenance and
flexibility.

✖ It’s still possible for programmers to ignore
the Facade and use subsystem classes
directly.

Often Confused With
Bridge: Both Facade and Bridge help mainte-
nance by isolating subsystems from each
other. Facade simplifies access to, but does
not hide, a subsystem. Bridge completely
isolates you from the subsystemyou don’t
know that the subsystem exists if you use
Bridge. You can use a Facade is to simplify
access to a bridge. (For example, a Company
class could act as a facade to the JDBC Bridge.
You’d say Company.getEmployee() and the
Facade takes care of the complex series of JDBC
calls needed to create the Employee object.)

Mediator: A Facade’s communication with a
subsystem is unidirectional, or at least simple.
Your program sends a message to the Facade,
which causes it to send several messages to a
subsystem. The subsystem does not talk to, or
even know about, the Facade object. Mediators
have complex bidirectional conversations with
their Colleagues.

See Also
Bridge, Mediator, Observer

XMLStorage

+load(in: URL, o: Object)
+store(out: URL);

JDOM

SaxBuilder Many classes
Suporting XML

Parser

40 Classes
Supporting JDOM

30 or so classes
Supporing introspection

APIs

System

Client

Facade
Subsystem Classes

Facade

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 370

Implementation Notes and Example
class XMLStorage
{ public store(URL out, Object toStore)

{ /* Code goes here that uses the
* introspection APIs in the System
* class to get the class name and the
* values of all the public fields in
* the class. The name and the values of
* those fields are then used to build a
* JDOM tree, which is passed to an
* "outputter" to send an XML
* representation of the tree to the
* OutputStream.
*/

}

public Object load(URL in);
{ /* Code goes here that creates a

* JDOM SaxBuilder for the InputStream,
* uses it to build a JDOM, instantiates
* a class named in the XML file,
* then initializes that class using
* one of the constructors or a series
* of get/set methods.
*/

}
}

The problem with providing a full-blown
example of a Facade is that there’s entirely too
much code to represent in 40 or so lines—that’s
the whole point of the pattern.

I’m imagining that the storage method
uses Java’s introspection APIs to analyze the
document and discover the fields to save. (It
could just save everything that’s public, or it
could look for JavaBean-style get/set methods.)
I would use the JDOM XML APIs to build a tree
representation of an XML output file and then
send the tree to a JDOM “outputter” class that
would write the appropriate XML to a file. The
loading function reverses this process. By using
the facade, you isolate yourself from all the
mechanics of introspection, XML parsing, and
JDOM.

Messaging is one way; there is no complex
back-and-forth interaction between the
XMLStorage facade and the subsystems that it
uses. The Facade object simply builds a tree
and then outputs the tree.

We have a facade within a facade here.
The SAXBuilder class itself comprises a facade
that isolates you from the mechanics of the
SAX-parser subsystem.

The program can access the JDOM, XML,
and Introspection APIs directly. Ease of mainte-
nance is compromised if you do so and any of
these subsystems change. You could avoid this
problem by putting the subsystems in an inac-
cessible package (such as the com.sun.xxx
packages in Java). A Singleton can then be
used to get a Facade, through which all
access occurs.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE 371

Usage

SomeString.matches("^[a-zA-Z]{1,3}$");

Socket s = new Socket("holub.com",7);
InputStream in = s.getInputStream();

AppletContext a = getAppletContext();
a.showDocument("http://www.holub.com/index.html")

String acts as a Facade for the regular-expression-
matching package, isolating the user from things
such as Pattern objects.

These two lines hide several pages of C code and
all the enormous complexity needed to get a
socket to work in a cross-platform way.

AppletContext is a Facade for the browser
subsystem. Note that this architecture prohibits
“end runs” around the facade because subsystem
classes are accessible only through the Facade.
You can’t get at them directly.

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 371

http://www.holub.com/index.html

Flyweight
To minimize memory usage, make objects smaller by using extrinsic state (for example, putting
state information into a container or computing it on each access) and sharing (using multiple
references to single objects rather than multiple copies of objects).

Flyweight: Defines an interface for
messages that use extrinsic state.

Concrete Flyweight: Implements
Flyweight with methods that compute
state information or get it from an
external source (extrinsic state).

Unshared Concrete Flyweight: Not
used here, but if present, implements
Flyweight using internal state vari-
ables rather than extrinsic state.

Flyweight Factory: Creates and
manages flyweights. Supplies an
existing Concrete Flyweight if one
exists; otherwise creates one.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE372

What Problem Does It Solve?
An object is defined by what it does, not how it
does it. Objects are defined by their methods;
state information can be inside or outside the
object.

Sometimes, programs with large numbers
of objects require more memory for those
objects than is available. In a document editor,
every character of a naïve implementation
might hold its value, font, color, size, encoding,
position on the page, and so on. This informa-
tion, duplicated in most characters, can be
moved to a containing paragraph. If characters
take up more space than references, keep
multiple references to a single “character”
object rather than many identical characters.

A naïve implementation of the Game of
Life “cell” may carry a Boolean “is-alive” state
and references to eight neighbors. A small
1024×1024 grid requires about 40MB just to
hold the cells. In a Flyweight version, the cell’s
container knows who the cell’s neighbors are
and passes that information to the cell. The
cell needs to remember its is-alive state only.
By making the neighbor references extrinsic,
you reduce the memory requirement for the
basic grid to a single megabyte.

In a “flyweight pool,” all objects with the
same state are represented by a single object.
You request objects from the pool, which
returns an existing object if possible; other-
wise, the pool creates a new object.

Pros (✔) and Cons (✖)
✔ Some programs simply cannot be written in an

object-oriented way without using Flyweight.

✔ When you use flyweight pools, you can deter-
mine equality using Java’s == operator.

✖ If extrinsic state is stored in a container,
then you must access the object through the
container. If extrinsic state is computed (for
example, goes to a database every time a
particular attribute is used), then access is slow.

✖ Flyweights add complexity to the code,
impacting maintenance and increasing
code size.

Often Confused With
Composite: Flyweights are often combined with
Composite. Both Leaf and Component nodes
can export extrinsic state to their containers.

See Also
Composite, Prototype, Singleton

XMLElement <<abstract>>

Attributes

+<<static>> create (name: String) :XMLElement
+ operation (parent: XML_Element)

ConcreteXMLElement

name: String

+operation (parent: XML_Element)

name:String

cache *

UniqueConcreteXMLElement

name: String

+operation (parent: XML_Element)

The create()
method serves as
the Flyweight
Factory . The rest of
the class is abstract
methods that define
the Flyweight
interface. You could
also use a factory
class and an
interface.

Flyweight

Unshared
Concrete
Flyweight

Flyweight

Concrete
Flyweight

Flyweight
Factory

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 372

Implementation Notes and Example
abstract class XMLElement
{ static Map cache = new HashMap();

public static
XMLElement create(String name)
{ name = name.intern();

XMLElement exists =
(XMLElement)(cache.get(name));

if(exists == null)
{ exists =

new ConcreteXMLElement(name);
cache.put(name,exists);

}
return exists;

}
private XMLElement(){}

abstract void operation(XMLElement parent);

private static class ConcreteXMLElement
extends XMLElement

{ private String name;
ConcreteXMLElement(String name)
{ this.name = name.intern();
}
void operation(XMLElement parent)
{ //...
}
public int hashCode()
{ return name.hashCode();
}
public boolean equals(Object o)
{ return name ==

((ConcreteXMLElement)o).name ;
}

}

}

XMLElement is a Flyweight that represents
an Element in an XML Document (effectively a
node in a tree). The element is identified only
by name, though a more realistic implementa-
tion would identify it both by name and attri-
bute values.

Sharing is used to guarantee that only one
instance of a given element exists. (You could
argue reasonably that XMLElement is a Singleton;
that is, sharing is implemented using Singleton.)
The private constructor (and the fact that it’s
abstract) force users to use create() rather
than new XMLElement(). The create() method
keeps a cache of XMLElement objects, keyed by
name. If an object with the requested name
exists, it is just returned. The create() method
adds an element to the cache only if an element
with that name does not already exist. If the
Element doesn’t need to know its own name,
its name field can be eliminated to save space.

Don’t be confused by the fact that
XMLElement fills two roles in the pattern:
Flyweight Factory and Flyweight. Putting
the abstract methods of XMLElement into an
interface to separating them from the “factory”
functionality makes sense in many situations.
Here, it just adds an unnecessary class.

The intern() method of the String class
enforces sharing in a similar way (see “Usage”).

XMLElement also has one extrinsic
attribute: its parent. A heavyweight implemen-
tation may keep a parent reference as a field,
but here the parent reference is passed as an
argument to operation(). This organization
saves space, but means that operations on
elements that need to know their parent must
be started at the root node so that the parent
reference can be passed down to them.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE 373

Usage

JPanel p = new JPanel();
p.setBorder(

BorderFactory.createEmptyBorder(5,5,5,5));

StringBuffer b = new StringBuffer();
//... assemble string here.
String s = b.toString().intern();

The border size is extrinsic—it’s fetched at
runtime from the Component that it borders.
The BorderFactory makes sure that two borders
with the same internal state don’t exist (when
you ask for the second one, you get back a
reference to the first one).

If an existing String literal has the same value
as the assembled StringBuffer, then use the
existing literal; otherwise, add the new value
to the JVM’s internal table of String literals
and use the new one.

388x_Ch05_Appendix_FINAL.qxd 1/12/05 11:14 AM Page 373

Proxy
Access an object through a “surrogate or placeholder” object.

Proxy: Maintains a reference,
and controls access, to the
Real Subject. Implements the
same interface as the Real
Subject so it can be used in
place of the Real Subject.

Subject: An interface imple-
mented by both the Proxy and
the Real Subject; allows them
to be used interchangeably.

Real Subject: The real object
that the Proxy represents.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE374

What Problem Does It Solve?
A virtual proxy creates expensive objects on
demand. For example, database access may
be deferred by a proxy until the data is actually
used. A large image may be fetched across the
network in the background while the user of
the image thinks it’s already there. This process
is often called lazy instantiation. Virtual proxies
are also useful in implementing a copy-on-
write strategy. When you request a copy of
an object, you get back a proxy that simply
references the original object. Only when
you modify the so-called copy does the proxy
actually copy the state from the original object
into itself.

A remote proxy is a client-side representa-
tion of a server-side object. The proxy relays
requests across the network to be handled by
a sever-side object. CORBA and RMI stubs
are proxies for server-side skeleton objects.

A protection proxy controls access to
certain methods of a second object that imple-
ments the same interface. The proxy method
may be passed an authentication token and
throw an exception if the token didn’t authorize
the requested operation. For example: the
Collection implementation returned from
Collections.unmodifiableCollection(…) is a
protection proxy.

A smart reference automatically handles
annoying background tasks such as deletion.
Java’s WeakReference is an example.

Pros (✔) and Cons (✖)
✔ Proxies hide many optimizations from their

users, simplifying the code considerably.

✖ Once the real object has been created,
access through the proxy adds overhead.
The whole point of the pattern is to be able
to treat the proxy as if it were the real object,
so a method such as getRealObject()
violates the spirit of the pattern.

✖ You may need to use many remote proxies
to talk to a large subsystem. It’s better to
create a single remote proxy for a Facade
than it is to create proxies for every class in
the subsystem.

Often Confused With
Decorator: A protection proxy in particular
could be looked at as a Decorator. There’s no
difference in structure, but the intent is
different—Decorator allows undecorated
objects to be accessed indiscriminately.

See Also
Decorator, Flyweight

Timesheet «abstract»

+«static» create(id: long): Timesheet
+ computeSalary(wage: Money): Money

Employee

-id: long
-wage: Money

+printPaycheck()

Timesheet.Proxy

+computeSalary(wage: Money): Money

Timesheet.Real

+computeSalary(wage: Money): Money

realTimesheet

hoursWorked

Proxy

Real Subject

Proxy

Subject

(client)

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 374

Implementation Notes and Example
class Employee
{ private long id;

private Money wage; // hourly wage
private Timesheet hoursWorked;
public Employee(long id)
{ this.id = id;

hoursWorked = Timesheet.create(id);
wage = Database.getHourlyWage(id);

}
void printPaycheck()
{ Money weeklyWage =

hoursWorked.computeSalary(wage);
//...

}
}
abstract class Timesheet
{ //...

public static Timesheet create(long id)
{ return (dataAlreadyInMemory)

? lookup(id)
: new Proxy(id);

}
public abstract Money computeSalary(Money wage);
//--
private static class Proxy extends Timesheet
{ Timesheet realTimesheet = null;

long id;
Proxy(long id){this.id = id;}
public Money computeSalary(Money wage)
{ if(realTimesheet == null)

realTimesheet = new Real(id);
return realTimesheet.

computeSalary(wage);
}

}
//--
private static class Real extends Timesheet
{ Real(long employeeId)

{ // load data from the database.
}
public Money computeSalary(Money wage)
{ // Compute weekly salary.

return null;
}

}
}

Assume that hourly wage is used heavily
enough to justify a database access when the
object is created but that the total hours worked
is used only rarely and the Timesheet is needed
by only a few methods.

I’ve made the employee identifier a long to
simplify the example. In real code, it would be
an instance of class Identity.

You could reasonably argue that that the
Employee should just use lazy loading for the
Timesheet and dispense with the Proxy object,
but the more that Timesheet was used, the less
weight this argument would hold.

I’ve made Timesheet an abstract class rather
than an interface so that I can use it as a factory;
otherwise, I’d need a separate TimesheetFactory
class.

Accessor methods (get and set functions)
are evil because they expose implementation
detail and impact maintenance. Though it’s
tempting to use them in this pattern, you’ll
note that no getSalary() or getHoursWorked()
method is needed because of the way I’ve
structured the messaging system. Don’t ask for
information you need to do the work; ask the
object that has the information to do the work
for you. One exception to the get/set-is-evil
rule is Database.getHourlyWage(). A database
is fundamentally non-object-oriented; it’s just
a bag of data with no operations at all. Conse-
quently, it must be accessed procedurally.

If the Timesheet.Proxy threw away the
data after computing the salary, it would be a
Flyweight, not a Proxy.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE 375

Usage

public void paint(Graphics g)
{ Image img=Toolkit.getDefaulToolkit().getImage(

new URL("http://www.holub.com/image.jpg"));
g.drawImage(img,...);

}

The object returned from getImage() is a
proxy for the real image, which is loaded
on a background thread. (getImage() is
asynchronous; it returns immediately,
before completing the requested work.)
You can use the image as if all bits had
been loaded, even when they haven’t.

388x_Ch05_Appendix_FINAL.qxd 1/12/05 12:20 PM Page 375

http://www.holub.com/image.jpg

[This page intentionally left blank]

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE376

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 376

Behavioral Patterns
The behavioral patterns concern themselves with the runtime behavior of the program. I think
of them as dynamic-model patterns. They define the roles that objects take on and the way that
these objects interact with each other. For example, Chain of Responsibly defines the way that a set
of objects routes messages to each other at runtime (so that the object best suited to field a message
actually handles the message). All these objects are instances of the same class (or at least imple-
ment the same interface), so there’s not much in the way of structure in Chain of Responsibility.
It’s the dynamic behavior of the objects that are important.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE 377

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 377

Chain of Responsibility
A set of objects relay a message from one to another along a well-defined route, giving more than
one object a chance to handle the message. The object that’s best suited to field a given message
actually does the handling. It’s possible for more than one object on the route to act on the message.

Handler: Defines event-handling
interface and optional successor
link.

Concrete Handler: Handles
request or, by doing nothing,
causes event to be forwarded to
successor.

Dispatcher (not a Gang-of-Four
role): Routes the event to each
handler in turn. Not required if
Handlers are organized as a
linked list.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE378

What Problem Does It Solve?
Makes it easy to add new customized message
handling at runtime. An “event” or a message
can be passed to a sequence of handlers, and
the one that is best suited to handle the
message actually does so.

In Microsoft Windows, every button, frame,
and so on, is a Window object, arranged using the
Composite pattern. Events (messages created by
a user action) are passed to the window that has
the focus (typically a button or other widget),
and if that window can’t handle the message, it
passes it to its parent window (typically a frame
window or a menu bar). The Window that
understands the message actually handles it.

Servlet “filters” are another use of the
pattern. An incoming HTTP packet is passed
through a sequence of filters, which can process
the packet directly or pass the packet to the next
filter in the chain (or both).

Also consider a system of subclasses in
which each constructor parses from a String
the information of interest to it, and then it
passes the String to the superclass constructor.

Pros (✔) and Cons (✖)
✔ The dynamic behavior of the program can

be easily changed at runtime by adding
new handlers to the chain or changing
the ordering of handlers.

✔ The coupling between objects in the program
is loosened if an implementation permits
Handler classes not to know about each other.

✖ In Windows, when a mouse moves one pixel,
the WM_MOUSEMOVE message is first received by
the window that has focus, perhaps a text
control. This control doesn’t know how to
handle it, so it passes the message to the
containing panel, which passes it to the MDI
child window, which passes it to the main
frame, which passes it to the menu bar,
which passes it to each menu item. None of
these objects can handle the message, so it’s
discarded. This is a lot of work to do nothing.

✖ Many reifications force you to use imple-
mentation inheritance to specify a message
handler, inappropriately forcing strong
coupling between Handler classes and
introducing fragile base classes into
the model.

Often Confused With
Composite: Composite specifies one way
that a Chain of Responsibility may be ordered
(from contained object to container, recur-
sively). This is not the only way to order the
chain, however.

See Also
Composite, Observer

Parser «interface»

+parse(input: String): boolean

Parser.Dispatcher

+addParser(Parser p)
+parse(input String): boolean

XMLParser

+ (input: String): boolean

CSVParser

+parse(input: String): boolean

Client
«create»

Concrete
Handler

Handler
(Dispatcher)

Client

Chain of
Responsibility

*
Routs messages to>

parse

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 378

Implementation Notes and Example
interface Parser
{ boolean parse(String input);

static class Dispatcher
{ private List parsers = new LinkedList();

public void addParser(Parser p)
{ parsers.add(p);
}
public boolean parse(String input)
{ for(Iterator i=parsers.Iterator();

i.hasNext();)
{ Parser p = (Parser)(i.next());

if(p.parse(input))
return true;

}
return false;

}
}

}
class XMLParser implements Parser
{ private static Pattern scanner =

Pattern.compile("^\\s*<");
public boolean parse(String input)
{ Matcher regex = scanner.matcher(input);

if(!regex.lookingAt())
return false;

// Parse the XML file here.
return true;

}
}
class CSVParser implements Parser
{ private static Pattern scanner =

Pattern.compile(
"([a-zA-Z0-9]*,)*[a-zA-Z0-9]+");

public boolean parse(String input)
{ Matcher regex = scanner.matcher(input);

if(!regex.matches())
return false;

// Parse a comma-separated-value string
return true;

}
}

Create a parser for a particular input
format by implementing the Parser interface.
The two versions at left (XMLParser and CVSParser)
handle XML and comma-separated-value
formats. The parse(…) method examines the
input, and if it recognizes the input format, it
parsers it and returns true; otherwise, parse(…)
returns false. The Parser.Dispatcher() object
just keeps a list of Parser implementations and
passes the messages to them one at a time until
it finds one that can handle the input string.

Parse an input string like this:

Parser.Dispatcher dispatcher =
new Parser.Dispatcher();

dispatcher.addParser(new XMLParser());
dispatcher.addParser(new CSVParser());
//…
if(!dispatcher.parse(inputString))

System.err.println("Can't parse input");

The Gang-of-Four reification does not
have an object in the Dispatcher role. (The
term dispatcher is mine.) In the Gang-of-Four
reification, the Concrete Handler objects form
a simple linked list, the input is passed to the
first handler in the list, and any handler that
can’t process the input just delegates to the
next handler in the list.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE 379

Usage

public class MyFilter
implements javax.servlet.Filter

{ //...
public void doFilter(ServletRequest req,

ServletResponse rsp,
FilterChain chain)

{ //...
chain.doFilter(request, response);
//...

}
}

class MyWindow extends Component
{ public boolean keyDown(Event e, int key)

{ // code to handle key press goes here.
}

}

Each object on the route typically keeps a
reference to its successor, but the pattern
doesn’t mandate this organization. For example,
a centralized dispatcher may pass a message to
several objects in turn. What’s important is that
the object, not the dispatcher, decides whether
to handle the message. Servlet filters are
dispatched by the web server. Tomcat, for
example, uses information that you put into a
configuration file to determine the dispatch
sequence.

Chain-of-Command GUI handling was
abandoned as unworkable in version 1.1 of Java
(in favor of the better Observer pattern). This
deprecated method is a holdover from then.

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 379

Command
Encapsulate a request or unit of work into an object. Command provides a more capable alternative
to a function pointer because the object can hold state information, can be queued or logged, and
so forth.

Command: Defines an interface for
executing an operation or set of opera-
tions.

Concrete Command: Implements
the Command interface to perform the
operation. Typically acts as an interme-
diary to a Receiver object.

Invoker: Asks the command to carry
out a request.

Receiver: Knows how to carry out the
request. This functionality is often built
in to the Command object itself.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE380

What Problem Does It Solve?
You can’t have a function pointer in an OO
system simply because you have no functions,
only objects and messages. Instead of passing
a pointer to a function that does work, pass a
reference to an object that knows how to do
that work.

A Command object is effectively a trans-
action encapsulated in an object. Command
objects can be stored for later execution, can
be stored as-is to have a transaction record,
can be sent to other objects for execution, and
so on.

Command is useful for tasks such as “undo”
operations. It’s not possible to undo an opera-
tion simply by rolling the program back to a
previous state; the program may have had an
effect on the outside world while transitioning
from the earlier state to the current one.
Command gives you a mechanism for actively
rolling back state by actively reversing side
effects such as database updates.

By encapsulating the work in an object,
you can also define several methods, and even
state information, that work in concert to do
the work. For example, a single object can

encapsulate both “undo” and “redo” opera-
tions and the state information necessary to
perform these operations.

Command also nicely solves “callback”
problems in multithreaded systems. A “client”
thread creates a Command object that performs
some operation and then notifies that client
when the operation completes. The client then
gives the Command object to a second thread
on which the operation is actually performed.

Pros (✔) and Cons (✖)
✔ Command decouples operations from the

object that actually performs the operation.

Often Confused With
Strategy: The invoker of a Command doesn’t
know what the Command object will do. A
Strategy object encapsulates a method for
doing a specific task for the invoker.

See Also
Memento, Strategy

TextEditor

+deleteCharacter (c: char)
+insertCharacter (c: char)
+process (command: Action)
+redo()
+undo ()

Cursor

+characterAt(): char
+clone (): Object
+deleteCharacterAt (): void
+moveRight (): void
+moveTo (): void

Action
«interface»

+doIt ()
+undoIt ()

InsertAction

-inserted: char

+doIt ()
+undoIt ()

DeleteAction

-deleted: char

+doIt()
+undoIt ()

-where

-where

-undoStack

-redoStack

0..*

0..*

-current

Command Concrete
Command

Command
Invoker

Receiver

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 380

Implementation Notes and Example
abstract class Cursor extends Cloneable
{ public Object clone();

public char characterAt();
public void deleteCharacterAt();
public void insertCharacterAt(

char newCharacter);
public void moveTo(Cursor newPosition);
public void moveRight();
//...

}
class TextEditor
{ private Cursor current = new Cursor();

private LinkedList undoStack =
new LinkedList();

private LinkedList redoStack =
new LinkedList();

public void insertCharacter(char c)
{ process(new Inserter(c));
}
public void deleteCharacter()
{ process(new Deleter());
}
private void process(Action command)
{ command.doIt();

undoStack.addFirst(command);
}
public void undo()
{ Action action =

(Action) undoStack.removeFirst();
action.undoIt();
redoStack.addFirst(action);

}
public void redo()
{ Action action =

(Action) redoStack.removeFirst();
action.doIt();
undoStack.addFirst(action);

}
private interface Action
{ void doIt ();

void undoIt();
}
private class Inserter implements Action
{ Cursor where = (Cursor) current.clone();

char inserted;

public Inserter(char newCharacter)
{ inserted = newCharacter;
}
public void doIt()
{ current.moveTo(where);

current.
insertCharacterAt(inserted);

current.moveRight();
}
public void undoIt()
{ current.moveTo(where);

current.deleteCharacterAt();
}

}
private class Deleter implements Action
{ Cursor where = (Cursor) current.clone();

char deleted;
public void doIt()
{ current.moveTo(where);

deleted = current.characterAt();
current.deleteCharacterAt();

}
public void undoIt()
{ current.moveTo(where);

current.insertCharacterAt(deleted);
current.moveRight();

}
}
//...

}

Most of the work is done by the Cursor,
which reifies Iterator. The TextEditor is driven
by a Client class (not shown) that interprets
user input and tells the editor to perform tasks
such as inserting or deleting characters. The
TextEditor performs these request by creating
Command objects that implement the Action
interface. Each Action can both do something
and also undo whatever it did. The editor tells
the Action to do whatever it does and then
stacks the object. When asked to undo some-
thing, the editor pops the Action off the undo
stack, asks it to undo whatever it did, and then
puts it on a redo stack. Redo works in a similar
way, but in reverse.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE 381

Usage

new Thread()
{ public void run(){ /*...*/ }
}.start();

java.util.Timer t = new java.util.Timer();
t.schedule(new java.util.TimerTask()

{ public void run()
{System.out.println("hello world");}

}, 1000);

Thread is passed a Runnable Command
object that defines what to do on the
thread.

Print hello world one second from now.
The TimerTask is a Command object.
Several TimerTask objects may be queued
for future execution.

388x_Ch05_Appendix_FINAL.qxd 1/12/05 12:16 PM Page 381

Interpreter
Implement an interpreter for a language, first defining a formal grammar for that language and
then implementing that grammar with a hierarchy of classes (one subclass per production or
nonterminal).

Abstract Expression: Defines an
“interpret” operation (or operations).
A node in the abstract-syntax tree.

Terminal Expression: Implements an
operation for a terminal symbol
(which appears in the input).

Nonterminal Expression: Implements
an operation for a nonterminal
symbol (a grammatical rule).

Context: Global information (for
example, variable values).

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE382

What Problem Does It Solve?
You sometimes cannot define all the required
behavior of a program when you write it. For
example, there’s no way for the browser writer to
predict the way a site designer may want a web
page to behave. An interpretive language such as
JavaScript can add behavior to the program that
wasn’t contemplated by the author.

The interpreter pattern defines one way
to build an interpreter. You first define a formal
grammar that lists rules (called productions)
that describe the syntax of the language. You
then implement a class for each production.
These classes share a Context object from which
they get input, store variable values, and so
forth. An interpreter may (or may not) create
an efficient output processor (such as a state
machine) that does the actual work.

Pros (✔) and Cons (✖)
✖ The pattern says nothing about how to create

the graph of objects that comprise the inter-
preter (the Abstract Syntax Tree). Interpreter
often requires a nontrivial parser to construct
this graph, and often this parser can just do
the interpretation.

✔ Modifying the grammar is relatively straight-
forward; you just create new classes that
represent the new productions.

✖ Interpreter doesn’t work well if the grammar
has more than a few productions. You need
too many classes. Use traditional compiler
tools (such as JYACC, CUP, and so on) or a
hand-coded recursive-decent parser for
nontrivial languages.

✖ Why provide an interpreter when you have
a perfectly good one already in memory:

the JVM? Your users write scripts in Java and
provide you with a string holding the class
name. Use Java’s introspection APIs to load
and execute the user-supplied code, or, if the
user code implements a well-defined inter-
face, then execute directly. Given the following:

public interface UserExtension
{ void doSomething();
}

instantiate and execute a user object like this:

String name =
System.getProperty("user.extension");

class userMods = Class.forname(name);
UserExtension userExtentionObject =

(UserExtension) userMods.newInstance();
userExtensionObject.doSomething();

Write your own class loader and/or security
manager to create a sandbox.

Applets demonstrate this technique. Rather
than interpret code (à la JavaScript), you
provide a class to the browser, which it
executes. Applets communicate with the
browser via the AppletContext Facade.

Often Confused With
Chain of Responsibility: Chain of Responsibility
is used in interpreter to evaluate the input
sentence. It’s Interpreter only when the objects
implement grammatical rules.

Composite: Interpreter is implemented as a
Composite.

See Also
Strategy, Visitor

Logic «interface»

+evaluate()

ANDLogic

+evaluate()

Variable

+evaluate()

ORLogic

+evaluate()

Logic.Values

+assign(key: value)
+lookup(key): value-operands

-operands

Interpreter

Abstract Expression

Context

Nonterminal
Expression

Terminal
Expression

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 382

Implementation Notes and Example
interface Logic
{ public static class Values

{ static Map vars = new HashMap();
static void assign(String key,

boolean value)
{ if(key==null || key.length() <= 0)

throw new Exception("Logic");
vars.put(key, value? Boolean.TRUE

: Boolean.FALSE);
}
static boolean lookup(String key)
{ Object got = vars.get(key);

return ((Boolean)got).booleanValue();
}

}
boolean evaluate();

}

class ANDLogic implements Logic
{ Logic left, right;

public ANDLogic(Logic left, Logic right)
{ this.left = left;

this.right = right;
}
public boolean evaluate()
{ return left.evaluate()

&& right.evaluate();
}

}

class ORLogic implements Logic{/*...*/}
class NOTLogic implements Logic{/*...*/}

class AssignmentLogic implements Logic
{ Logic left, right;

public AssignmentLogic(Logic l, Logic r)
{ this.left = l;

this.right = r;
}
public boolean evaluate()
{ boolean r = right.evaluate();

Logic.Values.assign(left.toString(),r);
return r;

}
}
class Variable implements Logic
{ private String name;

public Variable(String s){name = s;}
public String toString(){ return name; }
public boolean evaluate()
{ return Logic.Values.lookup(name);
}

}

Consider the following Boolean-expression
grammar:

e ::= e '&' e
| e '|' e
| '!' e
| '(' e ')'
| var '=' e
| var

The code at the left comprises an inter-
preter for that grammar. (I haven’t shown
ORLogic and NOTLogic classes, since they’re
trivial variants on ANDLogic.) Variable values
are held in the Values Singleton. Create an
interpreter for X=(A & B) | !C as follows:

Logic term = new ANDLogic(
new Variable("A"),
new Variable("B")

);
term = new ORLogic(

term,
new NOTLogic(new Variable("C"))
);

term = new AssignmentLogic(
new Variable("X"), term);

Assign values in the code (or by reading
user input) like this:

Logic.Values.assign("A", true);
Logic.Values.assign("B", true);
Logic.Values.assign("C", false);
boolean result = term.evaluate();

The Interpreter pattern makes no sugges-
tions as to how you may construct the abstract-
syntax tree that represents the expression (the
tree of Logic objects), but some sort of parser is
implied.

Alternatively, you could use Visitor to
traverse the syntax tree: Visit the notes in depth-
first order; code in the visitor object determines
what happens as it visits each node. You could
traverse once to test internal integrity, traverse
again to optimize the tree, traverse a third time
to evaluate the expression, and so on. Separating
the structure of the abstract syntax tree from the
logic of code generation and optimization can
clean up the code substantially, but the visitor
can end up as a quite-large class and will be hard
to maintain as a consequence.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE 383

Usage

java.util.regex.Pattern p=Pattern.compile("a*b");
java.util.regex.Matcher m = p.matcher("aaaaab");
boolean b = m.matches();

Uses Interpreter internally. (See the source
code shipped with the JDK.)

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 383

Iterator
Access the elements of an aggregate object sequentially without exposing how the aggregation is
implemented.

Iterator: Interface for accessing
and traversing elements.

Concrete Iterator: Implements
Iterator and keeps track of current
position.

Aggregate: Defines an interface for
creating an iterator. (Omit if no
Abstract Factory required.)

Concrete Aggregate: Holds the
data. Implements the creation
interface to manufacture an
iterator.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE384

What Problem Does It Solve?
Iterators isolate a data set from the means that’s
used to store the set. For example, Java Collec-
tion and Map classes don’t implement a common
interface. You can, however, extract an iterator
from a Collection (using iterator()) and from a
Map (using values().iterator()). Pass the iter-
ator to a method for processing, thereby isola -
ting that method from knowledge of how the
objects are stored.

The set of objects need not be stored inter-
nally at all—an iterator across a Flyweight may
read objects from disk or even synthesize them.

Iterators make it easy to have multiple
simultaneous iterators across an aggregation.

Iterators can manipulate the aggregation.
The Cursor class in the Command example is an
iterator. Java’s ListIterator can modify the list.

External or active iterators are controlled by
the client (for example, Java’s Iterator class).
Internal or passive iterators are controlled by the
aggregate object. A tree may have a traverse-
PostOrder() method that’s passed a Command
object that is, in turn, passed each node in the
tree. External iterators are often harder to imple-
ment than internal ones.

Pros (✔) and Cons (✖)
✔ Promotes reuse by hiding implementation.

✖ A client may modify the elements of the
aggregation, damaging the aggregate (for
example, change the key in sorted aggregate).

✖ The aggregate may store references to its
iterators; memory leaks are possible if you
discard an iterator without notifying the
aggregate.

✖ It’s difficult to control the traversal algo-
rithm and retain the generic quality of an
iterator. For example, there’s no way to
specify a post-order traversal from the iter-
ator returned from a TreeSet. This problem
extends to most Composite reifications.

✖ It’s difficult to implement Iterator in an
environment that supports simultaneous
iteration and modification. (If you add an
item to an aggregate while iterations are in
progress, should the iterator visit the newly
added item? What if the list is ordered and
you’ve already passed the place where the
new item is inserted? Should attempts to
modify the aggregation fail if iterators are
active? There are no “correct” answers to
these questions.)

Often Confused With
Visitor: Visitor can be implemented with a
passive iterator. Iterators should examine data,
not modify it. Visitors are passed from node to
node; Iterators are passed the node to visit.

See Also
Composite, Visitor

Iterator «interface»

+hasNext (): boolean
+next (): Object
+remove (): void

Collection «interface»

+iterator(): Iterator
//...

Tree

+iterator(): Iterator
+travserse(client: Examiner)

«anonymous»

+hasNext (): boolean
+next (): Object
+remove (): void

Examiner «interface»

+examine(element: Object)

«anonymous»

+examine(element: Object)

<travserses

«create»

<examines
nodes of

"External"
Iterator Concrete

Iterator
Iterator

Concrete
Aggregate

Aggregate

Aggregate

Concrete
Aggregate

Iterator

Concrete
Iterator"Internal"

Iterator

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 384

Implementation Notes and Example
class Tree implements Collection
{ private Node root = null;

private static class Node
{ public Node left, right;

public Object item;
public Node(Object item)
{ this.item = item; }

}
Iterator iterator()
{ return new Iterator()

{ private Node current = root;
private LinkedList stack =

new LinkedList();
public Object next()
{ while(current != null)
{ stack.addFirst(current);

current = current.left;
}
if(stack.size() != 0)
{ current = (Node)

(stack.removeFirst());
Object toReturn=current.item;
current = current.right;
return toReturn;

}
throw new NoSuchElementException();

}
public boolean hasNext()
{ return !(current==null

&& stack.size()==0);
}
public void remove(){ /*...*/ }

};
}
public interface Examiner
{ public void examine(Object o); }
void traverse(Examiner client)
{ traverseInorder(root, client);
}
private void traverseInorder(Node current,

Examiner client)
{ if(current == null)

return;
traverseInorder(current.left, client);
client.examine (current.item);
traverseInorder(current.right, client);

} // ...
}

The previous code implements a simple
binary tree. (I’ve omitted the methods of
Collection that aren’t relevant to Iterator.) The
iterator() method returns an external iterator
that implements the java.util.Iterator inter-
face. Use it like this:

Iterator i = t.iterator();
while(i.hasNext())

System.out.print(i.next().toString());

You can’t use recursive traversal in an
external iterator because next() must return
after getting each element, and you can’t stop
the recursion in midstream. My implemena-
tion uses a stack to remember the next parent
to visit in the traversal (the same information
that would be on the runtime stack in a recur-
sive traversal). You can easily see the extra
complexity mandated by this approach, but
other nonrecursive traversal algorithms are, if
anything, messier.

The traverse() method demonstrates an
internal iterator. You pass traverse() a Command
object that implements the Examiner interface.
Traverse does a simple recursive traversal,
passing each node to the Examiner’s examine()
method in order. Here’s an example:

t.traverse(
new Tree.Examiner()
{ public void examine(Object o)

{ System.out.print(o.toString());
}

});

As you can see, the code is much simpler,
but you lose the flexibility of an external iter-
ator (which you could keep positioned in the
middle of the tree, for example; an internal
iterator doesn’t give you the option of not
advancing).

Both iterators access private fields of Tree.
Think of an external iterator as an extension of
the object that creates it. Private access is okay
if it doesn’t expose implementation informa-
tion. Nonetheless, iterators are tightly coupled
to the aggregate by necessity.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE 385

Usage

f(Collection c)
{ Iterator i = c.iterator();

while(i.hasNext())
doSomething(i.next());

}

String query = "SELECT ID FROM TAB";
ResultSet results = stmt.executeQuery(query);
while(results.next())

String s = results.getString("ID");

Iterators are used heavily in all the Java Collection
classes.

A database cursor iterates across rows in a table.

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 385

Mediator
Define a single object that encapsulates a set of complex operations. Mediator simplifies your code
by hiding complexity; it loosens coupling between the objects that use the mediator and the objects
the mediator uses.

Mediator: (Often omitted.)
Defines an interface to Colleagues.

Concrete Mediator: Implements
the Mediator interface to interact
with Colleagues and manage
communication between them.

Colleagues: A system of interfaces
and classes that communicate
bidirectionally through the medi-
ator rather than directly. Note that
the client is a Colleague.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE386

What Problem Does It Solve?
Mediator makes complex operations simple.

Too-complex code is damaging to any
program. Mediator solves this problem by
taking complex code that would otherwise
appear all over the program and encapsulating
it into a single object with a simple interface
that’s used all over the program. Mediators
hide complex protocols.

Pros (✔) and Cons (✖)
✔ Mediators improve code organization in

many ways: reducing subclassing, decou-
pling subsystems, and simplifying
messaging systems and protocols.

✖ Complexity can creep into a Mediator over
time as you customize it for new applica-
tions. You’ve missed the point if you allow a
Mediator to become too complex. Several
Mediators tailored for specific applications
can help. Be careful not to add back the
complexity you’re trying to eliminate.

✖ A mediator can turn into a “god” class if
you’re not careful. A good OO program is a
network of cooperating agents. There is no
spider in the middle of the web pulling the
strands. Focus your mediators on doing one
thing only.

Often Confused With
Facade: Facade eases simple one-way commu-
nication with a subsystem helps isolate the
subsystem from the rest of the program. Medi-
ators encapsulate complex interactions, but
communication is bidirectional and they do
not isolate anything from anything. It’s possible,
however, for a set of classes to participate
simultaneously in both patterns.

Bridge: Bridge and Mediator both reduce
coupling between subsystems. Bridge defines
a standard (often complicated) interface and
then implements it in various ways. Bridges are
systems of classes. Mediators are objects that
have simple interfaces but do complex work at
runtime. Mediator does promote decoupling,
though. If a protocol changes, for example, the
scope of that change is typically limited to the
Mediator itself.

See Also
Facade, Bridge

Query

+ask(String messasge): String

SwingQuery

+ask(String messasge): String

Client

ActionListener
«interface»

WIndowAdapter
«abstract»

JFrame

JTExtField

«anonymous»

«anonymous»

Concrete
Colleague

Colleague

Concrete
Mediator

Mediator

Colleague
Mediator

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 386

Implementation Notes and Example
interface Query
{ String ask(String question);
}
class SwingQuery implemnts Query
{ public String ask(String question)
{ final Object done = new Object();
final Object init = new Object();
final JFrame frame = new JFrame("Query");
final JTextField answer= new JTextField();
answer.setPreferredSize(
new Dimension(200,20));
frame.getContentPane().setLayout(
new FlowLayout());
frame.getContentPane().add(answer);
frame.getContentPane().add(

new JLabel(question));
answer.addActionListener // submit
(new ActionListener()

{ public void actionPerformed(ActionEvent e)
{ synchronized(init)

{ synchronized(done)
{ frame.dispose();

done.notify();
}}}});
frame.addWindowListener // cancel
(new WindowAdapter()

{ public void windowClosing(WindowEvent e)
{ synchronized(init)

{ synchronized(done)
{ frame.dispose();

answer.setText("");
done.notify();

}}}});
synchronized(done)
{ synchronized(init)

{ frame.pack();
frame.show();

}
try{ done.wait(); }
catch(InterruptedException e){}

}
return answer.getText();

}
}

The previous code lets you ask the user a
simple question. When you make this call:

Query user = new SwingQuery();
String answer = user.ask("How are you");

The method displays the small window
shown previously. You type your answer and hit
Enter, the window shuts down, and ask(...)
returns what you typed (in this case, the string
"Fine"). If you click the X box in the upper-
right corner of the control, the window shuts
down and ask(...) returns an empty string.

The details of the code are actually not
relevant to the current discussion. The main
issue is that the code encapsulates a complex
interaction with the GUI subsystem (and would
be even more complex if you were working in
the raw OS rather than Java), but the user exer-
cises all this complexity by doing a simple thing.
The details are all hidden. Moreover, code that
uses Query is now considerably simplified, and a
lot of complicated junk isn’t duplicated all over
the program.

It would be better if the Concrete Mediator
(the SwingQuery) were created by an Abstract
Factory rather than by invoking new.

Note that Mediator does not isolate the
program from the entire Swing subsystem
(unlike Bridge). Mediator does not prohibit
other parts of your program from talking
directly to Swing. Also note that the communi-
cation between the Mediator (Query) and its
colleagues (everything else) is bidirectional,
and that all communication (at least in the
context of asking the user a question) happens
through the mediator.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE 387

Usage

URL home = new URL("http://www.holub.com");
URLConnection c = home.getConnection();

//...
OnputStream out = c.getOutput();
c.write(someData);

JButton b = new JButton("Hello");
//...

JOptionPane.showMessageDialog("Error... ");

The output stream returned from the URLConnection is
a Mediator. You just write data to it. It encapsulates
the complex interaction needed to establish a
connection and implement whatever protocol was
specified in the original URL.

The JButton deals with all the complexity of fielding
mouse clicks, changing the image the user sees
when the button should be “down,” and so on.

Hides the complexity of creating and showing a
dialog box.

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 387

http://www.holub.com

Memento
Encapsulate an object’s state in such a way that no external entity can know how the object is struc-
tured. An external object (called a caretaker) can store or restore an object’s state without violating
the integrity of the object.

Originator: Creates a memento that holds a
“snapshot” of its current state.

Memento: Stores the internal state of the Origi-
nator in a way that does not expose the structure
of the Originator. Supports a “wide” interface
used by the originator and a “narrow” interface
used by everyone else.

Caretaker: Stores the mementos but never oper-
ates on them.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE388

What Problem Does It Solve?
The ubiquitous get/set (accessor) function is
evil. Allowing access to internal fields—either
directly by making them public or indirectly
through an accessor method—flies in the face
of the basic object-oriented principle of imple-
mentation hiding. The whole point of an OO
structure is that you can make radical changes
to an object’s implementation without
impacting the code that uses those objects.
An object should not get the data that it needs
to do work—it should ask the object that has
the data to do the work for it (delegation). The
only exception to this rule is an accessor that
returns an object that opaquely encapsulates
the data. The point is not to expose implemen-
tation details.

If you use simplistic accessors, even
small changes, such as changing a field’s type,
impact every part of the program that uses
that accessor. Programs that use accessors are
difficult to maintain and simply aren’t object
oriented. (A program isn’t OO just because it
uses classes, derivation, and so on, or is written
in Java or C++.)

But what if an external entity needs to
remember the state of some object, perhaps
to restore that state in an undo operation or
equivalent? Memento solves this problem by
having the original object return a black box,
an impenetrable container that the caretaker
can store but not manipulate. The object that
manufactures the black box does know what’s
in it, though, so it can use this information at
will (to restore state, for example).

Pros (✔) and Cons (✖)
✔ Allows an object’s state to be stored exter-

nally in such a way that the maintainability
of the program is not compromised.

✔ Allows a “caretaker” object to store states of
classes that it knows nothing about.

✖ Versioning can be difficult if the memento is
stored persistently. The Originator must be
able to decipher mementos created by
previous versions of itself.

✖ It’s often unclear whether a memento
should be a “deep” copy of the Originator.
(in other words, should recursively copy not
just references but the objects that are refer-
enced as well). Deep copies are expensive
to manufacture. Shallow copies can cause
memory leaks, and referenced objects may
change values.

✖ Caretakers don’t know how much state is in
the memento, so they cannot perform effi-
cient memory management.

Often Confused With
Command: Command objects encapsulate opera-
tions that are known to the invoker. Mementos
encapsulate state—operations are unknown to
the caretaker.

Originator

+getMemento(): Object
+restoreFrom(memento: Object)

Memento Caretaker
-memento

< stores state of

Memento

Caretaker

Originator

Memento

«c
re

at
es

»

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 388

Implementation Notes and Example
class Originator
{ private String state;

private int more;

private class Memento
{ private String state =

Originator.this.state;
private int more =Originator.this.more;
public toString()
{ return state + ", " + more ;
}

}

public Object getMemento()
{ return new Memento();
}

public Object restore(Object o)
{ Memento m = (Memento) o;

state = o.state;
more = o.more;

}
}

class Caretaker
{ Object memento;

Originator originator;
public void captureState()
{ memento = originator.getMemento();
}
public void restoreYourself()
{ originator.restore(memento);
}

}

Making Memento private with nothing but
private fields guarantees that unsafe access is
impossible. (Some idiot may try to circumvent
encapsulation using the introspection APIs,

but “against stupidity, even the gods them-
selves contend in vain.”) The Caretaker treats
the Memento as a simple Object. Memento
defines a “narrow” interface (toString())
that doesn’t expose structure. A much more
complicated memento is presented in
Chapter 3 in the Game-of-Life example.

One great example of Memento is an
“embedded” object in Microsoft’s Object
Linking and Embedding (OLE) framework.
Consider an Excel spreadsheet that you’ve
embedded as a table in a Word document.
When you create the table, Excel is running.
It negotiates with Word to take over some of its
UI (Excel adds menus to Word’s menu bar and
is in control of the subwindow that holds the
table, for example). When you click outside
the table, Excel shuts down and produces a
memento—a blob of bytes that holds its state—
and an image that Word displays in place of the
original Excel UI. All that Word can do with this
image is display it. All that Word can do with
the data “blob” is hold onto it. The next time
the user wants to edit the table, Word passes
the blob back to Excel, but Excel has to figure
out what to do with it. Since Excel’s data repre-
sentation is completely hidden from Word, it
can change the representation without
impacting any of the code in Word itself.

A memento can have a “narrow” interface
that does something such as display its state
on a screen or store its state as an XML file. Just
make sure that this interface doesn’t expose
any structure to the caretaker.

“Undo” is hardly ever implementable
solely with a memento (see “Command”).

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE 389

Usage

class Originator implements Serializable{ int x; }

ByteArrayOutputStream bytes = new ByteArrayOutputStream();
ObjectOutputStream out= new ObjectOutputStream(bytes);

Originator instance = new Originator(); // create
out.writeObject(instance); // memento
byte[] memento = bytes.toByteArray();

ObjectInputStream in = // restore object
new ObjectInputStream(// from memento

new ByteArrayInputStream(memento));
instance= (Originator) in.readObject();

A byte array is about as black
as a box can be. Decorator is
used here to produce a system
of streams that manufacture
the memento. This example
also nicely illustrates a flaw in
Decorator—that you sometimes
have to access an encapsulated
decorator to do work.

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 389

Observer (Publish/Subscribe)
When an object changes states, it notifies other objects that have registered their interest at runtime.
The notifying object (publisher) sends an event (publication) to all its observers (subscribers).

Subject (The publisher). Notifies
Observers that some event has
occurred. Keeps a subscription
list and a means for modifying
the list. Sometimes Subject is an
interface implemented by a
Concrete Subject.

Observer (The subscriber).
Defines an interface for notifying
Observers.

Concrete Observer: Implements
the Observer interface to do
something when notified.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE390

What Problem Does It Solve?
In Chain of Responsibility, a button notifies a
parent of a press event like this:

class Window
{ void buttonPressed() {/*...*/}

//...
}

class Button implements Window
{ private Window parent;

public Button(Window parent)
{ this.parent = parent; }
public void onMouseClick()
{ parent.buttonPressed(); }

}

An abstraction-layer (business) object must
learn about presses through a Mediator called
a controller—a Window derivative that overrides
buttonPressed() to send a message to the busi-
ness object. The coupling relationships between
the controllers, the abstraction layer, and the
presentation (the button) are too tight. Too
much code is affected if anything changes.

The Observer pattern addresses the problem
by adding an interface between the publisher of
an event (the button) and a subscriber (the busi-
ness object that’s actually interested in the button
press). This interface decouples the publisher and
makes it reusable in the sense that it’s a stand-
alone component, with no dependencies on the
rest of the system. A Subject can notify any class
that implements the Observer interface, as
compared to the earlier example, where a Button
could notify only a Window.

Pros (✔) and Cons (✖)
✔ Observer nicely isolates subsystems, since

the classes in the subsystems don’t need to
know anything about each other except that
they implement certain “listener” interfaces.
This isolation makes the code much more
reusable.

✖ You have no guarantee that a subscriber
won’t be notified of an event after the
subscriber cancels its subscription—a side
effect of a thread-safe implementation.
(AWT and Swing both have this problem.)

✖ Publication events can propagate alarmingly
when observers are themselves publishers.
It’s difficult to predict that this will happen.

✖ Memory leaks are easily created by “dangling”
references to subscribers. (When the only
reference to an Observer is the one held by a
Subject, a dangling Concrete Observer may
not be garbage collected.) It’s difficult in Java,
where there are no “destructor” methods, to
guarantee that publishers are notified when a
subscriber becomes irrelevant, and it’s easy to
forget to explicitly cancel the subscription.

Often Confused With
Command: Command objects are very generic.
Observers are used solely for notification.

Strategy: Strategy objects define a strategy for
performing some work. Observers do imple-
ment a notification strategy but, unlike Strategy
objects, are not called from within methods to
do work.

See Also
Chain of Responsibility

NotifyingCollection

+addSusbscriber(listener: Subscriber)
+removeSubscriber(listener: Subscriber)
//...

Collection

Subscriber «interface»

+addedItem(item: Object)
+removedItem(item: Object)

notifies >

-subscribers

0..*1

-publisher

SubscriberAdapter

+addedItem(item: Object)
+removedItem(item: Object)

SomeClientListener

+addedItem(item: Object)
+removedItem(item: Object)

AnotherClientListener

+addedItem(item: Object)

Observer

Concrete
Observer

Observer
Subject

Concrete
Observer

"Adapter" implements
default versions of
Subscriber methods.
Subclass overrides
interesting methods
only.

388x_Ch05_Appendix_FINAL.qxd 1/12/05 11:46 AM Page 390

Implementation Notes and Example
public final class NotifyingCollection

implements Collection
{ private final Collection c;

public NotifyingCollection(Collection wrap)
{ c = wrap; }
private final Collection subscribers

= new LinkedList();
public interface Subscriber
{ void addedItem (Object item);

void removedItem (Object item);
}
synchronized public void addSubscriber(

Subscriber subscriber)
{ subscribers.add(subscriber); }
synchronized public void removeSubscriber(

Subscriber subscriber)
{ subscribers.remove(subscriber);
}

private void notify(boolean add, Object o)
{ Object[] copy;
synchronized(this)
{ copy = subscribers.toArray();
}
for(int i = 0; i < copy.length; ++i)
{ if(add)

((Subscriber)copy[i]]).addItem(o);
else

((Subscriber)copy[i]).removeItem(o);
}

}

public boolean add(Object o)
{ notify(true,o); return c.add(o); }
public boolean remove(Object o)
{ notify(false,o); return c.remove(o); }
public boolean addAll(Collection items)
{ Iterator i = items.iterator()

while(i.hasNext())
notify(true, i.next());

return c.addAll(items);
}
// pass-through implementations of other
// Collection methods go here...

}

The example at left is a Decorator that
wraps a collection to add a notification feature.
Objects that are interested in finding out when
the collection is modified register themselves
with the collection.

In the following example, I create an
“adapter” (in the Java/AWT sense, this is not
the Adapter pattern) that simplifies subscriber
creation. By extending the adapter rather than
implementing the interface, I’m saved from
having to implement uninteresting methods. I
then add a subscriber, like so:

class SubscriberAdapter implements
NotifyingCollection.Subscriber

{ public void addedItem(Object item){}
public void removedItem(Object item){}

}

NotifyingCollection c =
new NotifyingCollection(new LinkedList());

c.addSubscriber
(new SubscriberAdapter()

{ public void added(Object item)
{ System.out.println("Added " + item);
}

}
}

This implemenation of Observer is
simplistic—copy is a very inefficient strategy
for solving the problem of one thread adding or
removing a subscriber while notifications are
in progress. A more realistic implementation
was presented in Chapter 3.

Observer encompasses both one-to-many
and many-to-one implementations. For
example, one button could notify several
observers when it’s pressed, but by the same
token, several buttons could all notify the same
subscriber, which would use some mechanism
(perhaps an event object passed as an argu-
ment) to determine the publisher.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE 391

Usage

JButton b = new JButton("Hello");
b.addActionListener(

new ActionListener()
{ public void actionPerformed(ActionEvent e)

{ System.out.println("World");
}

});

Timer t = new java.util.Timer();
t.scheduleAtFixedRate(new TimerTask()

{ public void run()
{ System.out.println(new Date().toString());
}

}, 0, 1000);

Print World when the button is pressed.
The entire AWT event model is based on
Observer. This model supersedes a Chain-
of-Responsibility-based design that proved
unworkable in an OO environment.

Print the time once a second. The Timer
object notifies all its observers when the
time interval requested in the schedule
method elapses.

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 391

State
Objects often need to change behavior when they are in certain states. Define an interface
comprising all methods that change behavior; interface implementations define behavior for
each state.

Context: Defines a public interface to the
outside world, methods of which change
behavior with object state. Maintains an
instance of a Concrete State class.

State: Defines an interface that comprises
all the behavior that changes with state.

Concrete State: Implements State to
define behavior for a particular state.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE392

What Problem Does It Solve?
Objects often need to change behavior with
state. The “obvious” way to implement this
change is for each method to contain a large
switch statement or equivalent, with a case
for each possible state, and the selector is an
instance variable. This structure is difficult to
maintain at best, and changing the state table
or introducing new states is difficult, requiring
many changes to many methods.

In the State pattern, each state is repre-
sented by a State object that implements the
behavior of the Context object when the Context
is in a given state. An instance variable refer-
ences an object that implements the current
state’s behavior. A public method that changes
behavior with state just delegates to the current
state object. To change state, modify the current
state reference to reference an object that
implements behavior for the new state.

Pros (✔) and Cons (✖)
✔ State machines are easier to maintain since

all the behavior for a given state is in one
place.

✔ Eliminates long, hard-to-maintain switch
statements in the methods.

✖ State tables (indexed by current state and
stimulus, holding the next state) are difficult
to implement.

✖ Increases the number of classes in the
system along with concomitant mainte-
nance problems.

✖ If only a few methods change behavior with
state, this solution may be unnecessarily
complex.

Often Confused With
Strategy: The state objects do implement a
strategy for implementing a single state, but
that strategy is not provided by an outside entity.

See Also
Singleton

388x_Ch05_Appendix_FINAL.qxd 1/14/05 2:27 PM Page 392

Implementation Notes and Example
public final class LockedCollection

implements Collection
{ private final Collection c;
private int activeIterators = 0;

private Unsafe active = new IsActive();
private Unsafe locked = new IsLocked();
private Unsafe state = active;

public LockedCollection(Collection c)
{ this.c = c;
}
public Iterator iterator()
{ final Iterator wrapped = c.iterator();
++activeIterators;
state = locked;

return new Iterator()
{ private boolean valid = true;

//...
public boolean hasNext()
{ return wrapped.hasNext();
}
public Object next()
{ Object next = wrapped.next();
if(!hasNext())
{ if(--activeIterators == 0)

state = active;
valid = false;

}
return next;

}
};

}
public int size()

{ return c.size(); }
public boolean isEmpty()

{ return c.isEmpty(); }
// ...
// Collection methods that don't
// change behavior are defined here.

public boolean add(Object o)
{return state.add(o);}

public boolean remove(Object o)
{return state.remove(o);}

private interface Unsafe
{ public boolean add(Object o);
public boolean remove(Object o);
//...

}
private final class IsActive

implements Unsafe
{ public boolean add(Object o)

{return c.add(o);}
public boolean remove(Object o)

{return c.remove(o);}

//...
}
private final class IsLocked

implements Unsafe
{ public boolean add(Object o)

{ throw new Exception("locked"); }
public boolean remove(Object o)

{ throw new Exception("locked"); }
//...

}
}

This code combines Decorator, Abstract
Factory, and State. It implements a Collection
that changes behavior when iterators are
active. Active means that an iterator has been
created, but the last element of the Collection
has not been examined through that iterator.
(Java’s Collection implementations do just
that, but it makes a good example.) The class
tosses an exception if you attempt to modify a
collection while iterators are active.

The Unsafe interface defines those
Collection methods that are unsafe to call
during iteration. This interface is implemented
by two classes: IsActive implements normal
collection behavior. IsLocked implements the
iterators-are-active behavior. The classes are
Singletons whose instances are referenced by
active and locked. The variable state defines
the current state and points to one or the other
of the Singletons.

Public methods that don’t change state
with behavior (such as size()) delegate to the
contained Collection, c. Public methods that
do change state (such as add(Object)) delegate
to whichever state object is referenced by
state. The iterator() method forces a change
of state to locked when it issues an iterator. It
also increments an active-iterator count. This
count is decremented by the Iterator’s next()
method when it reaches the last element, and
when the count goes to zero, the active state is
activated.

The iterator also changes behavior with
state, but only one method is affected, so the
State pattern isn’t used.

No reason exists why you can’t create new
objects each time a state transition is made.
This way the individual state object can itself
keep local state information.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE 393

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 393

Strategy
Define an interface that defines a strategy for executing some algorithm. A family of interchangeable
classes, one for each algorithm, implements the interface.

Strategy: An interface that allows
access to an algorithm.

Concrete Strategy: Implements a
particular algorithm to conform to
the Strategy interface.

Context: Uses the algorithm
through the Strategy interface.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE394

What Problem Does It Solve?
Sometimes, the only difference between
subclasses is the strategy that’s used to
perform some common operation. For
example, a frame window may lay out its
components in various ways, or a protocol
handler may manage sockets in various ways.
You can solve this problem with derivation—
several frame derivatives would each lay out
subcomponents in different ways, for example.
This derivation-based solution creates a prolif-
eration of classes, however. In Strategy, you
define an interface that encapsulates the
strategy for performing some operation (such
as layout). Rather than deriving classes, you
pass the Context class the strategy it uses to
perform that operation.

Pros (✔) and Cons (✖)
✔ Strategy is a good alternative to subclassing.

Rather than deriving a class and overriding
a method called from the superclass, you
implement a simple interface.

✔ The Strategy object concentrates algorithm-
specific data that’s not needed by the Context
class in a class of its own.

✔ It’s easy to add new strategies to a system,
with no need to recompile existing classes.

✖ Communication overhead is small. Some of
the arguments passed to the Strategy
objects may not be used.

Often Confused With
Command: Command objects are very generic.
The invoker of the command doesn’t have a
clue what the Command object does. A Strategy
object performs a specific action.

See Also
Command

SocketPool «interface»

+allocate (host: String, port: int)
+release(s: Socket)

SimplePool

+allocate(host: String, port: int)
+release(s: Socket)

KeepalivePool

+allocate(host: String, port: int)
+release(s: Socket)

ProtocolHandler

+process(host: String, port: int)
+setPoolingStrategy(pool: SocketPool)

Strategy

Context

Strategy

Concrete
Strategy

-pool

Concrete
Strategy

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 394

Implementation Notes and Example
interface SocketPool
{ Socket allocate(String host, int port)
void release (Socket s)

}
class SimplePool implements SocketPool
{ public Socket allocate(String host,int port)
{ return new Socket(host, port);
}
public void release(Socket s)
{ s.close();
}

};
class KeepalivePool implements SocketPool
{ private Map connections = new HashMap();
public Socket allocate(String host,int port)
{ Socket connection =

(Socket)connections.get(host+":"+port);
if(connection == null)
connection = new Socket(host,port);

return connection;
}
public void release(Socket s)
{ String host =

s.getInetAddress().getHostName();
connections.put(host+":"+s.getPort(),s);

}
//...

}
class ProtocolHandler
{ SocketPool pool = new SimplePool();
public void process(String host, int port)
{ Socket in = pool.allocate(host,port);
//...
pool.release(in);

}
public void setPoolingStrategy(SocketPool p)
{ pool = p;
}

}

The previous code implements a skeleton
protocol handler. Some of the hosts that the
handler talks to require that sockets used for
communication are closed after every message
is processed. Other hosts require that the same
socket be used repeatedly. Other hosts may have
other requirements. Because these requirements
are hard to predict, the handler is passed a
socket-pooling strategy.

The default strategy (SimplePool) simply
opens a socket when asked and closes the
socket when the ProtocolHandler releases it.

The KeepalivePool implements a different
management strategy. If a socket has never been
requested, this second strategy object creates it.
When this new socket is released, instead of
closing it, the strategy object stores it in a Map
keyed by combined host name and port number.
The next time a socket is requested with the
same port name and host, the previously created
socket is used. A more realistic example of this
second strategy would probably implement
notions such as aging, where a socket would be
closed if it hadn’t been used within a certain time
frame.

In the interest of clarity, I’ve left out the
exception handling.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE 395

Usage

JFrame frame = new JFrame();
frame.getContentPane().setLayout(new FlowLayout());
frame.add(new JLabel("Hello World");

String[] array = new String[]{ ... };
Arrays.sort
(array,

new Comparator
{ int Compare(Object o1, Object o2)

{ return ((String)o1).compareTo((String)o2);
}

}
);

The LayoutManger (FlowLayout) defines a
strategy for laying out the components
in a container (JFrame, the Context).

The Arrays.sort(...) method is passed
an array to sort and a Comparator that
defines a strategy for comparing two
array elements. This use of Strategy
makes sort(...) completely generic—
it can sort arrays of anything.

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 395

Template Method
Define an algorithm at the superclass level. Within the algorithm, call an abstract method to perform
operations that can’t be generalized in the superclass. This way you can change the behavior of an
algorithm without changing its structure.

Abstract Class: Defines an algorithm that uses
“primitive” operations that are supplied by a
subclass.

Concrete Class: Implements the “primitive”
operations.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE396

What Problem Does It Solve?
Template Method is typically used in deriva-
tion-based application frameworks. The frame-
work provides a set of superclasses that do 90
percent of the work, deferring application-
specific operations to abstract methods. That
is, superclass methods call abstract template
methods. You use the framework by deriving
classes that implement this application-
specific behavior by providing template-
method overrides.

Pros (✔) and Cons (✖)
✖ Template method has little to recommend

it in most situations. Strategy, for example,
typically provides a better alternative. Well-
done class libraries work “out of the box.”
You should be able to instantiate a frame-
work class, and it should do something
useful. Generally, the 90/10 rule applies
(10 percent of the functionality is used 90
percent of the time, so the 10 percent should
define the default behavior of the class). In
template method, however, the framework
often defines no default behavior, but rather
you are required to provided subclasses for
the superclass to do anything useful. Given
the 90/10 rule, this means you have to do
unnecessary work 90 percent of the time.

Template method does not prohibit the class
designer from providing useful default func-
tionality at the superclass level, expecting that
the programmer will modify the behavior of
the superclass through derived-class over-
rides if necessary. In an OO system, though,
using derivation to modify superclass
behavior is just run-of-the-mill programming
that’s hardly worth glorifying as an official
pattern.

✔ One reasonable application of Template
Method is to provide empty “hooks” at the
superclass level solely so that a programmer
can insert functionality into the superclass
via derivation.

Often Confused With
Factory Method: Factory Method is nothing
but a Template Method that creates objects. To
be a template method, you must intend for a
subclass to override the template method in
order to change the behavior of a superclass
method that calls the template method.

See Also
Factory Method

ProtocolHandler2

+process(host: String, port: int)

#allocate(host: String, port: int): Socket
#release(s: Socket)

KeepaliveProtocolHandler

#allocate (host: String, port: int): Socket
#release(s: Socket)

Template
Method

Abstract Class

Concrete Class

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 396

Implementation Notes and Example
class ProtocolHhandler2
{ protected Socket allocate(String host,int port)
{ return new Socket(host, port);
}
protected void release(Socket s)
{ s.close();
}

public void process(String host, int port)
{ Socket in =

socketPool.allocate(host,port);
//...
socketPool.release(in);

}
}

class KeepaliveProtocolHandler extends
ProtocolHandler2
{
private Map connections = new HashMap();

public Socket allocate(String host,int port)
{ Socket connection =

(Socket)connections.get(host+":"+port);

if(connection == null)
connection = new Socket(host,port);

return connection;
}
public void release(Socket s)
{ String host=

s.getInetAddress().getHostName();
connections.put(host+":"+s.getPort(),s);

}
}

This example comes from the reference
page for Strategy, rewritten to use Template
Method. Rather than provide a Strategy object,
you derive a class that modifies the superclass
behavior. Put differently, you modify the
behavior of the protocol-processing algorithm
with respect to socket management by over-
riding a method that implements that algo-
rithm.

Note that the class in the Abstract Class
role (ProtocolHandler) is not actually abstract.
In this reification, the superclass provides
reasonable default behavior that a subclass
can modify. Also note that the template
methods are protected, almost always the case
for template methods because they are not
intended for outside access. (Ignore the fact
that Java grants package access to protected
fields⎯that is really a design flaw in the
language.)

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE 397

Usage

class MyPanel extens JPanel
{ public void paint(Graphics g)

{ g.drawString("Hello World", 10, 10);
}

}

Define painting behavior by overriding the paint(...)
method. You could easily do the same thing by
passing a Panel a “paint” strategy.

388x_Ch05_Appendix_FINAL.qxd 1/14/05 1:36 PM Page 397

Visitor
Add operations to a “host” object by providing a way for a visitor—an object that encapsulates
an algorithm—to access the interior state of the host object. Typically, this pattern is used to
interact with elements of an aggregate structure. The visitor moves from object to object within
the aggregate.

Visitor: Defines an interface
that allows access to a Concrete
Element of an Object Structure.
Various methods can access
elements of different types.

Concrete Visitor: Implements
an operation to be performed
on the Elements. This object
can store an algorithm’s local
state.

Element: Defines an “accept”
operation that permits a Visitor
to access it.

Concrete Element: Implements
the “accept” operation.

Object Structure: A composite
object that can enumerate its
elements.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE398

What Problem Does It Solve?
Visitor’s primary use is to effectively add
methods to a class without needing to derive
classes. Visitors can also collect information or
perform operations on all the elements of some
aggregation. For example, a Visitor could test all
the elements of an aggregation for consistency.

Pros (✔) and Cons (✖)
✔ It’s easy to add operations that haven’t

thought of yet.

✔ Allows the class to be smaller since rarely
used operations can be defined externally.

✔ Visitors can accumulate state as the visit
elements. A “mobile agent” can visit remote
objects (database servers, for example) and
accumulate a composite result from a
distributed database.

✖ The internal structure of the composite
object is sometimes opened to the visitor,
violating encapsulation. For example, an
evil visitor could be passed to elements of a
tree and change their “key” values, thereby
turning the tree to garbage. The visitors are
tightly coupled to the object they are visiting.

Often Confused With
Iterator: A Visitor is a lot like an internal
(passive) iterator. The main difference is that
the visitor object is passed from node to node.
In Iterator, the nodes are passed, one at a time,
to the iterator. The Visitor structure is different
than the Iterator structure in that it gives the
element control over whether to accept the
visitor.

Strategy: A Visitor is, in a way, a “visiting
strategy.” The focus of visitor is to visit every
node of a data structure and do something.
Strategy is much more general and has no
connection to a data structure.

See Also
Strategy, Iterator

Directory.Visitor «interface»

+visitDirectory (current: File, depth:int, contents File[]);
+visitFile (current: File, depth: int);

DirectoryPrinter

+visitDirectory (current: File, depth:int, contents File[]);
+visitFile (current: File, depth: int);

Directory.Element «interface»

+accept (v: Visitor, depth: int)

Directory.DirectoryElement

+accept(v: Visitor, depth: int)

Directory.FileElement

+accept(v: Visitor, depth: int)

Directory

-root: File

-traverse(visitor: Visitor)

Client

Visitor

Concrete Element

Concrete
Visitor

Object
Structure

Visitor

Element

388x_Ch05_Appendix_FINAL.qxd 1/12/05 11:48 AM Page 398

Implementation Notes and Example
class Directory
{
public interface Visitor
{ void visitFile(File current, int depth);
void visitDirectory(File current,

int depth, File[] contents);
}
public interface Element
{ void accept(Visitor v, int depth);
}
public class DirectoryElement

implements Element
{ private File f;
public DirectoryElement(File f){this.f=f;}
public void accept(Visitor v, int depth)
{ v.visitDirectory(f,depth,f.listFiles());
}

}
public class FileElement implements Element
{ private File f;
public FileElement(File f){this.f = f;}
public void accept(Visitor v, int depth)
{ v.visitFile(f, depth);
}

}
//==============================
private File root;
public Directory(String root)
{ this.root = new File(root);
}

public void traverse(Visitor visitor)
{ topDown(root, visitor, 0);
}

private void topDown(File root,
Visitor visitor, int depth)

{ Element e =
root.isFile()
? (Element)(new FileElement(root))
: (Element)(new DirectoryElement(root))
;

e.accept(visitor, depth);

if(!root.isFile())
{
File[] children = root.listFiles();
for(int i = 0; i < children.length; ++i)

topDown(children[i],visitor,depth+1);
}

}
}

Print a directory tree like this:

class DirectoryPrinter
implements Directory.Visitor

{ public void visitFile(File f, int depth)
{}
public void visitDirectory(File f,

int depth, File[] children)
{ while(--depth >= 0)

System.out.print("..");
System.out.println(f.getName());

}
}
Directory d = new Directory("c:/");
d.traverse(new Printer());

The implementation at the left is a bit
more complex than it needs to be so that I
could demonstrate the general structure of
traversing a heterogeneous composite object.

The key feature of Visitor is that it provides
a way to add methods to an existing class
without having to recompile that class. To my
mind, that means that the “composite” could
legitimately contain only one element.
Consider this class:

class Money
{ long value; // value, scaled by 100
Money increment(Money addend)
{ value += addend.value;
return value;

}
//...
public interface Modifier // visitor
{ long modify(long current);
}
operate(Modifier v)
{ value = v.modify(value);
}

}

It’s impractical to define every possible
operation on money, but you can effectively
add an operation by implementing a Visitor
(Modifier). Compute the future value of money
like this:

class FutureValue impelements Money.Modifier
{ FutureValue(float interest,int period)
{/*...*/}
public long modify(long currentValue)
{ // return future value of currentValue
}

}
Money presentValue = new Money(100000.00);
money.operate(new FutureValue(.05,24));

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE 399

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 399

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 400

■A
Abstract class, defined, 396
Abstract Cursor Factory, 221
Abstract Factory pattern

Abstract Factory (Collection)
(code listing), 68–69

basics of, 7–8, 67–70, 197
vs. Builder, 350
creating tables and, 198–202
defined, 80
dynamic creation in, 73–75
vs. Factory method, 350, 354
Game of Life and, 166–168
quick reference, 350–351
Singleton pattern and, 59–61

Abstract product, defined, 350
AbstractButton superclass, 173
abstractions. See also data abstraction

abstraction classes, 365
defined, 364

abstract-syntax tree, 298–300, 310
acceptsURL(. . .) method, 329
accessor function, 388
accessors

accessor synchronization, 63
boundary-layer classes and, 32, 35
defined, 24
getter/setter issues and, 35
refactoring and, 29

Action/Control user-interface architecture,
117

ActionListener object, 119
active iterators. See external iterators
Adapter pattern

vs. Bridge pattern, 362, 364
vs. Decorator pattern, 362, 368
embedded SQL and, 339–343
vs. Mediator pattern, 362
quick reference, 362–363

addClockListener(. . .) method, 95
addLine(. . .) method, 120
advance() method, 270
advancePast() method, 264
aggregate objects, 216
agile development methodologies

abstract code and, 55
architectural analogies and, 9

Alexander, Christopher, 1, 2

algorithms
defined, 20
recursive algorithms, 98

anonymous-inner-class mechanism, 69
approve() method, 231, 324
architecture

Action/Control user-interface
architecture, 117

Bridge pattern as, 364
of database classes, 188–189
of Model/View/Controller (MVC), 15–16

ArithmeticExpression, 300, 310
Arnold, Ken, 7, 10, 13
ArrayIterator class, 217–219, 339
ArrayIterator.java (code listing), 217–219
ArrayList class, 41–42
arrays, sorting, 76–77
AtomicExpression, 298, 315, 320
attributes

defined, 173
synthesized attributes, 173–174

AutoCommitBehavior interface, 334
autoCommitState field, 334
AWT Component/Container system, 110–111
AWTEventMulticaster class, 105–108

■B
base classes, 41. See also fragile base classes
BeanCustomizer class, 28
BeanDescriptor class, 28
BeanInfo class, 28
Beck, Kent, 30, 31
begin()method, 229
Behavioral patterns. See also specific

Behavioral patterns
introduction to, 8
quick reference, 377–399

Chain of Responsibility pattern, 378–379
Command pattern, 380–381
Interpreter pattern, 382–383
Iterator pattern, 384–385
Mediator pattern, 386–387
Memento pattern, 388–389
Observer pattern, 390–391
State pattern, 392–393
Strategy pattern, 394–395
Template method, 396–397
Visitor pattern, 398–399

Index

401

388x_Ch06_Index_CMP3 8/17/04 9:30 PM Page 401

Bloch, Joshua, 33, 287
BlockingList, 369
border objects, 177–178
BorderFactory class, 177–178
bouncing, defined, 73
boundary-layer classes, and accessors and

mutators, 32, 35
bounding rectangle, defined, 174
Bridge pattern

vs. Adapter pattern, 341, 362, 364
vs. Builder pattern, 352
embedded SQL

in AWT, 199
basics of, 188
data-storage layer, 197–198

vs. Facade pattern, 364, 370
Game of Life, 116–117, 118
JDBC layer and, 344–345
vs. Mediator pattern, 386
quick reference, 364–365

BufferedInputStream class, 253
buffering, Decorator pattern, 368
Builder interface, 213
Builder pattern

vs. Abstract Factory pattern, 350
vs. Bridge pattern, 352
importing and exporting and, 212–213
passive iterators and, 202–213
quick reference, 352–353
vs. Visitor pattern, 352

business objects, and getter/setter issues, 34

■C
C language, and patterns, 1–2
C++ language

C++ SmartPointer, 287
interfaces in, 38
procedural system in, 11
virtual constructors in, 355

callback problems, and Command pattern,
380

calling method, 325
cancel() method, 93–94
cancelSubscription() method, 99
caretakers, 34, 178–179, 388
Cartesian product, defined, 236
Cell interface, Game of Life, 84, 145–148, 163
Cell.java (code listing), 145–148
Cell.Memento interface, 180
cells, defined, 192
cellular automata programs, 20–24
Chain of Command pattern, 270–271, 275.

See also Chain of Responsibility
pattern

Chain of Responsibility pattern
vs. Composite pattern, 366, 378

vs. Decorator pattern, 368
defined, 8
embedded SQL

Scanner class and, 270–271
shortcomings of, 275–276

vs. Interpreter pattern, 382
quick reference, 378–379

Class Adapter, 340
class objects, 62
Class patterns, 7
classes. See also specific classes

embedded SQL. See also Database class,
embedded SQL

ParseFailure class, 277–279
Scanner class, 269–277

Game of Life, core classes, 139–161
Cell interface, 145–148
Neighborhood class, 151–161
Resident class, 148–151
Universe class, 139–144, 161

vs. interfaces, 38–55
coupling, 40–41
factory-method patterns, 50–54
flexible structures, 39–40
fragile base classes, 41–47, 55
frameworks, 48–49
multiple inheritance, 47–48
template-method patterns, 49–50

types of, 38
clear() method, 42
client() method, 68
clock subsystem, Game of Life

Observer pattern, 86–103
introduction to, 86–92
Publisher class, 93–103

Visitor pattern, 104–108
clock tick message example, 168–169
Clock.java: The Clock Class (code listing),

90–92
Clock.Listener derivative, 90
clone() method, 356, 357
code listings (by chapter)

embedded SQL
ArrayIterator.java, 217–219
ConcreteTable.java: Importing and

Exporting, 204–205
ConcreteTable.java: Inserting Rows,

215–216
ConcreteTable.java: Miscellany, 242–249
ConcreteTable.java: Selection and Joins,

237–241
ConcreteTable.java: Simple Table

Creation, 202–204
ConcreteTable.java: Transaction

Support, 229–231

■INDEX402

388x_Ch06_Index_CMP3 8/17/04 9:30 PM Page 402

ConcreteTable.java: Traversing and
Modifying, 221–222

ConcreteTable.java: Updating and
Deleting, 234

ConnectionAdapter.java (Partial listing),
331–332

CSVExporter.java, 209–210
CSVImporter.java, 205–206
Cursor.java, 219–221
Database.java: Convenience Methods

That Mimic SQL, 290–293
Database.java: Expressions, 310–315
Database.java: Interpreter Invocation,

320–324
Database.java: Private Data and the

TableMap, 284–286
Database.java: The Parser, 301–310
Database.java: Tokens and

Enumerations, 288–290
Database.java: Transaction Processing,

294
Database.java: Values, 316–318
Database.Test.sql, 281–283
JDBCConnection.java, 334–338
JDBCDriver.java, 329–331
JDBCResultSet.java, 341–343
JDBCResultSetMetaData.java, 344
JDBCStatement.java, 338–339
JDBCTest.java, 326–328
JTableExporter.java, 211–212
ParseFailure.java, 278–279
PeopleImporter.java, 207–209
RegexToken.java, 266–267
Scanner.java, 271–275
Selector.java, 232–234
SimpleToken.java, 264–265
TableFactory.java, 200–202
Table.java, 192–196
ThrowableContainer.java, 325
Token.java, 264
TokenSet.java, 267–269
Tree.java: A Simple Binary-Tree

Implementation, 223–226
UnmodifiableTable.java, 250–252
WordToken.java, 265–266

Game of Life
Cell.java, 145–148
Clock.java: The Clock Class, 90–92
Colors.java, 181–182
ConditionVariable.java, 184–185
Direction.java, 170–172
Files.java, 182–184
Life.java, 118–119
Menuing Systems, Building with the

Raw APIs, 113–116
MenuSite.java, 123–139

Neighborhood.java, 151–161
Observer, Implementing with a

Publisher Object, 95–96
Publisher.java: A Subscription Manager,

99–103
Resident.java, 148–151
Storable.java, 179–180
Universe.java, 139–144

interfaces
Abstract Factory (Collection), 68–69
Double-Checked Locking, 64
Dynamic Instantiation, 74–75
Factory Implementation, 59–61
Factory Method, Using, 52–53
fragile base classes, eliminating, 46–47
Singleton's, Shutting Down, 66–67
Sorters.java: Using Strategy, 77–78
URLConnection Implementation,

Stripped-Down, 71–72
collaboration symbol, 4, 51–52
Collaborator classes, 31
Colleagues, 386
Collection class as utility class, 256
Collection interface vs. Table, 192
collections, and thread-safety solution,

255–256
Color class, Java, 34
Colors interface, 180
Colors Singleton, 180–181
Colors.java (code listing), 181–184
columns, 192
com.holub.database.jdbc.JDBCConnection,

333
Command pattern

defined, 80
Game of Life, 166–168
implementing transactions (undo) and,

226–231
vs. Memento pattern, 388
vs. Observer pattern, 390
quick reference, 380–381
vs. Strategy pattern, 380, 394
Strategy pattern and, 75–79

committing transactions, 227
compile-time type checking, 57
Component superclass, 173
Composite pattern

vs. Chain of Responsibility pattern, 366,
378

vs. Decorator pattern, 366, 368
vs. Flyweight pattern, 372
Life subsystem classes and, 163–172

clock tick message example, 168–169
Direction.java (code listing), 170–172
introduction to, 163–165
Prototype pattern, 166–168

■INDEX 403

388x_Ch06_Index_CMP3 8/17/04 9:30 PM Page 403

Composite pattern (continued)
menuing subsystem, Game of Life,

108–116
basics of, 108–113
Menuing Systems, Building with Raw

APIs (code listing), 113–116
objects, 110–112
quick reference, 366–367

Concrete Aggregate, defined, 384
Concrete Class, defined, 396
Concrete Factory, defined, 350
Concrete Flyweight, 372
Concrete Mediator, defined, 386, 387
Concrete Observer/Subscriber role, 89–90
Concrete State, 392
Concrete Strategy, 394
Concrete Visitor, 104–105, 398
ConcreteBuilder, 212
ConcreteTable, 189–191
ConcreteTable.java code listings

ConcreteTable.java: Importing and
Exporting (code listing), 204–205

ConcreteTable.java: Inserting Rows (code
listing), 215–216

ConcreteTable.java: Miscellany (code
listings), 242–249

ConcreteTable.java: Selection and Joins
(code listing), 237–241

ConcreteTable.java: Simple Table Creation
(code listing), 202–204

ConcreteTable.java: Transaction Support
(code listing), 229–231

ConcreteTable.java: Updating and
Deleting (code listing), 234

ConditionVariable class, 181, 184
ConditionVariable.java (code listing),

184–185
connect() method, 329
ConnectionAdapter class, 331
ConnectionAdapter.java (Partial Listing),

331–332
constant fields, and public fields, 41
constant values, 33
Container superclass, 173
Context, defined, 392
contracts

defined, 14
objects defined by, 13–14

controllers, 390
Conway, John, 81
cookies, 178
Cooper, Alan, 7
copy-on-write strategy, 374
coupling, and implementation inheritance,

40–41
course-grained operations, 27
CRC-Card format, 18, 30–31

create(. . .) method, 267
createMenus method, 119
Creational patterns. See also specific

Creational patterns
introduction to, 7–8
quick reference, 349–359

Abstract Factory pattern, 350–351
Builder pattern, 352–353
Factory method, 354–355
Prototype pattern, 356–357
Singleton pattern, 358–359

Creator, defined, 354
Cross Ventilation, 3, 4
Crypto APIs, and implementation, 36
CSVExporter class, 209
CSVExporter.java (code listing), 209–210
CSVImporter class, 205–206, 213
CSVImporter.java (code listing), 205–206
Cunningham, Ward

CRC-Card format and, 18, 30–31
get/set mentality and, 30

Cursor interface, 218, 221
Cursor objects, 340
Cursor.java (code listing), 219–221
cut and paste approach, 5

■D
data

databases as caretakers of, 34
extrinsic data, defined, 174
importing and exporting to tables,

204–205
data abstraction, 10, 13, 26, 38
Database class, embedded SQL, 279–294

methods of, 281
Proxy pattern, 283–287
supported SQL and, 295
token set and other constants, 287–294
using databases, 280–281

Database.java code listings
Database.java: Convenience Methods

That Mimic SQL (code listing),
290–293

Database.java: Expressions (code listing),
310–315

Database.java: Interpreter Invocation
(code listing), 320–324

Database.java: Private Data and the
TableMap (code listing), 284–286

Database.java: The Parser (code listing),
301–310

Database.java: Tokens and Enumerations
(code listing), 288–290

Database.java: Transaction Processing
(code listing), 294

Database.java: Values (code listing),
316–318

■INDEX404

388x_Ch06_Index_CMP3 8/17/04 9:30 PM Page 404

databases. See also embedded SQL
as caretakers of data, 34
using, 280–281

Database.Test.sql (code listing), 281–283
data-storage classes, and database

architecture, 188–189
data-storage layer, embedded SQL, 189–258

Abstract-Factory and creating tables,
198–202

Bridge pattern, 197–198
Decorator pattern, 250–258
Iterator pattern, 216–226
miscellany, 241–249
passive iterators and Builder, 202–213
selection and join operations, 235–241
Strategy pattern, 231–234
Table interface, 192–196
transactions (undo), implementing with

Command pattern, 226–231
DCL (Double-Checked Locking), 64–65
Decorator pattern

vs. Adapter pattern, 341, 362, 368
vs. Chain of Responsibility pattern, 368
vs. Composite pattern, 366, 368
embedded SQL, 250–258
immutability and, 172
vs. Proxy pattern, 287, 374
quick reference, 368–369

delegation
defined, 22
delegation models, and implementation,

46
delete() method, 221
deliverTo() method, 95, 104
Derivation pattern, 1–2
derived class, 44–45
design

creating without getters and setters, 30–32
informed choices in, 12
role of patterns in, 6–7

design patterns. See also specific patterns
basics of, 2–5
classifying, 7–8
Game of Life, 86
overlapping combination of, 70–72
patterns diagrams, 84
patterns vs. idioms, 1–2
purpose of, 5–6
quick reference. See quick reference,

design patterns
role of in design, 6–7
SQL engine and JDBC layers, 260

design patterns and OO (object orientation),
1–36

cellular automata programs, 20–24
design patterns basics, 2–5

design patterns, purpose of, 5–6
get and set methods, 24–36

basic issues of, 34–36
design, creating without getters and

setters, 30–32
examples, 24–27
JavaBeans and Struts, 28–29
refactoring, 29–30
when to use, 32–34

OO basics, 12–19
objects, capabilities of, 13–14
objects, defined, 13
OO systems, right and wrong examples,

15–19
OO design basics, 9–10
patterns

classifying, 7–8
role of in design, 6–7

patterns vs. idioms, 1–2
programming

informed choices in, 12
programming FORTRAN in Java, 9–10

Design Patterns: Elements of Reusable Object-
Oriented Software (Addison-Wesley,
1995). See also Gang of Four

consequences section in, 12
extends keyword and, 37
patterns and, 1, 3, 5, 7

Direction class, 170–172
Direction.java (code listing), 170–172
Director, defined, 352
directories

directory files, defined, 111
directory systems, traversing, 112
directoryName request, 280

doInsert() method, 214
doLoad() method, 179
domain modeling, 32
doSelect() method, 319, 324
doStore() method, 179
Double-Checked Locking (code listing), 64
Double-Checked Locking (DCL), 64–65
DUMMY objects, Game of Life, 177
dump() method, 289–290
dynamic creation in a factory, 73–75
dynamic loading, 356
dynamic model, defined, 31

■E
Eclipse

refactoring and, 29
SWT library, 345

edge(. . .) method, 176
Editor class, example, 49
EditorKit, and HTML parsing, 51–52
Effective Java Programming Language Guide

(Addison-Wesley, 2001), 33

■INDEX 405

388x_Ch06_Index_CMP3 8/17/04 9:30 PM Page 405

embedded SQL, 184–345
architecture, 188–189
Database class, 279–294

Proxy pattern, 283–287
token set and other constants, 287–294
using databases, 280–281

data-storage layer, 189–258
Abstract-Factory and creating tables,

198–202
Bridge pattern, 197–198
Decorator pattern, 250–258
Iterator pattern, 216–226
miscellany, 241–249
passive iterators and Builder, 202–213
selection and join operations, 235–241
Strategy pattern, 231–234
Table interface, 192–196
transactions (undo), implementing

with Command pattern, 226–231
Interpreter pattern, 295–325

demonstration of, 318–325
supported SQL, 295–318

JDBC layer, 325–332
requirements, 187–188
SQL, adding, 259–279

input tokenization, 262–269
ParseFailure class, 277–279
Scanner class, 269–277
SQL-engine structure, 260–261

State pattern and JDBCConnection class,
332–345

Adapter pattern (result sets), 339–343
Bridge pattern and, 344–345
JDBCResultSetMetaData class, 344
statements, 338–339

tables. See tables, embedded SQL
encapsulation

encapsulation principle, 26
encapsulation requirements, 22
implementation and, 36

enums, defining, 33
error(. . .) method, 289
evaluate method, 310, 319, 320, 324
everything-is-static Singleton, 119
examples

clock tick message, 168–169
design patterns and OO

architecture pattern, 3–4
ATM system, 17–19
get and set methods, 24–27
getX() method, 24–25
multiple currencies, 24–25
right and wrong examples, 15–19
System.in, System.out, 25
traffic modeling, getter and setter

methods, 26

traffic modeling, using cellular
automata, 20–24

"god" class, 30
interfaces

Editor class, 49
high-water/low-water, 43–45
Java, framework, 48–49

of Singleton pattern, 61–62
execute(. . .) method, 281, 310
executeUpdate(. . .) method, 332, 338
export() method, 209, 222
Exporter, building, 209–210
exporting data to tables, 204–205
Expression objects, 298, 300, 315
Expressions (code listing), 310–315
extends keyword

appropriate use, 56–58
eliminating, 58–79

Abstract Factory, 67–70
command patterns and strategy

patterns, 75–79
Double-Checked Locking (DCL), 64–65
dynamic creation in a factory, 73–75
factories and Singletons, 59–61
patterns, overlapping combination of,

70–72
Singleton pattern examples, 61–62
Singletons, eliminating, 65–67
Singletons, threading issues in, 62–64

programming with interfaces and, 37–38
external iterators, 222, 384, 385, 393
extrinsic data, defined, 174

■F
Facade pattern

vs. Bridge pattern, 364, 370
eliminating clutter and, 27
Game of Life, 116–118
vs. Mediator pattern, 162, 370, 386
menuing subsystem, 116–117
quick reference, 370–371

factor(. . .) method, 315
Factory Implementation (code listing), 59–61
Factory method

vs. Abstract Factory pattern, 350, 354
defined, 80
quick reference, 354–355
vs. Template method, 396

Factory pattern. See Abstract Factory pattern
factory-method patterns, 50–54
fields. See public fields
figureNextState() method, 176
FileInputStream class, 253
Files.java (code listing), 182–184
final keyword, Java, 33
fine-grained operations, 27

■INDEX406

388x_Ch06_Index_CMP3 8/17/04 9:30 PM Page 406

fireEvent() method, 93–94
flexible structures, and interfaces, 39–40
flush(. . .) method, 179
Flyweight pattern

vs. Composite pattern, 372
Game of Life, 172–178

basics of, 172–176
flyweight pools, 176–178

push model and, 35
quick reference, 372–373

forName(. . .) method, 328
FORTRAN programming, Java, 9–10
fragile base classes, 41–47, 55
Fragile Base classes, Eliminating (code

listing), 46–47
Frameworks, 48–49
function pointers, defined, 75

■G
Game of Life implementation, 81–185

basics and rules of, 82–83
charting structure of, 83–86
clock subsystem, Observer pattern,

86–103
introduction to, 86–92
Publisher class, 93–103

clock subsystem, Visitor pattern, 104–108
Composite pattern, and Life subsystem

classes, 163–168
Composite redux, 168–172
core classes, 139–161

Cell interface, 145–148
Neighborhood class, 151–161
Resident class, 148–151
Universe class, 139–144

Flyweight pattern, 172–178
basics of, 172–176
flyweight pools, 176–178

Mediator pattern, 161–162
Memento pattern, 178–180
menuing subsystem

Bridge pattern, 116–117, 118
Composite pattern, 108–116
Facade pattern, 116–117

MenuSite class, 117–139
Life.java (code listing), 118–119
MenuSite documentation, 120–121
MenuSite.java (code listing), 123–139

miscellaneous, 180–185
summary of, 185

Gang of Four. See also Design Patterns:
Elements of Reusable Object-Oriented
Software (Addison-Wesley, 1995);
quick reference, design patterns

consequences section in book, 12
design patterns, 1, 3, 7, 8, 55
Singleton pattern, 62–63, 64

get and set methods, 24–36
basics of, 34–36
cellular automata programs and, 22–23
design, creating without getters and

setters, 30–32
examples, 24–27
JavaBeans and Struts, 28–29
refactoring, 29–30
when to use, 32–34

getDefaultToolkit() method, 75
getDirty() method, 215
getRowDataFromUser() method, 206
get/set idioms, JavaBeans, 28
getX() method, example, 24–25
Go menu, Game of Life, 109
"god" classes, 25, 30
Goldberg, Adele, 37
Gosling, James, 35, 38
grammar, SQL-subset, 296–297
Graphics class, 162
Grid menu, Game of Life, 109, 162
GridLayout objects, 173

■H
HashMaps, 283–284
heterogeneous lists, 104
HTML parsing, 51

■I
IDENTIFIER token, 262, 271
identifiers, 295
idioms in programming

Bloch's typesafe-enum idiom, 287–288
get/set idioms, 28
implement/delegate idiom, 48
vs. patterns, 1–2

idList() method, 319
IdValue class, 315
Image proxy, 334
Immutable class, 172
immutable classes, 33
implementation

encapsulation of, 35–36
exposing, 34
hiding, 10, 26, 34–35

implementation inheritance. See also
extends keyword

adding thread safety to collections and,
254

adding unmodifiability to collections and,
255–256

assigning tables and, 252
implementation-inheritance-based

solutions in Game of Life, 87–88
vs. interface inheritance, 37–38
reification and, 7

■INDEX 407

388x_Ch06_Index_CMP3 8/17/04 9:30 PM Page 407

Importer
building, 205–206
PeopleImporter.java (code listing),

207–209
importing data to tables, 204–205
inheritance. See also implementation

inheritance
coupling and, 40–41
fragile-base-class problem and, 41–47
interface inheritance vs. implementation

inheritance, 37–38
multiple inheritance, 47–48
structure, and operations, 57

INPUT token, 264, 270–271
input tokenization, embedded SQL, 262–269
InputStream derivatives, 71
instantiation

lazy instantiation, 283
patterns and, 3

Instantiation Dynamic (code listing), 74–75
intent, defined, 3
Interface Adapter, 340
interfaces, 37–80

Action/Control user-interface
architecture, 117

Bridge pattern as, 364
Cell interface, Game of Life, 84, 145–148,

163
Cell.Memento interface, 180
vs. classes, 38–55

coupling, 40–41
factory-method patterns, 48–54
flexible structures, 39–40
fragile base classes, 55
fragile-base-class problem, 41–47
frameworks, 48–54
multiple inheritance, 47–48
template-method patterns, 48–54

embedded SQL
AutoCommitBehavior interface, 334
Builder interface, 213
Collection interface vs. Table, 192
Cursor interface, 218, 221
ResultSet interface, 341
Selector interface, 232
Table interface, 188–189, 192–196, 221
Table.Importer interface, 204

extends, appropriate use of, 56–58
extends, eliminating, 58–79

Abstract Factory, 67–70
command patterns and strategy

patterns, 75–79
Double-Checked Locking (DCL), 64–65
dynamic creation in a factory, 73–75
factories and Singletons, 59–61
patterns, overlapping combination of,

70–72

Singleton pattern examples, 61–62
Singletons, eliminating, 65–67
Singletons, threading issues, 62–64

extends keyword, 37–38
Game of Life

Cell.Memento interface, 180
Colors interface, 180

Interface Adapter, 340
interface inheritance, 7, 252
ResultSet interface, 341
summary of, 80
use of in patterns, 7

internal iterators, 202–213, 222–226, 384
Interpreter Invocation (code listing), 320–324
Interpreter pattern

vs. Chain of Responsibility pattern, 382
embedded SQL, 295–325

basics of, 310
demonstration of, 318–325
supported SQL, 295–318

quick reference, 382–383
Invoker (Thread object), 226
is-a relationship, 57
isDirty() method, 215, 290
isDisruptiveTo method, 153, 170
Iterator pattern

embedded SQL, 216–226
Iterator objects, 197
quick reference, 384–385
vs. Visitor pattern, 384, 398

iterators
ArrayIterator.java (code listing), 217–219
external, 222, 384, 385, 393
internal, 222–226, 384
Iterator objects, 197
modifying data structure and, 218
passive iterators, and Builder, 202–213

■J
Java

Color class, 34
compiler-compilers, 259
final keyword, 33
FORTRAN programming in, 9–10
framework example, 48–49
Graphics class, 162
Java libraries, 35–36, 81
JavaCC, 259
JavaCUP, 259
LayoutManager, 78
procedural programming and, 25
Toolkit Singleton, 75
when to use, 16–17

The Java Class Libraries (Addison-Wesley),
347

java.awt.Color values, 180
java.awt.Toolkit, 197, 355

■INDEX408

388x_Ch06_Index_CMP3 8/17/04 9:30 PM Page 408

java.awt.Window class, 197
JavaBeans

get and set methods and, 28–29
get/set idioms, 28

java.io.StreamTokenizer, 262
java.lang.Double class, 315
JavaServer Pages, and Memento pattern, 179
java.sql.Connection object, 329
java.sql.Connection's createStatement() call,

338
java.sql.DriverManager class, 328, 329
java.sql.ResultSet object, 338
java.sql.Statement object, 338
java.text.NumberFormat class, 27, 198, 295
java.util.Iterator, 204, 221, 267
java.util.StringTokenizer, 262
java.util.Timer object, 119
javax.Swing.Border, 177
JButton class, 173
JButton derivatives, 172
JComponent class, Game of Life, 88–89
JComponent superclass, 173
JDBC

JDBC Bridge, 365
JDBC layer, 325–332
jdbcCompliant() override, 328
JDBCConnection class, 331, 332–345
JDBCDriver class, 328
JDBC-driver layer, 188–189
JDBCResultSet class, 339–343
JDBCResultSetMetaData class, 344
State pattern and JDBCConnection class,

332–345
Adapter pattern (result sets), 339–343
Bridge pattern and, 344–345
JDBCResultSetMetaData class, 344
statements, 338–339

JDBC code listings
JDBCConnection.java (code listing),

334–338
JDBCDriver.java (code listing), 329–331
JDBCResultSet.java (code listing), 341–343
JDBCResultSetMetaData.java (code

listing), 344
JDBCStatement.java (code listing),

338–339
JDBCTest.java (code listing), 326–328

JEditorPane class
rewrite of, 79
Swing and, 50–51

JFrame object, 172–173
join and selection operations, embedded

SQL, 235–241
JTableExporter class, 210–212, 213
JTableExporter.java (code listing), 211–212

■K
key abstractions, defined, 32, 112
keyboard shortcuts, 123–124
keyword tokens, 287
keywords. See also extends keyword

final keyword, 33
synchronized keyword, 64
volatile keyword, 65

■L
label parameter, 123
LayoutManager, Java, 78
lazy instantiation, 283, 374
Leaf, defined, 366
Leaf objects, 110
lexeme() method, 264
lexemes, 262–263
Life class, Game of Life, 161–162
Life subsystem classes, Game of Life, 163–168
Life.java (code listing), 118–119
LinkedList class, Game of Life, 96
listener parameter, 121
load(. . .) method, 179, 200

■M
main(. . .) method, 328
maintenance

maintenance problems, 18
of programs, 34–35

maps of names, 122
MarkupPanel, Factory method in, 54
match(. . .) method, 264, 270
match(String input) method, 264
Mediator pattern

vs. Adapter pattern, 362
vs. Bridge pattern, 386
vs. Facade pattern, 370, 386
Game of Life, 161–162
quick reference, 386–387

Memento pattern
attribute representations and, 28
vs. Command pattern, 388
data blobs and, 117
Game of Life, 178–180
quick reference, 388–389

memory barriers, 65
menu items, adding, 112–113
menuing subsystem, Game of Life

Bridge pattern, 116–117, 118
Composite pattern, 108–116
Facade pattern, 116–117

Menuing Systems, Building with the Raw
APIs (code listing), 113–116

MenuSite class, Game of Life, 117–139
Life.java (code listing), 118–119
MenuSite documentation, 120–121
MenuSite.java (code listing), 123–139

■INDEX 409

388x_Ch06_Index_CMP3 8/17/04 9:30 PM Page 409

menuSpecifier object, 121
menuSpecifier parameter, 122
metadata, table, 204
methods. See also specific methods

of Database class, 281
Microsoft

Excel, 117, 178
Microsoft applications, OO systems and,

11
Microsoft's Foundation Class (MFC), 48
Microsoft's Object-Linking-and-

Embedding In-Place-Activation
system, 117

Word, 117, 178
Model/View/Controller (MVC) architecture

basics of, 15–16
Struts and, 28–29

modify() method, 231
Money class, 24
Motif Toolkit, 197
mouse clicks, 174–175
multiple currencies examples, 24–25
multiplicativeExpression() method, 300, 310
mutators

boundary-layer classes and, 32, 35
defined, 24
getter/setter issues and, 35
refactoring and, 29

MVC. See Model/View/Controller (MVC)
architecture

■N
name parameter, 121, 123
Neighborhood class, Game of Life, 84,

151–161, 174, 176
Neighborhood objects, 163–167, 169–170
Neighborhood.java (code listing), 151–161,

166
Neighborhood.NeighborhoodState class,

160, 180
nested transactions, 227, 332
Node class, Game of Life, 96
Node objects, Game of Life, 97
nodes, 298
Nonterminal expressions, 319
nonterminal nodes, 298
normalization class, 56
numbers forms, 295
NumericValue method, 315

■O
Object Adapter, 340
object structure, 117
Object-Oriented Design Heuristics (Addison-

Wesley, 1996), 358
Object-Oriented Design (OOD), vs. OOP,

9–10

Object-Oriented Programming (OOP), vs.
OOD, 9–10

objects
capabilities of, 13–14
class objects, 62
Composite pattern objects, 110–112
defined, 13
JMenuItem, 110
Leaf objects, 110
menuSpecifier object, 121
requester object, 120
traversing collections of, 108

Observer, Implementing with a Publisher
Object (code listing), 95–96

Observer pattern
vs. Command pattern, 390
Game of Life, 86–103. See also Publisher

class
introduction to, 86–92

quick reference, 390–391
vs. Strategy pattern, 390

OO (object orientation), 12–19. See also
design patterns and OO (object
orientation)

basics of
objects, capabilities of, 13–14
objects, defined, 13
OO systems, right and wrong examples,

15–19
OO design basics, 9–10

openConnection() method, 73
operations

course-grained vs. fine-grained, 27
inheritance structure and, 57

Originator, defined, 388

■P
parameters, MenuSite class, 120–121, 122,

123
ParseError object, 289
ParseFailure class, embedded SQL, 277–279
ParseFailure exception, 324
ParseFailure.java (code listing), 278–279
The Parser, Database.java (code listing),

301–310
parsers

parser requirement, 262
parsers, and lookahead tokens, 269–270
recursive descent parser technology, 259
SQL parser, 295, 296

parsing HTML, 51
passive iterators, 202–213, 222–226, 384
Pattern Hatching (Addison-Wesley, 1998), 172
patterns. See design patterns; quick reference,

design patterns; specific patterns
peer classes, 197
PeopleImporter class, 206–209, 213

■INDEX410

388x_Ch06_Index_CMP3 8/17/04 9:30 PM Page 410

PeopleImporter.java (code listing), 207–209
percent (%) wildcard, 295
polymorphism, defined, 38
pools, flyweight, 176–178
PostgreSQL driver, 345
privacy, of data in systems, 13–14
private indexOf method, 202
problem domains, 31–32
Procedural systems, 10–11
programming

informed choices in, 12
Java

Effective Java Programming Language
Guide (Addison-Wesley, 2001), 33

FORTRAN programming and, 9–10
procedural programming and Java, 25

procedural approaches to, 10–11
programmers tendency toward

complexity, 7
protection proxy patterns, 287
Prototype pattern

Game of Life, 166–168
quick reference, 356–357

Proxy pattern
combined with State pattern, 334
vs. Decorator pattern, 374
embedded SQL, 283–287
quick reference, 374–375

public fields
acccessors and mutators and, 41
constant fields and, 41
dangers of, 26

public static void addLine() method, 121
public static void addMapping, 123
public static void establish method, 120
public static void mapNames(URL table)

throws IOException, 122
public static void removeMyMenus method,

121
publicstatic void setEnable method, 122
Publisher class, 93–103

introduction to, 93–95
Observer, Implementing with a Publisher

Object (code listing), 95–96
Publisher.java: A Subscription Manager

(code listing), 99–103
Publisher object, Game of Life, 97
Publisher Object, Implementing Observer

with (code listing), 95–96
Publisher.java: A Subscription Manager

(code listing), 99–103
publishers, defined, 390
Publish/Subscribe pattern, Game of Life, 88
push and pull models, 35
pushback, Decorator pattern, 368
put() override, 283

■Q
quick reference, design patterns, 347–399

Behavioral patterns, 377–399
Chain of Responsibility pattern,

378–379
Command pattern, 380–381
Interpreter pattern, 382–383
Iterator pattern, 384–385
Mediator pattern, 386–387
Memento pattern, 388–389
Observer (Publish/Subscribe) pattern,

390–391
State pattern, 392–393
Strategy pattern, 394–395
Template method pattern, 396–397
Visitor pattern, 398–399

Creational patterns, 349–359
Abstract Factory pattern, 350–351
Builder pattern, 352–353
Factory method, 354–355
Prototype pattern, 356–357
Singleton pattern, 358–359

Structural patterns, 361–375
Adapter pattern, 362–363
Bridge pattern, 364–365
Composite pattern, 366–367
Decorator pattern, 368–369
Facade pattern, 370–371
Flyweight pattern, 372–373
Proxy pattern, 374–375

■R
Real Subject available state, 334
Real Subject unavailable state, 334
recursive algorithms, 98
recursive descent parser technology, 259
recursive traversal, 385
refactoring, and get and set methods, 29–30
refined Abstraction, defined, 364
RegexToken subclass, 263
RegexToken.java (code listing), 266–267
register methods, 229
Reification, defined, 3
RELATIONAL_OPERATOR token, 262
RelationalExpression object, 320
remote proxy patterns, 287
requester object, 120
requester parameter, 121, 122
required(Token) method, 270
Resident class, Game of Life, 148–151,

163–164, 174
Resident objects

"alive" and, 180
cells and, 164
Scanner class and, 269–277

Resident.java (code listing), 148–151

■INDEX 411

388x_Ch06_Index_CMP3 8/17/04 9:30 PM Page 411

result sets, defined, 188, 235
Results class, 340
ResultSet interface, 341
ResultSetAdapter class, 331
ResultSetMetaDataAdapter class, 331
Riel, Arthur, 358
roles, vs. users, 57
rollbacks, defined, 226–227
rows

described, 192
inserting (code listing), 215–216

Runnable class, 226

■S
Scanner class

embedded SQL, 269–277
ParseFailure class and, 277–278

Scanner.java (code listing), 271–275
scanning, defined, 262
screen painting, 176
select() method, 319, 320, 324
select() overloads, 237
selectFromCartesianProduct(. . .) method,

237
selection and join operations, embedded

SQL, 235–241
Selector interface, 232
Selector.java (code listing), 232–234
servlets

defined, 276
servlet filters, 276–277, 378, 379

set methods. See get and set methods
setAutoCommit() method, 334
setDirty() method, 215
shortcut parameter, 123
shortcuts, keyboard, 123–124
"shutdown hooks", defined, 65
SimCity software, 24
SimpleToken subclass, 263–264
SimpleToken.java (code listing), 264–265
simplicity, and patterns, 6
Singleton pattern

Abstract Factory pattern and, 59–61
defined, 80
eliminating, 65–67
everything-is-static Singleton, 119
examples of, 61–62
Singleton, defined, 61
threading issues in, 62–64
vs. Utility class, 256, 358

Singleton's, Shutting Down (code listing),
66–67

smart reference patterns, 287, 374
snapshot strategy, 227
Sorters.java: Using Strategy (code listing),

77–78
SQL. See embedded SQL

Stack class, and ArrayList class, 42–45
State pattern

embedded SQL
Bridge pattern and, 344–345
combined with Proxy pattern, 334

JDBCConnection class and, 332–345
Adapter pattern (result sets), 339–343
JDBCResultSetMetaData class, 344
statements, 338–339

quick reference, 392–393
vs. Strategy pattern, 392

StatementAdapter class, 331
statements, embedded SQL, 338–339
static initializers, 63
static model, defined, 31
Storable.java (code listing), 179–180
storeRow() method, 222
stories, defined, 56
Strategy and Sorters.java (code listing), 77–78
Strategy pattern

vs. Command pattern, 380, 394
Command pattern and, 75–79
defined, 80
embedded SQL, 231–234
vs. Observer pattern, 390
quick reference, 394–395
vs. State pattern, 392
vs. Visitor pattern, 398

StreamTokenizer, 262
String class implementation, 29
StringBufferInputStream, 340
Stroustrup, Bjarne, 13
Structural patterns. See also specific

Structural patterns
introduction to, 8
quick reference, 361–375

Adapter pattern, 362–363
Bridge pattern, 364–365
Composite pattern, 366–367
Decorator pattern, 368–369
Facade pattern, 370–371
Flyweight pattern, 372–373
Proxy pattern, 374–375

Struts, 28–29
Subject, and notification, 88
subscribe() method, Game of Life, 93–94
subscribers

adding, 98
defined, 390

Subscription Manager (code listing), 99–103
subsystem classes

defined, 370
Life subsystem classes, 163–172

clock tick message example, 168–169
Direction.java (code listing), 170–172
introduction to, 163–165
Prototype pattern, 166–168

■INDEX412

388x_Ch06_Index_CMP3 8/17/04 9:30 PM Page 412

Swing
caching and, 178
flexibility of, 53
Game of Life

event thread and, 93
importance of in, 81
Universe class and, 162

JEditorPane class, 50–51
SWT library, Eclipse, 345
synchronization, accessor, 63
synchronized keyword, 64
syntax, abstract-syntax tree, 298–300, 310
synthesized attributes, 173–174
A System of Patterns: Pattern-Oriented

Software Architecture (John Wiley &
Sons, 1996), 117

System.getProperty(. . .), 75
System.in, System.out example, 25
systems

OO systems
basics, 10
privacy of data in, 13–14

simple, 6–7

■T
Table classes, usefulness of, 259
Table interface, embedded SQL, 188–189,

192–196, 221
table parameter, 122
TableFactory class, 200–202
TableFactory.java (code listing), 200–202
Table.Importer interface, 204, 213
Table.java (code listing), 192–196
TableMap Private Data (code listing),

284–286
tables, embedded SQL. See also embedded

SQL
vs. Collections, 192
converting names to tables, 319, 320–323
creating

Abstract Factory and, 198–202
Iterator pattern and, 216–226
passive iterators and Builder and,

202–213, 222–226
populating tables, 213–216

database architecture and, 188, 190–191
Decorator pattern and, 250–258
defined, 192
"housekeeping", 241–249
modifying

Strategy pattern and, 231–234
updating and deleting, 234

select and join operations, 235–241
selecting into other tables, 295
Table interface, 192–196
table metadata, 204

tail recursion, 298–300
Template method

defined, 80
vs. Factory method, 396
quick reference, 396–397
Template-method patterns, 49–50

terminal nodes, 298
ThatCellAtEdgeChangeState() method, 170
threading issues

adding thread safety to collections, 254
Command pattern and, 76
"shutdown hooks" and, 65
in Singleton pattern, 62–64

ThreadSafecollection class, 256
threePixelPadding object, 178
ThrowableContainer class, 324–325
ThrowableContainer.java (code listing), 325
tick() method, 95
toArray(), 95
token set definition, 287–294
tokenization, input, 262–269
Token.java (code listing), 264
tokens

creating, 263
defined, 262
token type (TT), 262

TokenSet.java (code listing), 267–269
Toolkit Singleton, Java, 75
Toolkit.getDefaultToolkit() method, 197
toString() method, 315
toThisMenu parameter, 121
Transaction Processing (code listing), 294
transactions

transaction model, 296
undo, implementing with Command

pattern, 226–231
transition() method, 169–170
traverse() method, 385
traversing collections of objects, 108
Tree.java: A Simple Binary-Tree

Implementation (code listing),
223–226

TT (token type), 262

■U
UML

UML 1.5 collaboration symbol, 4
UML static-model diagram (traffic model),

23
undo features, 7, 179, 380, 389
undo subsystem, and Command pattern,

226–231
Universe class

Game of Life, 139–144
Life object instantiation and, 161–162
Universe Mediator, 168–169

■INDEX 413

388x_Ch06_Index_CMP3 8/17/04 9:30 PM Page 413

Universe object, 89
Universe.java (code listing), 139–144
unmodifiable collections, adding, 255–256
UnmodifiableTable class, 250–252
UnmodifiableTable.java (code listing),

250–252
unread(. . .) method, 257
UnsupportedOperationException, 58
update() method, 221
URLConnection Implementation, Stripped-

Down (code listing), 71–72
use cases, 30
userClicked() override, 174
user-input processing, 276
users vs. roles, 57
utilities vs. Singletons, 256, 358

■V
value() method, 315
Values (code listing), 316–318
variables

global variables, and coupling, 40
public variables, and globals, 358

virtual constructors, C++, 355
virtual proxy patterns, 287, 374
Visitor pattern

vs. Builder pattern, 352
Game of Life, 104–108
vs. Iterator pattern, 384, 398
quick reference, 398–399
reification in Life, 97
vs. Strategy pattern, 398

VK_X constants, 123
Vlissides, John, 1, 172
volatile keyword, 65

■W
wait() method, 181
Web sites

for downloading SimCity, 24
for further information

DCL, 65
Game of Life, 81
JavaCC, 259
JavaCUP, 259
JDOM classes, 367
links to SQL resources, 187
preseeded Life games, 83
Swing Tutorial, 81

WindowPeer object, 197, 199
Windows toolkit, 197
WordToken subclass, 263–264
WordToken.java (code listing), 265–266
wrapping strategy, 253

■X
XMLExporter class, 213
XMLImporter class, 213

■INDEX414

388x_Ch06_Index_CMP3 8/17/04 9:30 PM Page 414

388x_Ch06_Index_CMP3 8/17/04 9:30 PM Page 415

forums.apress.com
FOR PROFESSIONALS BY PROFESSIONALS™

JOIN THE APRESS FORUMS AND BE PART OF OUR COMMUNITY. You’ll find discussions that cover topics

of interest to IT professionals, programmers, and enthusiasts just like you. If you post a query to one of our

forums, you can expect that some of the best minds in the business—especially Apress authors, who all write

with The Expert’s Voice™—will chime in to help you. Why not aim to become one of our most valuable partic-

ipants (MVPs) and win cool stuff? Here’s a sampling of what you’ll find:

DATABASES

Data drives everything.

Share information, exchange ideas, and discuss any database
programming or administration issues.

INTERNET TECHNOLOGIES AND NETWORKING

Try living without plumbing (and eventually IPv6).

Talk about networking topics including protocols, design,
administration, wireless, wired, storage, backup, certifications,
trends, and new technologies.

JAVA

We’ve come a long way from the old Oak tree.

Hang out and discuss Java in whatever flavor you choose:
J2SE, J2EE, J2ME, Jakarta, and so on.

MAC OS X

All about the Zen of OS X.

OS X is both the present and the future for Mac apps. Make
suggestions, offer up ideas, or boast about your new hardware.

OPEN SOURCE

Source code is good; understanding (open) source is better.

Discuss open source technologies and related topics such as
PHP, MySQL, Linux, Perl, Apache, Python, and more.

PROGRAMMING/BUSINESS

Unfortunately, it is.

Talk about the Apress line of books that cover software
methodology, best practices, and how programmers interact with
the “suits.”

WEB DEVELOPMENT/DESIGN

Ugly doesn’t cut it anymore, and CGI is absurd.

Help is in sight for your site. Find design solutions for your
projects and get ideas for building an interactive Web site.

SECURITY

Lots of bad guys out there—the good guys need help.

Discuss computer and network security issues here. Just don’t let
anyone else know the answers!

TECHNOLOGY IN ACTION

Cool things. Fun things.

It’s after hours. It’s time to play. Whether you’re into LEGO®

MINDSTORMS™ or turning an old PC into a DVR, this is where
technology turns into fun.

WINDOWS

No defenestration here.

Ask questions about all aspects of Windows programming, get
help on Microsoft technologies covered in Apress books, or
provide feedback on any Apress Windows book.

HOW TO PARTICIPATE:

Go to the Apress Forums site at http://forums.apress.com/.

Click the New User link.

BOB_Forums_7x9.25.qxd 8/18/03 2:59 PM Page 1

http://forums.apress.com

	Prelims
	Contents
	About the Author
	Acknowledgments
	Preface
	Prerequisites
	Assumptions
	Warning! Warning! Will Robinson!
	Resources and References
	Further!

	Preliminaries: OO and Design Patterns 101
	Patterns vs. Idioms
	So What
	a Design Pattern, Anyway?
	So, What’s It All Good For?
	The Role of Patterns in Design
	The Tension Between Patterns and Simplicity

	Classifying Patterns
	On Design, Generally
	Programming FORTRAN in Java
	Programming with Your Eyes Open

	What Is an Object?
	Balderdash!
	An Object Is a Bundle of Capabilities
	How Do You Do It Wrong?
	So How Do You Do It “Right?”

	Cellular Automata
	Getters and Setters Are Evil
	Render Thyself
	JavaBeans and Struts
	Refactoring
	Life Without Get/Set
	When Are Accessors and Mutators Okay?
	Summing Up the Getter/Setter Issues

	Programming with Interfaces, and a Few Creational Patterns
	Why
	Is Evil
	Interfaces vs. Classes
	Losing Flexibility
	Coupling
	The Fragile-Base-Class Problem
	Multiple Inheritance
	Frameworks
	The Template-Method and Factory-Method Patterns
	Summing Up Fragile Base Classes

	When
	Is Appropriate
	Getting Rid of
	Factories and Singletons
	Singleton
	Threading Issues in Singleton
	Double-Checked Locking (Don’t Do It)
	Killing a Singleton
	Abstract Factory
	Pattern Stew
	Dynamic Creation in a Factory
	Command and Strategy

	Summing Up

	The Game of Life
	Get a Life
	Charting the Structure of Life
	The Clock Subsystem: Observer
	Implementing Observer: The
	Class

	The Clock Subsystem: The Visitor Pattern
	The Menuing Subsystem: Composite
	The Menuing Subsystem: Facade and Bridge
	The
	The Core Classes
	The
	Class
	The
	Interface
	The
	Class
	The
	Class

	Mediator
	Composite Revisited
	Prototype

	Composite Redux
	Flyweight
	Flyweight Pools

	Memento
	Loose Ends
	Summing Up

	Implementing Embedded SQL
	The Requirements
	The Architecture
	The Data-Storage Layer
	The
	Interface
	The Bridge Pattern
	Creating a Table, Abstract Factory
	Creating and Saving a Table: Passive Iterators and Builder
	Populating the Table
	Examining a Table: The Iterator Pattern
	Passive Iterators

	Implementing Transactions (Undo) with the Command Pattern
	Modifying a Table: The Strategy Pattern
	Selection and Joins
	Miscellany
	Variants on the
	: The Decorator Pattern

	Adding SQL to the Mix
	SQL-Engine Structure
	Input Tokenization, Flyweight Revisited, and Chain of Responsibility
	The Scanner: Chain of Responsibility
	The
	Class

	The
	Class
	Using the
	The Proxy Pattern
	The Token Set and Other Constants

	The Interpreter Pattern
	Supported SQL
	Watching the Interpreter in Action

	The JDBC Layer
	The State Pattern and
	Statements
	The Adapter Pattern (Result Sets)
	Finishing Up the Code
	When Bridges Fail

	Whew!

	A Design-Pattern Quick Reference
	Creational Patterns
	Abstract Factory
	What Problem Does It Solve?
	Often Confused With
	Pros (
) and Cons (
) See Also
	Implementation Notes and Example
	Usage

	Builder
	What Problem Does It Solve? Pros (
) and Cons (
)
	Often Confused With
	See Also
	Implementation Notes and Example
	Usage

	Factory Method
	What Problem Does It Solve?
	Often Confused With
	Pros (
) and Cons (
)
	See Also
	Implementation Notes and Example
	Usage

	Prototype
	What Problem Does It Solve?
	Pros (
) and Cons (
)
	See Also
	Implementation Notes and Example
	Usage

	Singleton
	What Problem Does It Solve? Often Confused With
	Pros (
) and Cons (
)
	See Also
	Implementation Notes and Examples
	Usage

	Structural Patterns
	Adapter
	What Problem Does It Solve?
	Often Confused With
	Pros (
) and Cons (
)
	See Also
	Implementation Notes and Example
	Usage

	Bridge
	What Problem Does It Solve? Often Confused With
	Pros (
) and Cons (
)
	See Also
	Implementation Notes and Example

	Composite
	What Problem Does It Solve?
	Often Confused With
	Pros (
) and Cons (
)
	See Also
	Implementation Notes and Example
	Usage

	Decorator
	What Problem Does It Solve? Pros (
) and Cons (
)
	Often Confused With
	See Also
	Implementation Notes and Example
	Usage

	Facade
	What Problem Does It Solve? Pros (
) and Cons (
)
	Often Confused With
	See Also
	Implementation Notes and Example
	Usage

	Flyweight
	What Problem Does It Solve? Pros (
) and Cons (
)
	Often Confused With
	See Also
	Implementation Notes and Example
	Usage

	Proxy
	What Problem Does It Solve? Pros (
) and Cons (
)
	Often Confused With
	See Also
	Implementation Notes and Example
	Usage

	Behavioral Patterns
	Chain of Responsibility
	What Problem Does It Solve?
	Often Confused With
	Pros (
) and Cons (
)
	See Also
	Implementation Notes and Example
	Usage

	Command
	What Problem Does It Solve?
	Pros (
) and Cons (
)
	Often Confused With
	See Also
	Implementation Notes and Example
	Usage

	Interpreter
	What Problem Does It Solve?
	Pros (
) and Cons (
)
	Often Confused With
	See Also
	Implementation Notes and Example
	Usage

	Iterator
	What Problem Does It Solve?
	Often Confused With
	Pros (
) and Cons (
)
	See Also
	Implementation Notes and Example
	Usage

	Mediator
	What Problem Does It Solve? Often Confused With
	Pros (
) and Cons (
)
	See Also
	Implementation Notes and Example
	Usage

	Memento
	What Problem Does It Solve? Pros (
) and Cons (
)
	Often Confused With
	Implementation Notes and Example
	Usage

	Observer (Publish/Subscribe)
	What Problem Does It Solve? Pros (
) and Cons (
)
	Often Confused With
	See Also
	Implementation Notes and Example
	Usage

	State
	What Problem Does It Solve? Pros (
) and Cons (
)
	Often Confused With
	See Also
	Implementation Notes and Example

	Strategy
	What Problem Does It Solve?
	Often Confused With
	See Also Pros (
) and Cons (
)
	Implementation Notes and Example
	Usage

	Template Method
	What Problem Does It Solve?
	Pros (
) and Cons (
)
	Often Confused With
	See Also
	Implementation Notes and Example
	Usage

	Visitor
	What Problem Does It Solve? Often Confused With
	Pros (
) and Cons (
)
	See Also
	Implementation Notes and Example

	Index

