
.

Compiler Design in C

Allen I. Holub

Software Distribution 1.04.

Dear Folks,

The first thing is the software license. I’ve deliberately put this into English rather than
legaleeze, and trust you to not take advantage of my desire to communicate clearly. A
less restrictive license is available for the asking to academic institutions that useCom-
piler Design in Cas a required textbook. Just drop me a note at Software Engineering
(address below).

SOFTWARE LICENSE FOR COMPILER DESIGN IN C

Using the enclosed software constitutes agreement to the following terms and condi-
tions.
(1) You are licensed to use the software on a single-user computer. You may not

install it on a network or a multi-user computer system. You may copy the software
as necessary for backup purposes. ‘‘Use it like a book’’ as they say.

(2) None of the software on this disk may be used in the design or fabrication of
weapons, weapon components, or weapon-delivery systems, or in any research
that will contribute directly to the design or fabrication of weapons or
weapon-delivery systems. This software may not be used by any company that
produces or sells weapons, weapon components, or weapon-delivery systems,
even if the software will not be used in weapons applications. The foregoing
does not apply to a company that produces a product of general utility that
happens to be used in a weapon manufactured by a different company.

(3) This software is not___ in the public domain. (The author, Allen I. Holub, is the owner
of the software and has the right to enter into this agreement.) You may not distri-
bute it to anyone, except as follows:
a. You must first pay for the code by sending a check for $79.95 (plus local

sales tax if you are in Califorina) to
Allen Holub
c/o Software Engineering Consultants
P.O. Box 5679
Berkeley, CA 94705

You may also pay by MasterCard or Visa, or use the on-line form found at
http://www.holub.com/compiler/compiler.html.

b. You may distribute the output from LeX, llama, and occs freely, and in any
form, including source and binary form. You may incorporate this output into
any of your programs and distribute those programs freely in source or binary
form.

c. You may incorporate any of the source code into your own programs, and dis-
tribute binary______ versions of those programs without restriction. You may not,
however, distribute the source-code itself, and the programs that you do distri-
bute must be substantially different from LeX, llama, and occs. (For example,
you may not use the sources to create a compiler-compiler or a lexical-analyzer
generator which you then distribute.) This restriction applies both the source
code as distributed, and to any versions of the source code that you create by
modifying the distributed version.

d. The documentation for all products that you distribute that incorporate any of
the code on the distribution disks, in original or modified form, must state that
the product uses code fromCompiler Design in Cby Allen I. Holub and that
the incorporated code is 1990, by Allen I. Holub. You (the customer) retain
copyright to your own original work, of course.

September 11, 1997 -2- Compiler Design in C

e. You may distribute bug fixes freely, but only if you also report them to me
directly (see address, below), You may distribute only enough of the code to
identify where the bug is and how to fix it—aUNIX-style ‘‘diff’’ file is ideal. I’d
prefer for you to send internet postings directly to me. I’ll digest them and post
them to the net at periodic intervals.

(4) LeX, occs, and LLama, are trademarks of Allen I. Holub and must be identified as
such if used by you.

(5) The author (Allen Holub) has done his best to assure that the programs on the disk
are as error free as possible. Nonetheless, the author makes no warranty of any
kind, expressed or implied, with regard to these programs or the documentation.
The author shall not be liable in any event for incidental or consequential damages
in connection with, or arising out of, the furnishing, performance, or use of these
programs. In plain words, if a program on this disk goes crazy and does something
like destroy every file on your hard disk, it’s your fault for not backing up properly.
Don’t blame the program.

INSTALLATION

The enclosed disks contain all of the source code fromCompiler Design in Cand execut-
able versions of the tools (LeX, LLama, and occs). There is also an executable visible-
parser version of the compiler in Chapter 6. All this material has been compressed in
order to save disks when shipping. The unpacking process creates many files and several
subdirectories (which can be rooted anywhere in your file system). The software is
shipped on either two 360K 5 ⁄1

4" disks or one 720K 3 ⁄1
2" disk. Installation is performed

automatically using the following procedure:
(1) Put the installation disk into a floppy drive, the A: drive is the default one, but

another can be used.
(2) Create the directory in which you want to install the Compiler-Design file system

and go there. If, for example, you want to put everything in and under
’c:/compiler’, issue the following commands to DOS:

c:
mkdir \compiler
cd \compiler

(3) Copy the fileinstall.bat from the distribution disk to the target directory:

copy a:install.bat

(4) Execute the installation batch file. If the distribution disk is in the A: drive, just
type:

install

If the installation disk is in another drive, type

install D:

whereD: is the drive that holds the installation disk. If you’re installing from 5 ⁄1
4"

disks, change disks when prompted.

The distribution disk expands to about a megabyte of stuff. If you’re installing from 5 ⁄1
4"

disks, you’ll need another megabyte or so of scratch space to do the installation, but that

September 11, 1997 -3- Compiler Design in C

space is freed up once the installation is complete.

ABOUT THE DISTRIBUTION DISK

The installation process creates several directories (the . . . represents the directory used
as the root of the file system):

. . ./bin Various executable programs (discussed below)

. . ./include Various system-level#include files

. . ./include/tools Various compiler-related#include files
parser templates for LeX, llama, and occs. You should
also move the libraries discussed below to this directory
once you have compiled them.

. . ./lib

. . ./src Sources for the cc program, discussed below

. . ./src/compiler

. . ./src/compiler/c Sources for the C compiler in Chapter Six.

. . ./src/compiler/lex Sources for LeX, from Chapter Two.

. . ./src/compiler/lib Library subroutines from most chapters and Appendix A.

. . ./src/compiler/parser Sources for llama and occs from Chapters Five and Six

. . ./src/tools/curses Sources for the curses window-management library.

. . ./src/tools/termlib Sources for low-level I/O functions used by curses.

. . ./work Miscellaneous files that didn’t fit anywhere else.

The various executables found in. . ./binare:

occs.exe An executable version of occs
llama.exe An executable version of llama
lex.exe An executable version of lex

This is a driver program that corrects some of the command-
line deficiencies in the Microsoft cl program. It compensates
for the fact that Microsoft’s cl ignores the current
SWITCHAR setting, and is used to invoke cl from the
makefiles. cc translates into backslashes all forward slashes
that appear between the "cc" and an optional "-link" and then
chains to cl. For example:

cc /src/compiler/c/foo.c -link /NOE
tools.lib

effectively does the following:

cl \src\compiler\c\foo.c /link /NOE
tools.lib

cc.exe

A "visible" parser for the llama example in Appendix E.
Create a test file containing a semicolon-terminated arith-
metic expression made up of numbers, names, parentheses,
and the + and * operators; like this:1+(2+3*4); (don’t forget
the semicolon). Execute the parser by sayingllexpr test ,
wheretest is the name of your test file.

llexpr.exe

September 11, 1997 -4- Compiler Design in C

A "visible" parser for the occs example in Appendix E. Use it
just like llexpr, but don’t put the semicolon at the end of the
expression.

yyexpr.exe

An executable "visible" parser for the C compiler in Chapter
6. You can use it both to see how the IDE works and to follow
along with the examples in Chapter Six without having to
create the C compiler from scratch.

c.exe

This is aUNIX C-shell script that simulates anANSI preproces-
sor by using cpp and sed. It is discussed further, below.

pp

If you just intend to use the tools, without actually recompiling them, you can create a
minimal system with the following:

.../bin/lex.exe

.../bin/llama.exe

.../bin/occs.exe
Executable tools

Template files. You should either initialize the
LIB environment (a semicolon-delimited list of
directory names similar to the PATH) to contain
the name of this directory or move the.par files
to some directory already listed in your LIB
environment.

. . ./lib/*.par

Must be linked to programs that have occs-
generated parsers or LeX-generated lexical
analyzers. You have to create this library from
the provided sources—the process is discussed
below.

. . ./lib/l.lib

. . ./lib/curses.lib These libraries must be linked to all occs/llama
generated parsers that were compiled with
YYDEBUG set (or which had a -D specified on
the occs/llama command line). This is the win-
dows system used by the IDE. You have to create
these libraries from the provided sources—the
process is discussed below.

. . ./lib/termlib.lib

COMPILING

All sources on the disk compile without modification under both Microsoft C, versions
5.1 and 7.0, Borland C++, ver. 2.0 (using only the C-compiler component of the system),
and theUNIX BSD 4.3 compiler. It should also compile under Microsoft 6.0 and Borland
3.0, but I haven’t actually done so, so can’t promise anything. Similarly, the output from
LeX, LLama, and occs compiles in all these environments. If you have any problems
compiling with these compilers, please contact me so I can fix the source disk in future
software versions.

If your compiler isn’t in the foregoing list, but isANSI compatible, then your best bet
is probably to pretend you’re the Microsoft compiler by adding the following lines at the
top ofdebug.h:

#define MSDOS 1
#define _MSC_VER 700

Some massaging might still be necessary, however.

September 11, 1997 -5- Compiler Design in C

The compilation environment is selected by means of various macros indebug.h.
The compiler assumes Borland C if_ _TURBOC_ _is defined. It assumes Microsoft ver.
5.x if MSDOSis defined and MSC_VER is not defined, Microsoft ver. 6.x ifMSDOSis
defined andMSC_VERis defined as 600, Microsoft ver. 7.x if_MSDOSis defined and
_MSC_VERdefined as 700.UNIX (ie. K&R C) is assumed if none of the above are present.
_ _TURBOC_ _, MSDOSor _MSDOS, andMSC_VERare all defined automatically by the Bor-
land or Microsoft compilers—you don’t have to define them yourself. Search the
sources for instances of the macros in Table 0.1 to find implementation-dependent code:

Table 0.1.Conditional-Compilation Macros__
Selects Description__

Compiler MSC(x) Argument is expanded if any Microsoft C compile

MSC5(x) Argument is expanded only if Microsoft C ver. 5 is active.
MSC6(x) Argument is expanded only if Microsoft C ver. 6 is active.
MSC7(x) Argument is expanded only if Microsoft C ver. 7 is active.
BCC(x) Argument is expanded only any Borland/Turbo C/C++ is active.
MSDOS Defined only if Microsoft C is active.

r is active.

_ _TURBOC_ _ Defined only if Borland C++ is active.__
UNIX(x) Argument is expanded inUNIX environment.Operating

System MS(x) Argument is expanded inMS-DOSenvironment.__
ANSI(x) Argument is expanded only if anANSI compiler is active.

Language
LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

KnR(x) LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Argument is expanded only if a K&R C compiler is active.__
ANSI() and KnR() are mutually exclusive (they both won’t be
defined at the same time). Same goes forMS() andUNIX(), MSC()

andBCC() , etc. MSDOSand_ _TURBOC_ _are generated automati-
cally by the Microsoft and Borland compilers.__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

The executables on the disk were compile under Microsoft 7.0.
I am assuming that you’ll use some form of make to do your compilation. Three ver-

sions of the makefiles appear in the various source-code directories. The file called
makefileis for Microsoft C and Microsoft nmake. Theborland.makfile is for Borland
C++ and the version of make that’s shipped with that compiler. Finally,unixmake.mak
is theUNIX makefile.

Note that the makefile in. . ./src/compiler/cmakes a debugging version of the c com-
piler. To make a non-debugging version, you’ll have to remove the -D from all the occs
invocations in the makefile. You’ll also need to stop the linker from calling in
yydebug.obj by modifying . . ./src/compiler/c/main.cas follows: comment out the
yy_get_args() call in main() and also remove theyyhook_a() andyyhook_b() sub-
routines.

MAKING THE CODE USEABLE

To use LeX, occs, and LLama, you’ll need to compile the run-time libraries used by the
compiler-compiler’s output code. The sources for the libraries are in the following
directories:

September 11, 1997 -6- Compiler Design in C

Library: Sources are in:______________________________
curses.lib . . . /src/tools/curses
termlib.lib . . . /src/tools/termlib
l.lib
comp.lib . . . /src/compiler/lib______________________________LL
L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

Makefiles for Microsoft’s nmake and Microsoft C are provided in the various
directories—as are makefiles for Borland C++ andUNIX. You don’t have to use them,
however. To createcurses.libjust compile everything in. . ./src/tools/cursesand put the
objects together in a library. You’ll probably want to specify-DA on the compiler’s com-
mand line to create an autoselect version of the library. (Most compilers create an impli-
cit #define A when given-DA.) Createtermlib.lib in a similar way, just compile every-
thing in . . ./src/tools/termlib and put the objects together in a library. No special
command-line switches are required here. The final two libraries can be combined to
make your life easier. Instead of creating bothl.lib and comp.lib, just compile all the
sources in. . ./src/compiler/liband put the objects into a combined library called some-
thing like lcomp.lib. Specify lcomp.lib everywhere that eithercomp.lib or l.lib is
required.

All the .h files in the book should be on the distribution disk in the. . ./includeor
. . ./include/toolsdirectories. Most of the files in. . ./includeare bogusANSI include files
included here forUNIX compatibility (stdarg.h, stdlib.h, io.h, process.h, etc.). These
pseudo-ANSI files will____ deliberately__________ cause_____ error____ messages________ to be printed if anMS-DOScom-
piler tries to use them. Just delete everything in. . ./includeexceptcurses.hif you have
problems.

All files included with quotes instead of brackets should be in the same directory as
the file that includes them. If your compiler can’t find an include file that uses <>, it’s
probably one that comes with Microsoft C or Borland C and you will have to figure out
how to keep your own compiler happy. With the exception ofcurses.h, all of the nonlo-
cal include files are in the/tools subdirectory of. . ./includeand are included in the pro-
grams with something like#include <tools/debug.h> . This means that you should
set up your compiler so that it will search for include files in ". . ./include." The compiler
will take care of adding the "/tools" when necessary. You can do this with the Microsoft
C’s INCLUDEenvironment like this:

set LIB=d:\lib;d:\c700\lib
set INCLUDE=d:\ include ;d:\c700\ include

The first directory in each environment tells the Microsoft where to find the compiler-
system’s files, the second tells the compiler where to find its own files. Do the same
thing with Borland C++’sturboc.cfgfile. My turboc.cfg looks like this:

-ID:\BORLANDC\INCLUDE
-LD:\BORLANDC\LIB
-ID:\INCLUDE
-LD:\LIB
-w-eff
-w-pia
-wpro
-wnod
-wstv
-wuse
-w-inl
-wpre

The first two lines tell the compiler where to find its own include files and libraries. The
second two lines tell it where to find the compiler-system’s include files and libraries.

September 11, 1997 -7- Compiler Design in C

The remainder of the file disables two annoying warning messages and enables a bunch
of useful, but normally disabled messages.

Note that the LeX, llama, and occs output files contain#include s for the
<tools/l.h> and<tools/compiler.h>files that are on the disk. You must either make sure
that your compiler can find these files, or modify the.../lib/*.par files so that the
includes aren’t necessary. (The latter is probably the best approach forUNIX systems.)
l.h is included only for prototypes for theii_ andyy subroutines in the library, so can be
discarded in aUNIX system without difficulty.debug.his needed to includel.h, but the
KnR() ,ANSI() ,P() , andBCC() macros fromdebug.hare also used in the.par files.

UNIX USERS:

First, you can dispense with all of the curses and termlib stuff on the distribution disk.
Just use the system’s−lcursesand−ltermlib libraries when you’re linking.

The code compiles and runs without difficulty under the BSD 4.3 C compiler. Just
don’t create a#define for MSDOSor _ _TURBOC_ _anywhere. I can’t vouch for other
UNIX versions and other compilers. The code inyydebug.chas been tested under Berke-
ley curses, not System V curses, but so far, this has not caused problems. Thesystem.v
file in the .../srcdirectory of the unpacked file system describes one readers change’s to
the code to get it to compiler under System V.

It easiest to renameunixmake.makto makefilebefore attempting a compile using
make.

The various makefiles assume that the compiler sources are rooted at
/violet_b/holub/compiler. When I say something like . . ./bin, I mean
/violet_b/holub/compiler/bin, and so on. You will have to modify the makefiles to reflect
your own root directory. I do not recommend moving the source-code files to directories
other than the default ones unless you want to do a major makefileperistroika.

There are a few things that you have to deal with to port the code. First, theUNIX

compiler can not handleANSI-style token pasting. A shell script called. . ./bin/pptakes
care of this problem. It uses a combination of the preprocessor andsedto simulate token
pasting. Use it like this:

pp source_file_name cc_command_line_switches

It generates a pre-preprocessed file that can then be submitted to cc. (The generated
file’s name is made up of the root part of the original file name with a.pp.c extension
added).pp generates#line s to make error messages from cc reference the source file,
not pp’s output file. There’s an example of howpp is used in
. . ./src/compiler/parser/unixmake.mak.

The other problem is the lama.par and occs.par files in. . ./lib. They both include
<tools/yystack.h>, which uses token pasting. Its clearly unacceptable to require a user of
LLama or occs to run all of the output through pp, however. For this reason, alternate
versions of these two files (calledoccspar.unxand llamapar.unx) are also provided in
. . ./bin on the distribution disk. If your compiler doesn’t supportANSI token pasting, you
should replace the.par files with the alternate ones. The.unx versions of the file are
rather weird looking because they’ve been sent through a preprocessor. (There are no
comments, lots of blank lines, and a few very long lines that represent macro expan-
sions). You might want to save the original versions somewhere for documentation pur-
poses.

Finally, don’t forget to initialize the LIB environment to hold the directory name for
the directory where the.par files are found. Do this in the C shell with:

September 11, 1997 -8- Compiler Design in C

set LIB pathname

Do it in the Bourne and Korn shells with:

LIB= pathname
export LIB

There’s one known bug in theUNIX version of yydebug.c, which supports the
occs/llama interactive debugging environment. Occasionally, when you’re parsing
madly away after executing ag command, and you hit a key to stop the parse, a newline
that should go to the ‘‘comments’’ window is lost, and a weird-looking line is created.
I’ve been getting nowhere trying to fix the problem, and suspect a bug in curses. If any
of you curses gurus out there can suggest a solution, I’d appreciate it.

OTHER STUFF

You may have problems usingstdin with a LeX-generated scanner. The
ii_fillbuf() routine in/src/compiler/lib/input.cwas assuming that it had reached end
of file if the number of characters received fromread() wasn’t the same as the number
of characters requested. UnderMS-DOS a read() from standard input almost always
returns a value smaller than the requested number of bytes, however. I’ve fixed the prob-
lem in theMS-DOSenvironment by replacing the line

if (got < need)

[towards the bottom ofii_fillbuf()] with:

if (got < need MS(&& eof(Inp_file)))

Theeof() function returns true if the indicated stream (notFILE) is at end of file. There
is noUNIX equivalent and this fix is not particularly portable.

BUGS, UPDATES, COMMUNICATION

At this writing, the tools (LeX, occs, llama, their output, and the libraries used by
them) are all error free, as far as I know. There are a few bugs in the compiler presented
in Chapter 6 that will be fixed in a future release (See Exercise 6.2 on page 652). Note
that the grammar (and the compiler, by extension), needs to be modified a bit to bring it
into full ANSI compliance. I’ll fix this problem in a second edition of the book, but have
decided to leave well enough alone for now so that the enclosed compiler will behave as
described in Chapter 6. I didn’t want the compiler that you’re reading about to parse
differently than the distributed compiler.

Please report any bugs or compilation problems to me, Allen Holub c/o Software
Engineering, P.O.Box 5679, Berkeley, CA 94705, or via internet
(holub@violet.berkeley.edu). Compuserve users can access internet from the email sys-
tem by using:

>INTERNET:holub@violet.berkeley.edu

as my address. (Typehelp internet for more information.) I’ll fix any bugs as soon
as possible and send you an update. Updates will also be available at regular intervals
for people who don’t have access to Internet or Compuserve. I’ll send out postcards
when appropriate.

− Allen Holub

September 11, 1997 -9- Compiler Design in C

__

Errata: Compiler Design in C

This document is a list of typos and corrections that need to be made toCompiler
Design in C, Allen Holub, 1990 (as of September 11, 1997). The corrections marked
‘‘Disk only’’ represent changes made to the files on the distribution disk that either
don’t affect the code in any significant way or are too big to insert into the book. All
these will eventually be incorporated into the second edition, if there is one, but they
won’t be put into subsequent printings of the first edition. There are also a many
trivial changes that have been made to the code on the disk to make it more robust:
Function prototypes have been added here and there, as have includes for .h files
that contain prototypes, all .h files have been bracketed with statements like:

#ifndef _ _FILE_EXT /* file name with _ for dot */
#define _ _FILE_EXT

...
#endif

to make multiple inclusions harmless, and so forth. These changes allow the code to
compile under Borland C++ as well as Microsoft C and BSDUNIX . None of these
trivial changes are documented here.

The printings in which the error occurs and the software version in which the
change was made are identified in the margin at the head of each entry. For exam-

1, 2 (1.02) ple, the numbers next to the current paragraph indicate that the typo is found in
both the first and second printings, and that the bug was fixed in software version
1.02. Determine your printing by looking at the back of the flyleaf, where you’ll
find a list of numbers that looks something like this: 10 9 8 7 6 5 4 3 . The
smallest number in the list is the printing.

Page xvi -Seventh line from the bottom. Change ‘‘No credit cards’’ to ‘‘No purchase
orders or credit cards.’’ The last two lines of the paragraph should read:

must add local sales tax.No purchase orders or credit cards(sorry). A Macintosh
version will be available eventually. Binary site licenses are available for educational
institutions.

Page xvi - Last line. Internet can now be accessed from CompuServe. Add the
Compuserve/internet address >INTERNET:holub@violet.berkeley.edu to the
parenthesized list at the end of the paragraph. A replacement paragraph follows:

The code in this book is bound to have a few bugs in it, though I’ve done my best to test
it as thoroughly as possible. The version distributed on disk will always be the most
recent. If you find a bug, please report it to me, either at the above address or electroni-
cally. My internet address isholub@violet.berkeley.eduCompuServe users can access
internet from the email system by prefixing this address with>INTERNET: —typehelp

internet for information. My UUCP address is. . .!ucbvax!violet!holub.

September 11, 1997 -10- Errata: Compiler Design in C

Page xvi- 15 lines from the bottom. Change the phone number to:

(510) 540-7954

Page xviii - Line 7, change ‘‘that’’ to ‘‘than’’. The replacement line follows:

primitives. It is much more useful thanpic in that you have both aWYSIWYG capability ‘
‘

Page 8- The line that starts ‘‘JANE verb object’’ in the display at the bottom of the page
is repeated. Delete the first one. A replacement display follows:

sentence applysentence→subject predicateto get:
subject predicate applysubject→nounto get:
noun predicate applynoun→JANE to get:
JANE predicate applypredicate→verb objectto get:
JANE verb object applyverb→SEESto get:
JANE SEESobject applyobject→noun op_participle to get:
JANE SEESnoun opt_participle applynoun→SPOT to get:
JANE SEES SPOTopt_participle applyopt_participle→participle to get:
JANE SEES SPOTparticiple applyparticiple→RUN to get:
JANE SEES SPOT RUN done—there are no more nonterminals to replace

Page 11- Table 1.1, line 1 should read:statements→EOF. A replacement table follows:

Table 1.1.A Simple Expression Grammar__
1. statements → EOF
2. | expression; statements
3. expression → expression+ term
4. | term
5. term → term∗ factor
6. | factor
7. factor → number
8. | (expression)__L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

September 11, 1997 -11- Errata: Compiler Design in C

Page 12- Figure 1.6. Replace the figure with the following one:

Figure 1.6.A Parse of1+2

statements

;expression

term expression′

expression′term+

ε

term′

ε

2

factor1

factor

statements

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
__

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L__

Page 16- Listing 1.2, delete line 46. (Replace it with a blank line.)

Page 18- Replace the untitled table just under Listing 1.4 with the following (only the
first line has been changed):

1. statements → expression; eoi
2. | expression; statement
3. expression → term expression′
4. expression′ → + term expression′
5. | ε
6. term → factor term′
7. term′ → ∗ factor term′
8. | ε
9. factor → num_or_id

10. | (expression)___LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

Page 24- Line 110 of Listing 1.7 should read*p++ = tok;

110 *p++ = tok;

L
L
L
__

L
L
L__

Page 26- Change the caption to Figure 1.11 as follows:

Figure 1.11. A Subroutine Trace of 1+2*3+4 (Improved Parser)

September 11, 1997 -12- Errata: Compiler Design in C

Page 27- Change Line 42 of Listing 27 totempvar2 = term();

42 tempvar2 = term();

L
L
L
__

L
L
L__

Page 27- Replace the wordtemporary in the code part of lines 19, 26, and 42 of Listing
1.9 with the wordtempvar . These three lines should now read:

19 tempvar = expression()

26 freename(tempvar);

LL
L
L
L
__

LL
L
L
L__

Page 36- Replace Lines 16 and 17 of Listing 2.1 with the following (I’ve added a few
parentheses):

16 #define get(stream) (Pbackp < &Pbackbuf[SIZE] ? *Pbackp++ : getc(stream))
17 #define unget(c) (Pbackp <= Pbackbuf ? -1 : (*--Pbackp=(c)))

LL
L
L
L
__

LL
L
L
L__

Page 44- Replace line 186 of Listing 2.5 with the following line:

186 Next = sMark = eMark = END - 1; paMark = NULL;

L
L
L
__

L
L
L__

Page 55- Eleven lines from bottom. The display that says([ˆa-z]|\en) should read as
follows:

([ˆa-z]|\n)

Page 41- Modify line 113 of Listing 2.3 to the following:

113 eMark = END; pMark = NULL;

L
L
L
__

L
L
L__

Page 46- Replace lines 299 and 300 of Listing 2.6 with the following lines:

September 11, 1997 -13- Errata: Compiler Design in C

299 int need, /* Number of bytes required from input. */
300 got; /* Number of bytes actually read. */

LL
L
L
__

LL
L
L__

Page 57- Line six should read as follows:
causes a transition to State 1; from State 1, ane gets the machine to State 2, and ani ‘
‘

Page 57- Eleventh line from the bottom should read as follows:

next_state = Transition_table[current_state][input_character];

Page 57- Last line of second paragraph should read as follows (delete the "s"):
r, or e from State 0) are all implied transitions to a special impliciterror state. ‘
‘

Page 63- Listing 2.11, lines 2 and 3: remove the semicolons.

Page 68- The first line beneath the Figure should read as follows (the Figure and List-
ing numbers are wrong):

table is shown in Figure 2.6 and in Listing 2.15. TheYy_cmap[] array is indexed by ‘
‘

Page 72- The first display (second and third lines) should read as follows:

[’0’ , 2] [’1’ , 2] [’2’ , 2] [’3’ , 2] [’4’ , 2]
[’5’ , 2] [’6’ , 2] [’7’ , 2] [’8’ , 2] [’9’ , 2] [’e’ , 5]

Page 73- The first line of the third paragraph calls out the wrong line number. It should
read as follows:

TheYYERROR()macro on line 151 of Listing 2.19 prints internal error messages. ‘
‘

Page 73- First paragraph, lines two and four. Both references to Listing 2.18 should be
to Listing 2.19. A replacement first paragraph follows:

The remainder oflexyy.cfile is the actual state-machine driver, shown in Listing 2.19
The first and last part of this listing are the second and third parts of the Ctrl-L-delimited
template file discussed earlier. The case statements in the middle (on lines 287 to 295 of
Listing 2.19) correspond to the original code attached to the regular expressions in the
input file and are generated by LeX itself.

Page 76- Listing 2.19, line 166. Some code is missing. Replace line 166 with the follow-
ing line:

September 11, 1997 -14- Errata: Compiler Design in C

166 if ((c = ii_input()) && (c != -1))

LL
L
__

LL
L__

Page 78- Listing 2.19, lines 292 and 294. Align theF in FCONunder theI in ICON (on
line 288).

Page 84- Figure 2.13(e). The arrows should point fromstates 5 and 11to state 13. Here
is a replacement figure:

Figure 2.13.Constructing an NFA for (D∗\ .D|D\ .D∗)

εε

ε

ε

DD .

DD

ε

ε

ε ε .
0 12 3 4

7 8 910

432 10
.εε

ε

ε

D

10
D

D

ε

ε

ε ε
0 12 3

DD

ε

ε

ε ε .
0 12 3 4 5

(a)

(b)

(c)

(d)

(e)

12

6

13

11

5

ε

εε

ε

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L___

September 11, 1997 -15- Errata: Compiler Design in C

Page 85- Third line from the bottom (which starts ‘‘For example’’) should read:

For example, in a machine with a 16-bitint , the first two bytes of the string are the ‘
‘

Page 86- Listing 2.21. Change the number512 on line 28 to768 .

768

Page 91 - Change the definition of STACK_USED on line 93 of Listing 2.25 to
((int)(Sp-Sstack)+1) . A replacement line follows:

93 #define STACK_USED() ((int)(Sp-Sstack) + 1) /* slots used */

L
L
L
__

L
L
L__

Page 92- Change line 167 of Listing 2.25 to the following:

167 if (textp >= (char *)strings + (STR_MAX-1))

L
L
L
__

L
L
L__

Page 95- Listing 2.26. Replace lines 280 to 283 with the following lines:

280 *p = ’\0’; /* Overwrite close brace. { */
281 if (!(mac = (MACRO *) findsym(Macros, *namep)))
282 parse_err(E_NOMAC);
283 *p++ = ’}’; /* Put the brace back. */

L
L
L
L
L
L
__

L
L
L
L
L
L__

Page 104- Second paragraph, first four lines (above the first picture) should read:

Subroutinesexpr() andcat_expr() are in Listing 2.30. These routines handle the
binary operations: | (OR) and concatenation. I’ll show howexpr() works by watching
it process the expressionA|B. Thecat_expr() call on line 621 creates a machine that
recognizes theA:

Page 121- Listing 2.38. Replace lines 218 to 255 with the following:

September 11, 1997 -16- Errata: Compiler Design in C

start_dfastate = newset(); /* 2 */
ADD(start_dfastate, sstate);
if (!e_closure(start_dfastate, &accept, &anchor))
{
fprintf(stderr, "Internal error: State machine is empty\n");
exit(1);
}
current = newset(); /* 3 */
ASSIGN(current, start_dfastate);

/* Now interpret the NFA: The next state is the set of all NFA states that
* can be reached after we’ve made a transition on the current input
* character from any of the NFA states in the current state. The current
* input line is printed every time an accept state is encountered.
* The machine is reset to the initial state when a failure transition is
* encountered.
*/

while (c = nextchar())
{
next = e_closure(move(current, c), &accept, &anchor);
if (accept)
{

printbuf(); /* accept */
if (next);
delset(next); /* reset */
ASSIGN(current, start_dfastate);

}
else
{ /* keep looking */

delset(current);
current = next;

}
}
delset(current); /* Not required for main, but you’ll */
delset(start_dfastate); /* need it when adapting main() to a */

} /* subroutine. */
#endif

Page 122- First display, which starts with ‘ε-closure({12})’’, should read as follows:

ε-closure({0}) = {0, 1, 3, 4, 5, 12} (new DFA State 0)

Page 123 - Display on lines 6−9. Second line of display, which now reads ‘ε-
closure({7,11}) = {9, 11, 13, 14},’’ is wrong. The entire display should read as follows:

DFA State 7 = {11}
ε-closure({11}) = {9, 11, 13, 14}
move({9, 11, 13, 14},.) = ∅
move({9, 11, 13, 14},D) = {11} (existing DFA State 7)

Page 124- First line of second paragraph should read:
The maximum number of DFA states is defined on line seven of Listing 39 to be ‘

‘

September 11, 1997 -17- Errata: Compiler Design in C

Page 129- First line should say ‘‘Listing 2.41’’, not ‘‘Listing 2.40’’ Second line should
say ‘‘line 119’’, not ‘‘line 23’’. The forth line should say ‘‘line 129’’, not ‘‘line 31’’. A
replacement paragraph follows:

Several support functions are needed to do the work, all in Listing 2.41 The
add_to_dstates() function on line 119 adds a new DFA state to theDstates array
and increments the number-of-states counter,Nstates . It returns the state number (the
index inDstates) of the newly added state.in_dstates() on line 139 of Listing 2.41
is passed a set of NFA states and returns the state number of an existing state that uses
the same set, or−1 if there is no such state.

Page 129- Replace lines 147 and 148 of Listing 2.41 with the following:

147 DFA_STATE *end = &Dstates[Nstates];
148 for (p = Dstate s ; p < end ; ++p)

L
L
L
L
__

L
L
L
L__

Page 130- Replace lines 193 and 194 of Listing 2.41 with the following

193 DFA_STATE *end = &Dstates[Nstates];
194 for (p = Dstates ; p < end ; ++p)

L
L
L
L
__

L
L
L
L__

Page 139- Replace line 198 of Listing 2.44 with the following:

198 SET **end = &Groups[Numgroups];

L
L
L
__

L
L
L__

Replace Line 204 of Listing 139 with the following:

204 for (current = Groups; current < end; ++current)

L
L
L
__

L
L
L__

Page 140- Replace lines 229 and 230 of Listing 2.45 with the following

229 SET **end = &Groups[Numgroups];
230 for (current = Groups; current < end; ++current)

L
L
L
L
__

L
L
L
L__

September 11, 1997 -18- Errata: Compiler Design in C

Page 152- Remove the#include "date.h" on line 3.

Page 157- Replace line 117 with the following (I’ve added the--argc on the left):

117 for (++argv, --argc; argc && *(p = *argv) == ’-’; ++argv, --argc)

L
L
L
__

L
L
L__

Page 167- 13th line from the bottom, ‘‘returns’’ should be ‘‘return.’’

Page 167- Third line from the bottom. Change the second comma to a semicolon.

Page 171- Replace the first display (which now reads noun→time|banana) with the fol-
lowing:

noun→ fruit | banana

Page 173- Second display, text to the right of the =L> is missing. It should read as fol-
lows:

compound_stmt =L> LEFT_CURLY stmtRIGHT_CURLY
=L> LEFT_CURLY RIGHT_CURLY

Page 173- First line after second display, change expr→ε to stmt→ε: The line should
read:
The application ofstmt→ε effectively removes the nonterminal from the derivation by ‘
‘

Page 173 - 11th and 16th line from the bottom. ChangeCLOSE_CURLY to
RIGHT_CURLY
RIGHT_CURLY RIGHT_CURLY

Page 175- Figure 3.2. The line that reads ‘4→DIGIT error’’ should read ‘4→DIGIT
5.’’

5

Page 177- Listing 3.2, Line 12, should read:

12 process_stmt(remember);

L
L
L
__

L
L
L__

Page 178- Third line below the one that starts with ‘‘Since’’ (next to the marginal note),
replace ‘‘the the’’ with ‘‘the’’: All three lines should read:

Since adecl_listcan go toε, the list could be empty. Parse trees for left and right recur-Productions executed
first or last.sive lists of this type are shown in Figure 3.5. Notice here, that thedecl_list→ε

September 11, 1997 -19- Errata: Compiler Design in C

production is the first list-element that’s processed in the left-recursive list, and it’s the
last ‘ ‘

Page 179- fourth line of second display, "declarator" should be "declarator_list". Line
should read:

declarator_list → TYPE declarator_list

Page 180- Table 3.2. Grammatical rules for ‘‘Separator Between List Elements, Zero
elements okay’’ row are wrong. Replace the table with the following one:

Table 3.2.List Grammars__
No Separator___

Right associative Left associative__
At least one

element
list → MEMBER list | MEMBER list → list MEMBER | MEMBER

__
Zero elements

okay
list → MEMBER list | ε

LL
L
L
L
L
L

list → list MEMBER | ε
__

Separator Between List Elements___
Right associative Left associative__

At least one
element

list → MEMBER delim list | MEMBER list → list delim MEMBER | MEMBER
__

Zero elements opt_list→ list | ε opt_list→ list | ε
okay LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

list → MEMBER delim list | MEMBER LL
L
L
L
L
L

list → list delim MEMBER | MEMBER__
A MEMBER is a list element; it can be a terminal, a nonterminal, or a collection of terminals and nontermi-
nals. If you want the list to be a list of terminated objects such as semicolon-terminated declarations,
MEMBER should take the form:MEMBER→ α TERMINATOR , whereα is a collection of one or more termi-
nal or nonterminal symbols.__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Page 181- Figure 3.6. Change all ‘‘statements’’ to ‘‘stmt’’ for consistency. Also change
‘‘expression’’ to ‘‘expr’’. A new figure follows:

September 11, 1997 -20- Errata: Compiler Design in C

Figure 3.6.A Parse Tree for1+2*(3+4)+5;

stmt

expr

;

expr term

term

factor

1

+

* factorterm

2

factor (expr)

+ termexpr

3

factor

term

4

factor

expr

+

5

factor

term

1

2

3

4 5

6

7

8 9

10

11

12

13

14 15

16

17

18

19 20

21

22

23 24

25

26

27

28 29

30

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
__

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L__

Page 183- Display at bottom of page. Remove the exclamation point. The expression
should read:

expr′ → + term{op(’+’);} expr′

Page 186- Figure 3.8. Change caption to ‘‘Augmented parse tree for1+2+3; ’’ and
change ‘‘statements’’ to ‘‘stmt’’. A new figure follows:

September 11, 1997 -21- Errata: Compiler Design in C

Figure 3.8.Augmented Parse Tree for1+2+3;

+15 term21 {op("+");} 22

factor18 term′20

ε19

{op("+");} 14term13+7

expr′26

expr′25

expr′24

term6

expr27 stmt30

stmt31

{create_tmp(yytext);} 17
(3)

num16

num8
(2)

{create_tmp(yytext);} 9ε11

term′12factor10

factor3 term′5

ε4{create_tmp(yytext);} 2
(1)

num1

;28

ε29

ε23

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
__

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L__

Page 188- The caption for Listing 3.4 should say ‘‘Inherited’’ (not ‘‘Synthesized’’)
"Attributes." A replacement caption follows:

Listing 3.4. naive.c— Code Generation with Inherited Attributes

L
L
__

L
L__

Page 190- First three lines beneath the figure (which start ‘‘right-hand side’’) should
read:

right-hand side of the production, as if they were used in the subroutine. For example,
say that an attribute,t , represents a temporary variable name, and it is attached to an
expr; it is represented like this in the subroutine representing theexpr:

Page 196- Figure 4.1. both instances of the word ‘‘number’’ should be in boldface.

number number

Page 208- Third and eighth lines change ‘‘automata’’ to ‘‘automaton’’. Replacement
lines:

solution is a push-down automaton in which a state machine controls the activity on the ‘
‘

The tables for the push-down automaton used by the parser are relatively straightfor-
‘ ‘

September 11, 1997 -22- Errata: Compiler Design in C

Page 210- Figure 4.6,Yy_d[factor][LP] should be "9," not "8."
9

Page 213- First Paragraph, addSEMICOLON to the list on the third line. A replace-
ment paragraph follows.
Production 1 is applied if astatementis on top of the stack and the input symbol is an
OPEN_CURLY. Similarly, Production 2 is applied when astatementis on top of the
stack and the input symbol is anOPEN_PAREN, NUMBER , SEMICOLON , or IDEN-
TIFIER (an OPEN_PAREN because anexpressioncan start with anOPEN_PAREN
by Production 3, aNUMBER or IDENTIFIER because anexpressioncan start with a
term,which can, in turn, start with aNUMBER or IDENTIFIER . The situation is com-
plicated when anexpressionis on top of the stack, however. You can use the same rules
as before to figure out whether to apply Productions 3 or 4, but what about theε produc-
tion (Production 5)? The situation is resolved by looking at the symbols that can follow______
anexpressionin the grammar. Ifexpressiongoes toε, it effectively disappears from the
current derivation (from the parse tree)—it becomes transparent. So, if anexpressionis
on top of the stack, apply Production 5 if the current lookahead symbol can follow______ an
expression(if it is a CLOSE_CURLY, CLOSE_PAREN, or SEMICOLON). In this
last situation, there would be serious problems ifCLOSE_CURLY could also start an
expression. The grammar would not be LL(1) were this the case.

Page 213- Last six lines should be replaced with the following seven lines.

ones. Initially, add those terminals that are at the far left of a right-hand side:

FIRST(stmt) = { }
FIRST(expr) = {ε}
FIRST(expr′) = {PLUS, ε}
FIRST(term) = { }
FIRST(term′) = {TIMES , ε}
FIRST(factor) = {LEFT_PAREN , NUMBER }

Page 214- Remove the first line beneath Table 4.14 [which starts ‘FIRST(factor)’’].

Page 214- Table 4.13, item (3), third line. Replace ‘is are’’ with ‘are.’’ A replacement
table follows:

September 11, 1997 -23- Errata: Compiler Design in C

Table 3.3.Finding FIRST Sets__
FIRST(A), whereA is a terminal symbol, is {A}. If A is ε, thenε is put into the FIRST set.(1)
Given a production of the form

s→ A α
wheres is a nonterminal symbol,A is a terminal symbol, andα is a collection of zero or more ter-
minals and nonterminals,A is a member of FIRST(s).

(2)

Given a production of the form

s→ b α
wheres andb are single nonterminal symbols, andα is a collection of terminals and nontermi-
nals, everything in FIRST(b) is also in FIRST(s) .

This rule can be generalized. Given a production of the form:

s→α B β
wheres is a nonterminal symbol,α is a collection of zero or more nullable_______ nonterminals,†B is a
single terminal or nonterminal symbol, andβ is a collection of terminals and nonterminals, then
FIRST(s) includes the union of FIRST(B) and FIRST(α). For example, ifα consists of the three
nullable nonterminalsx, y, andz, then FIRST(s) includes all the members of FIRST(x), FIRST(y),
and FIRST(z), along with everything in FIRST(B).

(3)

__
† A nonterminal is nullable if it can go toε by some derivation.ε is always a member of a nullable
nonterminal’s FIRST set.__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Page 214- This is a change that comes under the ‘‘should be explained better’’ category
and probably won’t make it into the book until the second edition. It confuses the issue a
bit to putε into the FIRST set, as per rule (1) in Table 4.13. (In fact, you could argue that
it shouldn’t be there at all.) I’ve putε into the FIRST sets because its presence makes it
easier to see if a production is nullable (it is ifε is in the FIRST set). On the other hand,
you don’t have to transfer theε to the FOLLOW set when you apply the rules in Table
4.15 becauseε serves no useful purpose in the FOLLOW set. Consequently,ε doesn’t
appear in any of the FOLLOW sets that are derived on pages 215 and 216.

Page 214- Bottom line and top of next page. Addε to FIRST(expr), FIRST(expr′), and
FIRST(term′). A replacement display, which replaces the bottom two lines of page 214
and the top four lines of page 215, follows:

FIRST(stmt) = {LEFT_PAREN , NUMBER , SEMI }
FIRST(expr) = {LEFT_PAREN , NUMBER , ε}
FIRST(expr′) = {PLUS, ε}
FIRST(term) = {LEFT_PAREN , NUMBER }
FIRST(term′) = {TIMES , ε}
FIRST(factor) = {LEFT_PAREN , NUMBER }

Page 216- Add the following sentence to the end of item (2):

Note that, sinceε serves no useful purpose in a FOLLOW set, it does not have to be
transfered from the FIRST to the FOLLOW set when the current rule is applied. A
replacement table follows:

September 11, 1997 -24- Errata: Compiler Design in C

Table 3.4.Finding FOLLOW Sets__
If s is the goal symbol, eoi (the end-of-input marker) is in FOLLOW(s);(1)
Given a production of the form:

s→. . .a B. . .

wherea is a nonterminal andB is either a terminal or nonterminal, FIRST(B) is in FOLLOW(a);
To generalize further, given a production of the form:

s→. . .a α B. . .

wheres anda are nonterminals,α is a collection of zero or more nullable nonterminals andB is
either a terminal or nonterminal. FOLLOW(a) includes the union of FIRST(α) and FIRST(B).
Note that, sinceε serves no useful purpose in a FOLLOW set, it does not have to be transfered
from the FIRST to the FOLLOW set when the current rule is applied.

(2)

Given a production of the form:

s→. . . a

where a is the rightmost nonterminal on the right-hand side of a production, everything in
FOLLOW(s) is also in FOLLOW(a). (I’ll describe how this works in a moment.) To generalize
further, given a production of the form:

s→. . . a α
wheres and a are nonterminals, andα is a collection of zero or more nullable nonterminals,
everything in FOLLOW(s) is also in FOLLOW(a).

(3)

__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Page 217- Grammar in the middle of the page. Delete thepk andadmat the right edges
of Productions 1 and 2.

Page 218- Move the last line of page 217 to the top of the current page to eliminate the
orphan.

Page 218- Table 4.16, Replace the table with the following one (I’ve made several small
changes). You may also want to move the widow at the top of the page to beneath the
table while you’re at it.

September 11, 1997 -25- Errata: Compiler Design in C

Table 4.16.Finding LL(1) Selection Sets__
A production isnullable if the entire right-hand side can go toε. This is the case, both when the
right-hand side consists only ofε, and when all symbols on the right-hand side can go toε by
some derivation.

(1)

For nonnullable productions: Given a production of the form

s→α B. . .

wheres is a nonterminal,α is a collection of one or more nullable nonterminals, andB is either a
terminal or a nonnullable nonterminal (one that can’t go toε) followed by any number of addi-
tional symbols: the LL(1) select set for that production is the union of FIRST(α) and FIRST(B).
That is, it’s the union of the FIRST sets for every nonterminal inα plus FIRST(B). If α doesn’t
exist (there are no nullable nonterminals to the left ofB), then SELECT(s)=FIRST(B).

(2)

For nullable productions: Given a production of the form

s→α
wheres is a nonterminal andα is a collection of zero or more nullable nonterminals (it can beε):
the LL(1) select set for that production is the union of FIRST(α) and FOLLOW(s). In plain
words: if a production is nullable, it can be transparent—it can disappear entirely in some deriva-
tion (be replaced by an empty string). Consequently, if the production is transparent, you have to
look through it to the symbols that can follow it to determine whether it can be applied in a given
situation.

(3)

__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Page 223- Replace the last two lines on the page as follows:
Ambiguous productions, such as those that have more than one occurrence of a given
nonterminal on their right-hand side, cause problems in a grammar because a unique
parse tree is not generated for a given input. As we’ve seen, left factoring can be used to

Page 224- The sentence on lines 13 and 14 (which starts with ‘‘If an ambiguous’’)
should read as follows:

If an ambiguous right-hand side is one of several, then all of these right-hand sides
must move as part of the substitution. For example, given:

Page 228- 8th line from the bottom, the ‘‘Y’’ in ‘‘You’’ should be in lower case.

you can use a corner substitution to make the grammar self-recursive, replacing the ‘
‘

Page 222- First line of text should read ‘‘Figures 4.5 and 4.6’’ rather than ‘‘Figure 4.6’’
A replacement paragraph follows:
4.5 are identical in content to the ones pictured in Figures 4.5 and 4.6 on page 210. Note
that theYyd table on lines 179 to 184 is not compressed because this output file was gen-
erated with the−f switch active. Were−f not specified, the tables would be pair
compressed, as is described in Chapter Two. Theyy_act() subroutine on lines 199 to
234 contains theswitch that holds the action code. Note that$ references have been
translated to explicit value-stack references (Yy_vsp is the value-stack pointer). The
Yy_synch array on lines 243 to 248 is a−1-terminated array of the synchronization
tokens specified in the%synch directive.

September 11, 1997 -26- Errata: Compiler Design in C

Page 237- The loop control on line 377 of Listing 4.6 won’t work reliably in the 8086
medium or compact models. Replace lines 372−384 with the following:

372 int nterms; /* # of terms in the production */
373 start = Yy_pushtab[production];
374 for (end = start; *end; ++end) /* After loop, end is positioned */
375 ; /* to right of last valid symbol */
376 count = sizeof (buf);
377 *buf = ’\0’;
378 for (nterms = end - start; --nterms >= 0 && coun t > 0 ;) /* Assemble */
379 { /* string. */
380 strncat(buf, yy_sym(*--end), count);
381 if ((count -= strlen(yy_sym(*end) + 1)) < 1)
382 break ;
383 strncat(buf, " ", --count);
384 }

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
__

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L__

Page 242- Pieces of the section heading for Section 4.9.2 are in the wrong font, and the
last two lines are messed up. Replace with the following:

4.9.2 Occs and LLama Debugging Support— yydebug.c

This section discusses the debug-mode support routines used by the llama-generated
parser in the previous section. The same routines are used by the occs-generated parser
discussed in the next chapter. You should be familiar with the interface to thecurses,
window-management functions described in Appendix A before continuing.

Page 255- Fourth line beneath the listing (starting with ‘‘teractive mode’’), replace
comma following the close parenthesis with a period. The line should read:

teractive mode (initiated with ann command). In this case, a speedometer readout that ‘
‘

Page 271-303- Odd numbered pages. Remove all tildes from the running heads.

Page 274- Add the statementlooking_for_brace = 0; between lines 179 and 180.
Do it by replacing lines 180−190 with the following:

180 looking_for_brace = 0;
181 }
182 else
183 {
184 if (c == ’%’) looking_for_brace = 1;
185 else output("%c", c);
186 }
187 }
188 }
189 return CODE_BLOCK;
190 }

L
L
L
L
L
L
L
L
L
L
L
L
L
__

L
L
L
L
L
L
L
L
L
L
L
L
L__

September 11, 1997 -27- Errata: Compiler Design in C

Page 278- Fifth line from bottom. Replace{create_tmp(yytext);} with the follow-
ing (to get the example to agree with Figure 4.9):

{rvalue(yytext);}

Page 282- The last paragraph should read as follows (the Listing and Table numbers
are wrong):

The recursive-descent parser for LLama is in Listing 4.25. It is a straightforward
representation of the grammar in Table 4.19.

Page 312- Listing 4.30. Replace lines 60 to 63 with the following:

60 PRIVATE int *Dtran; /* Internal representation of the parse table.
61 * Initialization in make_yy_dtran() assumes
62 * that it is an int [it calls memiset()].
63 */

L
L
L
L
L
L
__

L
L
L
L
L
L__

Page 315- Listing 4.30. Replace lines 231 to 240 with the following:

231 nterms = USED_TERMS + 1; /* +1 for EOI */
232 nnonterms = USED_NONTERMS;
233
234 i = nterms * nnonterms; /* Number of cells in array */
235
236 if (!(Dtran = (int *) malloc(i * sizeof (*Dtran)))) /* number of bytes */
237 ferr("Out of memory\n");
238
239 memiset(Dtran, -1, i); /* Initialize Dtran to all failures */
240 ptab(Symtab, fill_row, NULL, 0); /* and fill nonfailure transitions. */

L
L
L
L
L
L
L
L
L
L
L
L
__

L
L
L
L
L
L
L
L
L
L
L
L__

Page 330- Listing 4.34, line 464. Delete everything except the line number.

Page 330- Last two lines of second paragraph should read as follows:
bottom-up parse tables are created, below. Most practical LL(1) grammars are also
LR(1) grammars, but not the other way around.

Page 330- Add the right-hand side ‘‘| NUMBER ’’ to the grammar in exercise 4.5. Also,
align the table in Exercise 4.5 under the text so that it no longer extends into the gutter.

September 11, 1997 -28- Errata: Compiler Design in C

expr → − expr
| * expr
| expr* expr
| expr / expr
| expr= expr
| expr+ expr
| expr− expr
| (expr)
| NUMBER

Page 349- Replace Table 5.5 with the following table:

Table 5.5.Error Recovery for1++2__
Stack Input Comments__

state: −
parse: − 1 + + 2 |- Shift start state

__
state: 0

parse: $
1 + + 2 |- Shift NUM (goto 1)

__
state: 0 1 Reduce by Production 3 (!T→NUM)

parse: $ NUM
+ + 2 |-

(Return to 0, goto 3)__
state: 0 3 Reduce by Production 2 (!E→!T)

parse: $!T
+ + 2 |-

(Return to 0, goto 2)__
state: 0 2

parse: $!E
+ + 2 |- Shift !+ (goto 4)

__
state: 0 2 4 ERROR (no transition in table)

parse: $!E !+
+ 2 |-

Pop one state from stack__
state: 0 2 There is a transition from 2 on !+

parse: $!E
+ 2 |-

Error recovery is successful__
state: 0 2

parse: $!E
+ 2 |- Shift !+ (goto 4)

__
state: 0 2 4

parse: $!E !+
2 |- Shift NUM (goto 1)

__
state: 0 2 4 1

parse: $!E !+ NUM
2 |- Shift NUM (goto 1)

__
state: 0 2 4 1 Reduce by Production 3 (!T→NUM)

parse: $!E !+ NUM
|-

(Return to 4, goto 5)__
state: 0 2 4 5 Reduce by Production 1 (!E→!E!+!T)

parse: $!E !+ !T
|-

(Return to 0, goto 2)__
state: 0 2

parse: $!E
|- Accept

__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Page 360- Figure 5.6. The item immediately below the line in State 7 (ie. the first clo-
sure item) should be changed from !E→.!E!*!F to !T →.!T!*!F

!T → . !T !* !F

September 11, 1997 -29- Errata: Compiler Design in C

Page 361- Third paragraph of section 5.6.2 (which starts ‘‘The FOLLOW’’). Replace
the paragraph with the following one:

The FOLLOW sets for our current grammar are in Table 5.6. Looking at the
shift/reduce conflict in State 4, FOLLOW(!E) doesn’t contain a !*, so the SLR(1) method
works in this case. Similarly, in State 3, FOLLOW(s) doesn’t contain a !+, so
everything’s okay. And finally, in State 10, there is an outgoing edge labeled with a !*,
but FOLLOW(!E) doesn’t contain a !*. Since the FOLLOW sets alone are enough to
resolve the shift/reduce conflicts in all three states, this is indeed an SLR(1) grammar.

Page 361- First paragraph in section 5.6.3 (which starts ‘‘Continuing our quest’’).
Replace the paragraph with the following one:

Many grammars are not as tractable as the current one—it’s likely that a FOLLOW
set will contain symbols that also label an outgoing edge. A closer look at the machine
yields an interesting fact that can be used to solve this difficulty. A nonterminal’s FOL-

Some symbols in
FOLLOW set are not
needed.

LOW set includesall symbols that can follow that nonterminal in every possible context.
The state machine, however, is more limited. You don’t really care which symbols can
follow a nonterminal in every possible case; you care only about those symbols that can
be in the input when you reduce by a production that has that nonterminal on its left-

Lookahead set. hand side. This set of relevant lookahead symbols is typically a subset of the complete
FOLLOW set, and is called thelookahead set.

Page 362- Ninth line from bottom. Delete ‘only.’’ A replacement for this, and the follow-
ing four lines follows:

The process of creating an LR(1) state machine differs from that used to make an
LR(0) machine only in that LR(1) items are created in the closure operation rather than
LR(0) items. The initial item consists of the start production with the dot at the far left
and |- as the lookahead character. In the grammar we’ve been using, it is:

Page 362- Last line. Delete the period. The line should read: x→γ

Page 363- TheC is in the wrong font in both the first marginal note and the first display
(on the third line). It should be in Roman.

[!S→α !. x β, C].

[x→!.γ, FIRST(β C)].

Page 363- Ninth line from bottom. Replace ‘new machine’’ with ‘new states.’’ A replace-
ment paragraph follows:

The process continues in this manner until no more new LR(1) items can be created.
The next states are created as before, adding edges for all symbols to the right of the dot
and moving the dots in the kernel items of the new states. The entire LR(1) state
machine for our grammar is shown in Figure 5.7. I’ve saved space in the Figure by
merging together all items in a state that differ only in lookaheads. The lookaheads for
all such items are shown on a single line in the right column of each state. Figure 5.8

September 11, 1997 -30- Errata: Compiler Design in C

shows how the other closure items in State 0 are derived. Derivations for items in States
2 and 14 of the machine are also shown.

Page 364- Figure 5.7. About 3 inches from the left of the figure and 1 ⁄3
4 inches from the

bottom, a line going from the box marked 2 to a circle with a B in it is currently labeled
‘‘t e f NUM (.’’ Delete thee.

Page 365- The fourth line below Figure 5.7 should read:

best of both worlds. Examining the LR(1) machine in Figure 5.7, you are immediately ‘
‘

Page 365- Figure 5.7 (continued). The upper-case F in the second item of State 16
should be lower case.

!T→ . !T !* !F

Page 366- First and third line under the Figure. The figure numbers are called out
incorrectly in the text. The first three lines beneath the figure should read:

parenthesis first. The outer part of the machine (all of the left half of Figure 5.7 except
States 6 and 9) handles unparenthesized expressions, and the inner part (States 6 and 9,
and all of the right half of Figure 5.7) handles parenthesized subexpressions. The parser
‘ ‘

Page 370- Listing 5.2, line 14. Change the sentence ‘‘Reduce by production n ’’
to read as follows (leave the left part of the line intact):

Reduce by production n, n == -action.

Page 371- Listing 5.2, line 16. Change the sentence ‘‘Shift to state n ’’ to read as
follows (leave the left part of the line intact):

Shift to state n, n == action.

Page 373- Listing 5.4, line 6. Remove theyy in yylookahead . The corrected line looks
like this:

6 do_this = yy_next(Yy_action, state_at_top_of_stack(), lookahead);

L
L
L
__

L
L
L__

Page 373- Listing 5.4, line 29. Changerhs_len to rhs_length . The corrected line
looks like this:

September 11, 1997 -31- Errata: Compiler Design in C

29 while (--rhs_length >= 0) /* pop rhs_length items */

LL
L
__

LL
L__

Page 373- Last line. Change to read as follows (the state number is wrong):

shifts to State 1, where the only legal action is a reduce by Production 6 if the next input
‘ ‘

Page 374- Paragraph beneath table, replace ‘‘you you’’ on third line with ‘‘you’’. Entire
replacement paragraph follows:

There’s one final caveat. You cannot eliminate a single-reduction state if there is a
code-generation action attached to the associated production because the stack will have
one fewer items on it than it should when the action is performed—you won’t be able to
access the attributes correctly. In practice, this limitation is enough of a problem that
occs doesn’t use the technique. In any event, the disambiguating rules discussed in the
next section eliminate many of the single-reduction states because the productions that
cause them are no longer necessary.

Page 387- Listing 5.11, line 107. Add the wordshort . The repaired line looks like this:

107 #define YYF ((YY_TTYPE)((unsigned short)˜0 >>1))

L
L
L
__

L
L
L__

Page 388- Second paragraph, third and fourth lines. Change ‘‘the largest positive
integer’’ to ‘‘to the largest positiveshort int .’’ and remove the following ‘‘I’m.’’ The
repaired lines read as follows:

subroutine,yy_act_next() , which I’ll discuss in a moment.) It evaluates to the largest
positive short int (with two’s complement numbers). Breaking the macro down: ‘
‘

Page 390- Listing 5.12, line 199. Change the sentence ‘‘Reduce by production
n’’ to read as follows (leave the left part of the line intact):

Reduce by production n, n == -action.

Page 390- Listing 5.2, line 201. Change the sentence ‘‘Shift to state n ’’ to read
as follows (leave the left part of the line intact):

Shift to state n, n == action.

Page 397- Replace line 209 of Listing 5.14 with the following:

September 11, 1997 -32- Errata: Compiler Design in C

209 YYD(yycomment("Popping %s from state stack\n", tos);)

LL
L
__

LL
L__

Page 398- Listing 5.14, lines 219−222. Replace with the following code:

219 Yy_vsp = Yy_vstack + (YYMAXDEPTH - yystk_ele(Yy_stack)) ;
220 # ifdef YYDEBUG
221 yystk_p(Yy_dstack) = Yy_dstack +
222 (YYMAXDEPTH - yystk_ele(Yy_stack));

L
L
L
L
L
L
__

L
L
L
L
L
L__

Page 403- The loop control on Line 128 of Listing 5.15 doesn’t work reliably in the
8086 compact or large model. To fix it, replace Line 97 of Listing 5.15 (p. 403) with the
following (and also see change for next page):

97 int i ;

L
L
L
__

L
L
L__

Page 404- Replace line 128 of Listing 5.15 with the following:

128 for (i = (pp - prod->rhs) + 1; --i >= 0; --pp)

L
L
L
__

L
L
L__

Page 425- Lines 585−594. Replace with the following code:

585 if (nclose)
586 {
587 assort(closure_items, nclose, sizeof (ITEM*), item_cmp);
588 nitems = move_eps(cur_state, closure_items, nclose);
589 p = closure_items + nitems;
590 nclose -= nitems ;
591
592 if (Verbos e > 1)
593 pclosure(cur_state, p, nclose);
594 }

L
L
L
L
L
L
L
L
L
L
L
L
__

L
L
L
L
L
L
L
L
L
L
L
L__

Page 440- Listing 5.33, replace the code on lines 1435 to 1438 with the following (be
sure that the quote marks on the left remain aligned with previous lines):

September 11, 1997 -33- Errata: Compiler Design in C

1435 " action < 0 -- Reduce by production n, n == -action.",
1436 " action == 0 -- Accept. (ie. Reduce by production 0.)",
1437 " action > 0 -- Shift to state n, n == action.",
1438 " action == YYF -- error.",

LL
L
L
L
L
__

LL
L
L
L
L__

Page 447- Line 14. Change "hardly every maps" to "hardly ever maps". The line should
read:

ideal machine hardly ever maps to a real machine in an efficient way, so the generated ‘
‘

Page 452- First line below Listing 6.2. Change ‘‘2048’’ to ‘‘1024’’. Line should read:

In addition to the register set, there is a 1024-element, 32-bit wide stack, and two ‘
‘

Page 453- Figure 6.1. Around the middle of the figure. Change ‘‘2048’’ to ‘‘1024’’.
Line should read:

1,024
32-bit
lwords

Page 466- Listing 6.11, lines 53 and 54, changesp to_ _sp (two underscores).

53 #define push(n) (--_ _sp)->l = (lword)(n)
54 #define pop(t) (t)((_ _sp++)->l)

L
L
L
L
__

L
L
L
L__

Page 471- Ninth line. Replace withfp+4 with fp+16 . Replace the last four lines of the
paragraph with the following lines:
call() subroutine modifieswild , it just modifies the memory location atfp+16 , and on
the incorrect stack, ends up modifying the return address of the calling function. This
means thatcall() could work correctly, as could the calling function, but the program
would blow up when the calling function returned.

Page 475- Listing 6.19, Line 80. Replace the first(b) with a (s) . The line should now
read:

80 #define BIT(b,s) if ((s) & (1 << (b)))

L
L
L
__

L
L
L__

Page 486- Replace last line of first paragraph (which now reads ‘6.10’’) with the follow-
ing:
6.11.

September 11, 1997 -34- Errata: Compiler Design in C

Page 494- Listing 6.25, replace lines 129−142 with the following:

129 #define IS_SPECIFIER(p) ((p) && (p)->class==SPECIFIER)
130 #define IS_DECLARATOR(p) ((p) && (p)->class==DECLARATOR)
131 #define IS_ARRAY(p) ((p) && (p)->class==DECLARATOR && (p)->DCL_TYPE==ARRAY)
132 #define IS_POINTER(p) ((p) && (p)->class==DECLARATOR && (p)->DCL_TYPE==POINTER)
133 #define IS_FUNCT(p) ((p) && (p)->class==DECLARATOR && (p)->DCL_TYPE==FUNCTION)
134 #define IS_STRUCT(p) ((p) && (p)->class==SPECIFIER && (p)->NOUN == STRUCTURE)
135 #define IS_LABEL(p) ((p) && (p)->class==SPECIFIER && (p)->NOUN == LABEL)
136
137 #define IS_CHAR(p) ((p) && (p)->class == SPECIFIER && (p)->NOUN == CHAR)
138 #define IS_INT(p) ((p) && (p)->class == SPECIFIER && (p)->NOUN == INT)
139 #define IS_UINT(p) (IS_INT(p) && (p)->UNSIGNED)
140 #define IS_LONG(p) (IS_INT(p) && (p)->LONG)
141 #define IS_ULONG(p) (IS_INT(p) && (p)->LONG && (p)->UNSIGNED)
142 #define IS_UNSIGNED(p) ((p) && (p)->UNSIGNED)

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
__

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L__

Page 496- Figure 6.13. All of thelink structures that are labeledSPECIFIER should be
labeledDECLARATORand vice versa. The corrected figure follows:

September 11, 1997 -35- Errata: Compiler Design in C

Figure 6.13.Representing a Structure in the Symbol Table

Symbol_tab

•

STRUCT
FIXED
0
0

NULL

name

type
next

"gipsy"

symbol:

•

•Struct_tab

• "argotiers"

•

•

•

•

•

"pstruct"

•

•

• •

POINTER FUNCTION

INT

0
0
FIXED

0

"Clopin"
0

"Mathias"

"Guillaume"

"Pierre"

4

44

48

•
•

ARRAY
5 FLOAT

1
1
0

−

NULL

•

POINTER

•

STRUCT
−
0
0

•

•

•
0
0
−
STRUCT

NULL

NULL

structdef:

fields

tag

symbol

next
type

level
name

select:

SPECIFIER

link:

next
class

value
_unsigned

is_long
class

noun

select:

SPECIFIER

link:

next
class

value
_unsigned

is_long
class

noun

symbol

next
type

level
name

select:

SPECIFIER

link:

next
class

value
_unsigned

is_long
class

noun

•
NULL

NULL

0
a

0
0
−
INT

0

NULL

select

class
next

link:

DECLARATOR

num_ele
class

select

class
next

link:

DECLARATOR

num_ele
class

select

class
next

link:

DECLARATOR

num_ele
class

select:

SPECIFIER

link:

next
class

value
_unsigned

is_long
class

noun
select:

SPECIFIER

link:

next
class

value
_unsigned

is_long
class

noun

select

class
next

link:

DECLARATOR

num_ele
class

select:

SPECIFIER

link:

next
class

value
_unsigned

is_long
class

noun

symbol

next
type

level
name

symbol

next
type

level
name

symbol

next
type

level
name

structdef:

fields

tag

NULL•

to next variable at this level

rname "_gipsy"

size

size 2

52

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
__

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L__

September 11, 1997 -36- Errata: Compiler Design in C

Page 500- First sentence below figure should start ‘‘The subroutine’’

The subroutine in Listing 6.29 manipulates declarators:add_declarator() adds
‘ ‘

Page 503- Listing 6.31, line 281, should read as follows:

281 (p1->DCL_TYPE==ARRAY && (p1->NUM_ELE != p2->NUM_ELE)))

L
L
L
__

L
L
L__

Page 520- Replace line 71 of Listing 6.37 with the following line:

71 (’.’)|(’\\.’)|(’\\{o}({o}{o}?)?’)|(’\\x{h}({h}{h}?)?’) |

L
L
L
__

L
L
L__

Replace line 76 of Listing 6.37 with the following line:

76 ({d}+|{d}+\.{d}*|{d}*\.{d}+)([eE][\-+]?{d}+)?[fF]? return FCON ;

L
L
L
__

L
L
L__

Page 521- Listing 6.37, Lines 138−143. Replace as follows:

138 typedef struct /* Routines to recognize keywords. A table */
139 { /* lookup is used for this purpose in order to */
140 char *name; /* minimize the number of states in the FSM. A */
141 int val; /* KWORD is a single table entry. */
142 }
143 KWORD;

L
L
L
L
L
L
L
L
__

L
L
L
L
L
L
L
L__

Page 524- Second line of last paragraph, remove period afterTYPE and change ‘‘List-
ing 6.38’’ to Listing 6.39. The repaired line should read as follows:

reducestype_specifier→TYPE (on line 229 of Listing 6.39). The associated action ‘
‘

Page 527- First line below Listing 6.40. Change ‘‘Listing 6.40’’ to Listing 6.39. The
repaired line should read as follows:

216 to 217 of Listing 6.39.) There are currently three attributes of interest:$1 and$$ ‘
‘

September 11, 1997 -37- Errata: Compiler Design in C

Page 553- Listing 6.56, line 10. ChangeL0 to (L0*4) .

10 #define T(n) (fp-(L0*4)-(n*4))

L
L
L
__

L
L
L__

Page 556- Listing 6.58, line 539. Change%sto (%s*4)

539 yycode("#define T(n) (fp-(%s*4)-(n*4))\n\n", Vspace);

L
L
L
__

L
L
L__

Page 558- Listing 6.60, lines 578−582. Replace with the following:

578 discard_link_chain(existing->type); /* Replace existing type */
579 existing->type = sym->type; /* chain with the current one. */
580 existing->etype = sym->etype;
581 sym->type = sym->etype = NULL; /* Must be NULL for discard_- */
582 } /* symbol() call, below. */

L
L
L
L
L
L
L
__

L
L
L
L
L
L
L__

Page 558- Listing 6.60, lines 606 and 607.i is not used and the initial offset should be 8.
Replace lines 606 and 607 with the following:

606 int offset = 8; /* First parameter is always at BP(fp+8): */
607 /* 4 for the old fp, 4 for the return address. */

L
L
L
L
__

L
L
L
L__

Page 560- Page 560, Listing 6.61. Replace lines 578−580 with the following:

578 : LC { if (++Nest_lev == 1)
579 loc_reset();
580 }

L
L
L
L
L
__

L
L
L
L
L__

Page 573- Fifth line from the bottom. Insert a period after ‘‘needed’’. The line should
read:
needed. The stack is shrunk with matching additions when the variable is no longer ‘
‘

Page 574- Figure 6.18, theL0 in the#define T(n) should be(L0*4) .

#define T(n) (fp-(L0*4)-(n*4))

September 11, 1997 -38- Errata: Compiler Design in C

Page 578- First paragraph. There’s an incomplete sentence on the first line. Replace
with the following paragraph and add the marginal note:

Marking a stack cell as
‘‘in use’’.

The cell is marked as ‘‘in use’’ on line 73. TheRegion element corresponding to the
first cell of the allocated space is set to the number of stack elements that are being allo-
cated. If more than one stack element is required for the temporary, adjacent cells that
are part of the temporary are filled with a place marker. Other subroutines in Listing
6.64 de-allocate a temporary variable by resetting the equivalentRegion elements to
zero, de-allocate all temporary variables currently in use, and provide access to the
high-water mark. You should take a moment and review them now.

Page 590- Listing 6.69, line 214. Replace with the following:

214 case CHAR: return BYTE_PREFIX;

L
L
L
__

L
L
L__

Page 598- Third paragraph, second line (which starts ‘‘typeint for’’), replace line with
the following one:

type int for the undeclared identifier (on line 62 of Listing 6.72). The ‘
‘

Page 601- First line beneath Listing 6.76. Replace ‘‘generate’’ with ‘‘generated’’:

So far, none of the operators have generated code. With Listing 6.77, we move ‘
‘

Page 607- Listing 6.84, line 328: Change the|| to an&&.

328 if (!IS_INT(offset->type) && !IS_CHAR(offset->type))

L
L
L
__

L
L
L__

Page 608- Fonts are wrong in all three marginal notes. Replace them with the ones
given here.

Operand to * or [] must
be array or pointer.

Attribute synthesized by *

and [] operators.

Rules for forming lvalues
and rvalues when
processing * and [] .

Page 613- First line of last paragraph is garbled. Since the fix affects the entire para-
graph, an entire replacement paragraph follows. Everything that doesn’t fit on page 613
should be put at the top of the next page.

September 11, 1997 -39- Errata: Compiler Design in C

call() Thecall() subroutine at the top of Listing 6.87 generates both thecall instruction
and the code that handles return values and stack clean up. It also takes care of implicit

unary→NAME subroutine declarations on lines 513 to 526. The action inunary→NAME creates asym-

bol of type int for an undeclared identifier, and this symbol eventually ends up here as
the incoming attribute. Thecall() subroutine changes the type to ‘‘function returning
int’’ by adding anotherlink to the head of the type chain. It also clears theimplicit

bit to indicate that the symbol is a legal implicit declaration rather than an undeclared
variable. Finally, a C-codeextern statement is generated for the function.

Page 617- Listing 6.87, line 543. Replacenargs with nargs * SWIDTH .

543 gen("+=%s%d" , "sp", nargs * SWIDTH); /* sp is a byte pointer, */

L
L
L
__

L
L
L__

Page 619- Listing 6.88, line 690. Delete the->name . The repaired line should look like
this:

690 gen("EQ", rvalue($1), "0");

L
L
L
__

L
L
L__

Disk only. Page 619, Listing 6.88. Added semantic-error checking to first (test) clause
in ?: operator. Tests to see if its an integral type. Insert the following between lines 689
and 690:

if (!IS_INT($1->type))
yyerror("Test in ?: must be integral\n");

L
L
L
L
__

L
L
L
L__

Page 619- Listing 6.88. Replace line 709 with the following line:

709 gen("=", $$->name, rvalue($7));

L
L
L
__

L
L
L__

Page 644- Lines 895 and 896. There is a missing double-quote mark on line 895, inser-
tion of which also affects the formatting on line 896. Replace lines 895 and 896 with the
following:

September 11, 1997 -40- Errata: Compiler Design in C

895 gen("goto%s%d", L_BODY, $5);
896 gen(":%s%d", L_INCREMENT, $5);

LL
L
L
__

LL
L
L__

Page 648- Listing 6.107, line 1, change the128 to256 .

1 #define CASE_MAX 256 /* Maximum number of cases in a switch */

L
L
L
__

L
L
L__

Page 649- Listing 6.108. Add the following two lines between lines 950 and 951: (These
lines will not have numbers on them, align the firstp in pop with theg in gen_stab . . . on
the previous line.)

pop(S_brk);
pop(S_brk_label);

L
L
L
L
__

L
L
L
L__

Page 658- First paragraph of section 7.2.1 should be replaced with the following one:

A strength reductionreplaces an operation with a more efficient operation or series
of operations that yield the same result in fewer machine clock cycles. For example,
multiplication by a power of two can be replaced by a left shift, which executes faster on
most machines. (x*8 can be done withx<<3 .) You can divide a positive number by a
power of two with a right shift (x/8 isx>>3 if x is positive) and do a modulus division by
a power of two with a bitwise AND (x%8 isx&7).

Page 671- Figure 7.1, third subfigure from the bottom. In initial printings, the asterisk
that should be at the apex of the tree had dropped down about ⁄1

2 inch. Move it up in
these printings. In later printings, there are two asterisks. Delete the bottom one.

Page 681- Listing A.1, lines 19 and 20 are missing semicolons. Change them to the fol-
lowing:

19 typedef long time_t; /* for the VAX, may have to change this */
20 typedef unsigned size_t; /* for the VAX, may have to change this */

L
L
L
L
__

L
L
L
L__

Page 682- Listing A.1, line 52. Delete all the text on the line, but leave the asterisk at
the far left.

Page 688- 6th line from the bottom. Remove ‘‘though’’ at start of line.

it might introduce an unnecessary conversion if the stack type is anint , short , orchar .
These multiple type conversions will also cause portability problems if the

September 11, 1997 -41- Errata: Compiler Design in C

stack_err() macro evaluates to something that won’t fit into along (like adouble).

Page 690- Last line, ‘‘calling conventions’’ should not be hyphenated.

Page 696- Listing A.4, line 40. The comment is wrong. The line should read as follows:

40 #define _DIFFERENCE 2 /* (x in s1) and (x not in s2) */

L
L
L
__

L
L
L__

Page 702- Listing A.6. Change lines 98−102 to the following:

98 /* Enlarge the set to "need" words, filling in the extra words with zeros.
99 * Print an error message and exit if there’s not enough memory.

100 * Since this routine calls malloc, it’s rather slow and should be
101 * avoided if possible.
102 */

L
L
L
L
L
L
L
__

L
L
L
L
L
L
L__

Page 706- Listing A.8, line 330. Changeunsigned to int :

330 int ssize; /* Number of words in src set */

L
L
L
__

L
L
L__

Page 713- Third line from the bottom. ‘‘nextsym()’’ should be in the Courier font.
Replace the last three lines on the page with the following:

passing the pointer returned fromfind_sym() to nextsym() , which returns either a
pointer to the next object orNULL if there are no such objects. Use it like this:

Page 719- Second line above Listing A.17, change ‘‘tree’’ to ‘‘table’’:

cial cases. Thedelsym() function, which removes an arbitrary node from the table, is
shown in Listing A.17.

Page 722- Listing A.19, line 221. Replace with:

221 return (*User_cmp)((void *)(*p1 + 1), (void *)(*p2 + 1));

L
L
L
__

L
L
L__

Page 729- Listing A.26, line 50. Delete the(two required) at the end of the line.

September 11, 1997 -42- Errata: Compiler Design in C

Page 736- Listing A.33, line 34. Change to the following:

34 PUBLIC void stop_prnt(){}

L
L
L
__

L
L
L__

Page 737- Listing A.33, line 97. Change to the following:

97 char *str, *fmt, *argp;

L
L
L
__

L
L
L__

Page 739- The swap statement in the code in the middle of the page is incorrect.
Here is a replacement display:

int array[ASIZE];
int i, j, temp ;

for (i = 1; i < ASIZE; ++i)
for (j = i-1; j >= 0; --j)
if (array[j] > array[j+1])

swap(array[j], array[j+1]);

Page 743- Listing A.36. Delete the text (but not the line number) on line 4 (which now
says #include <fcntl.h>).

Page 745- Change caption of Listing A.38 to the following:

Listing A.38. memiset.c— Initialize Array of int to Arbitrary Value

L
L
__

L
L__

Page 755- Third line from the bottom. Delete the exclamation point. The line should
read:
images (25×80×2=4,000 bytes for the whole screen), and that much memory may not be
‘ ‘

Page 758- Listing A.45, line 49. Remove the semicolon at the far right of the line.

Page 768- Listing A.61. Remove the exclamation point from the caption.

Page 776- Line above heading for section A.11.2.2. Delete thevoid .

Page 797- Replace Lines 50−59 of Listing A.84 with the following:

September 11, 1997 -43- Errata: Compiler Design in C

50 case ’\b’: if (buf > sbuf)
51 {
52 --buf; wprintw(win, " \b");
53 }
54 else
55 {
56 wprintw(win , " ");
57 putchar(’\007’);
58 }
59 break ;

LL
L
L
L
L
L
L
L
L
L
L
__

LL
L
L
L
L
L
L
L
L
L
L__

Page 803- Just above heading for section B.2. The line should read:

set to 100; otherwise, arg is set to 1.

Page 803- Replace the last paragraph on the page with the following one:

The stack, when the recursive call toerato is active, is shown in Figure B.2. There
is one major difference between these stack frames and C stack frames: the introduction
of a second pointer called thestatic link. Thedynamic linkis the old frame pointer, just
as in C. The static link points, not at the previously active subroutine, but at the parent
subroutine in the nesting sequence—in the declaration. Sinceerato and thalia are
both nested insidecalliope , their static links point atcalliope ’s stack frame. You
can chase down the static links to access the local variables in the outer routine’s ‘
‘

September 11, 1997 -44- Errata: Compiler Design in C

Page 804- Replace Figure B.2 with the following figure.

Figure B.2.Pascal Stack Frames

calliope

polyhymnia

clio

erato

urania

thalia

euterpe

melpomene

return address

dynamic link

static link

static link

dynamic link

return address

terpsichore

return address

dynamic link

static link

•

•

•

•

•

•

static link

dynamic link

return address

terpsichore

urania

erato

1

2

3

fp

.

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
__

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L__

September 11, 1997 -45- Errata: Compiler Design in C

Page 805- Top of the page. Replace the top seven lines (everything up to the paragraph
that begins ‘‘This organization’’) with the following (you’ll have to move the rest of the
text on page 805 down to make room):

stack frame. For example,clio can be accessed fromerato with the following C-code:

r0.pp = WP(fp + 4); /* r0 = static link */
_x = W(r0.pp - 8); /* x = clio */

You can accesspolyhymnia fromerato with:

r0.pp = WP(fp + 4); /* r0 = static link */
_x = W(r0.pp + 8); /* x = clio */

Though it’s not shown this way in the current example, it’s convenient for the frame
pointer to point at the static, rather than the dynamic link to make the foregoing indirec-
tion a little easier to do. The static links can be set up as follows: Assign to each sub-
routine adeclaration level, equivalent to the nesting level at which the subroutine is
declared. Here,calliope is a level 0 subroutine,erato is a level 1 subroutine, and so
forth. Then:

• If a subroutine calls a subroutine at the same level, the static link of the called
subroutine is identical to the static link of the calling subroutine.

• If a subroutine at level N calls a subroutine at levelN+1, the static link of the
called subroutine points at the static link of the calling subroutine.

• If a subroutine calls a subroutine at a lower (more outer) level, use the following
algorithm:

i = the difference in levels between the two subroutines;
p = the static link in the calling subroutine’s stack frame;
while(--i >= 0)

p = *p;

the static link of the called subroutine = p;

Note that the difference in levels (i) can be figured at compile time, but you must chase
down the static links at run time. Since the static link must be initialized by the calling
subroutine (the called subroutine doesn’t know who called it), it is placed beneath the
return address in the stack frame.

Page 806- Change caption and title of Listing C.1 as follows:

Listing C.1. A Summary of the C Grammar in Chapter Six.

L
L
__

L
L__

Page 819- First full paragraph. Replace the ‘‘the the’’ on the fourth line with a single
‘‘the.’’

A replacement paragraph follows:
The ˆ and $

metacharacters.
Theˆ and$ metacharacters work properly in allMS-DOS input modes, regardless of

whether lines end with\r\n or a single\n . Note that the newline is not part of the lex-
eme, even though it must be present for the associated expression to be recognized. Use
and\r\n to put the end of line characters into the lexeme. (The\r is not required in
UNIX applications, in fact it’s an error underUNIX.) Note that, unlike the vi editor̂$
does not match a blank line. You’ll have to use an explicit search such as\r\n\r\n to
find empty lines.

September 11, 1997 -46- Errata: Compiler Design in C

Page 821- Listing D.1, replace lines 14 and 15 with the following:

14 while (yylex())
15 ;

L
L
L
L
__

L
L
L
L__

Page 821- First two lines beneath the listing. Delete both lines and replace with the fol-
lowing text:

LeX andyyleng is adjusted accordingly. Zero is returned at end of file,−1 if the lexeme
is too long.13

Page 821- Replace Footnote 13 at the bottom of the page with the one at the bottom of
the page you are now reading.

Page 828- Listing D.5.; in order to support theul suffix, replace line 16 with the follow-
ing:

16 suffix ([UuLl]|[uU][lL]) /* Suffix in integral numeric constant */

L
L
L
__

L
L
L__

Page 841- Replace the code on the first five lines of Listing E.2 with the following five
lines:

1 %term ID /* an identifier */
2 %term NUM /* a number */
3 %left PLUS /* + */
4 %left STAR /* * */
5 %left LP RP /* (and) */

L
L
L
L
L
L
L
__

L
L
L
L
L
L
L__

Page 843- Paragraph starting -c[N], , 2nd line. Delete ‘‘e’’ in "switche."

Page 860- 15 lines from the bottom. Remove the underscores. The line should read:

is from stack picture six to seven.t0 andt1 were put onto the stack when the rvalues ‘
‘

13 UNIX lex doesn’t return−1 and it doesn’t modify theyytext or yyleng ; it just returns the next input

character.

September 11, 1997 -47- Errata: Compiler Design in C

Page 861- Figure E.5. Remove all underscores. The figure should be replaced with the
following one:

Figure E.5.A Parse of A∗2

LL
L
__

LL
L__

Page 862- Move caption for Listing E.9 to the left. (It should be flush with the left edge
of the box.)

Page 871- Figure E.6. Label the line between States 5 and 7 withSTAR.

STAR

Page 880- Listing E.17, Lines 84 and 85, replace with the following:

84 yycode("public word t0, t1, t2, t3;\n");
85 yycode("public word t4, t5, t6, t7;\n");

L
L
L
L
__

L
L
L
L__

Page 886- Listing E.19. Replace lines 51 to 57 with the following:

51 {0} 512, line 42 : {$1=$2=newname();}
52 {1} 513, line 42 : {freename($0);}
53 {2} 514, line 48 : {$1=$2=newname();}
54 {3} 515, line 4 9 : { yycode("%s+=%s\\n",$$,$0); freename($0); }
55 {4} 516, line 56 : {$1=$2=newname();}
56 {5} 517, line 5 7 : { yycode("%s*=%s\\n",$$,$0); freename($0);}
57 {6} 518, line 6 1 : { yycode("%s=%0.*s\\n",$$,yyleng,yytext); }

L
L
L
L
L
L
L
L
L
__

L
L
L
L
L
L
L
L
L__

Page 887- Listing E.19. Replace lines 46 and 54 with the following:

46 { yycode("%s+=%s\n",$$,$0); freename($0); } expr’

54 { yycode("%s*=%s\n",$$,$0); freename($0); } term’

LL
L
L
L
__

LL
L
L
L__

Page 888- Listing E.19. Replace line 58 with the following:

September 11, 1997 -48- Errata: Compiler Design in C

58 factor : NUM_OR_ID { yycode("%s=%0.*s\n", $$, yyleng, yytext); }

LL
L
__

LL
L__

Disk only. I made several changes to searchen.c (p. 747) to make the returned path
names more consistent (everything’s now mapped to aUNIX-style name). Also added a
disk identifier when running under DOS.

Disk only. Insert the following into the brace-processing code, between lines 115 and
116 of parser.lexon page 273:

if (i == ’\n’ && in_string)
{
lerror(WARNING,

"Newline in string, inserting \"\n");
in_string = 0;
}

L
L
L
L
L
L
L
L
__

L
L
L
L
L
L
L
L__

Disk only. Thedo_unop subroutine on page 604 (Line 177 of Listing 6.79) wasn’t han-
dling incoming constantvalue s correctly and it wasn’t doing any semantic-error check-
ing at all. It’s been replaced by the following code. (Instructions are now generated
only if the incomingvalue isn’t a constant, otherwise the constant value at the end of
thelink chain is just modified by performing the indicated operation at compile time.)

177 value *do_unop(op, val)
178 int op;
179 value *val;
180 {
181 char *op_buf = "=?" ;
182 int i;
183
184 if (op != ’!’) /* ˜ or unary - */
185 {
186 if (!IS_CHAR(val->type) && !IS_INT(val->type))
187 yyerror("Unary operator requires integral argument\n");
188
189 else if (IS_UNSIGNED(val->type) && op == ’-’)
190 yyerror("Minus has no meaning on an unsigned operand\n");
191
192 else if (IS_CONSTANT(val->type))
193 do_unary_const(op, val);
194 else
195 {
196 op_buf[1] = op;
197 gen(op_buf, val->name, val->name);
198 }
199 }
200 else /* ! */
201 {
202 if (IS_AGGREGATE(val->type))
203 yyerror("May not apply ! operator to aggregate type\n");
204

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
__

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L__

September 11, 1997 -49- Errata: Compiler Design in C

Listing 5.10. continued. . .

205 else if (IS_INT_CONSTANT(val->type))
206 do_unary_const(’!’, val);
207 else
208 {
209 gen("EQ", rvalue(val), "0"); /* EQ(x, 0) */
210 gen("goto%s%d", L_TRUE, i = tf_label()); /* goto T000; */
211 val = gen_false_true(i, val); /* fall thru to F */
212 }
213 }
214 return val;
215 }
216 /* -- */
217 do_unary_const(op, val)
218 int op;
219 value *val;
220 {
221 /* Handle unary constants by modifying the constant’s value. */
222
223 link *t = val->type;
224
225 if (IS_INT(t))
226 {
227 switch (op)
228 {
229 case ’˜’: t->V_INT = ˜t->V_INT; break ;
230 case ’-’: t->V_INT = -t->V_INT; break ;
231 case ’!’: t->V_INT = !t->V_INT; break ;
232 }
233 }
234 else if (IS_LONG(t))
235 {
236 switch (op)
237 {
238 case ’˜’: t->V_LONG = ˜t->V_LONG; break ;
239 case ’-’: t->V_LONG = -t->V_LONG; break ;
240 case ’!’: t->V_LONG = !t->V_LONG; break ;
241 }
242 }
243 else
244 yyerror("INTERNAL do_unary_const: unexpected type\n");
245 }

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
__

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L__

Disk only. Page 506, Listing 6.32, lines 453−457: Modified subroutinetype_str() in
file symtab.c to print the value of an integer constant. Replaced the following code:

if (link_p->NOUN != STRUCTURE)
continue ;

else
i = sprintf(buf, " %s", link_p->V_STRUCT->tag ?

link_p->V_STRUCT->tag : "untagged");

with this:

September 11, 1997 -50- Errata: Compiler Design in C

if (link_p->NOUN == STRUCTURE)
i = sprintf(buf, " %s", link_p->V_STRUCT->tag ?

link_p->V_STRUCT->tag : "untagged");

else if (IS_INT(link_p)) sprintf(buf, "=%d", link_p->V_INT);
else if (IS_UINT(link_p)) sprintf(buf, "=%u", link_p->V_UINT);
else if (IS_LONG(link_p)) sprintf(buf, "=%ld",link_p->V_LONG);
else if (IS_ULONG(link_p)) sprintf(buf, "=%lu",link_p->V_ULONG);
else continue ;

Disk only. Page 241, Listing 4.7, lines 586−589 and line 596, and page 399 Listing
5.14, lines 320−323 and line 331. The code in llama.par was not testing correctly for a
NULL return value fromii_ptext() . The problem has been fixed on the disk, but won’t
be fixed in the book until the second edition. The fix looks like this:

if (yytext = (char *) ii_ptext()) /* replaces llama.par lines 586-589 */
{ /* and occs.par, lines 320-323 */

yylineno = ii_plineno() ;
tchar = yytext[yyleng = ii_plength()];
yytext[yyleng] = ’\0’ ;

}
else /* no previous token */
{

yytext = "";
yyleng = yylineno = 0;

}

if (yylineno) /* replaces llama.par, line 596 */
ii_ptext()[ii_plength()] = tchar; /* and occs.par, line 331 */

Disk only. The ii_look() routine (in Listing 2.7 on page 47) doesn’t work in the 8086
large or compact models. The following is ugly, but it works everywhere:

1 int ii_look(n)
2 {
3 /* Return the nth character of lookahead, EOF if you try to look past
4 * end of file, or 0 if you try to look past either end of the buffer.
5 * We have to jump through hoops here to satisfy the ANSI restriction
6 * that a pointer can not go to the left of an array or more than one
7 * cell past the right of an array. If we don’t satisfy this restriction,
8 * then the code won’t work in the 8086 large or compact models. In
9 * the small model---or in any machine without a segmented address

10 * space, you could do a simple comparison to test for overflow:
11 * uchar *p = Next + n;
12 * if(!(Start_buf <= p & & p < End_buf)
13 * overflow
14 */
15
16 if (n > (End_buf-Next)) /* (End_buf-Next) is the # of unread */
17 return Eof_read ? EO F : 0 ; /* chars in the buffer (including */
18 /* the one pointed to by Next). */
19
20 /* The current lookahead character is at Next[0]. The last character */
21 /* read is at Next[-1]. The --n in the following if statement adjusts */
22 /* n so that Next[n] will reference the correct character. */
23

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
__

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L__

September 11, 1997 -51- Errata: Compiler Design in C

Listing 5.11. continued. . .

24 if (--n < -(Next-Start_buf)) /* (Next-Start) is the # of buffered */
25 return 0; /* characters that have been read. */
26
27 return Next[n];
28 }

L
L
L
L
L
L
L
L
__

L
L
L
L
L
L
L
L__

September 11, 1997 -52- Errata: Compiler Design in C

.

This page blank.

September 11, 1997 -53- Errata: Compiler Design in C

.

This page blank.

September 11, 1997 -54- Errata: Compiler Design in C

.

This page blank.

September 11, 1997 -55- Errata: Compiler Design in C

