
Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 1

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

1

Allen I. Holub
Holub Associates

www.holub.com
allen@holub.com

Object-
Oriented
Design

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

2

About Me

• Working in the industry since 1979
• 9 books, hundreds of magazine articles.
• CTO, architect, programmer

– Programmed in Assembler, Pascal, PL/1, C, C++, Java,
Perl, ...

• Consult in all aspects of OO-Design
– Adoption strategy and tactics
– Architecture
– Project mentoring
– Education, not "Training" (Java and OO-Design)

• Teach for University of California, Extension

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

3

The Central Problem

72% of all software
projects fail.

• Standish Group's (www.standishgroup.com) 2000
CHAOS Report, covers the period from 1994-2000

• 40-60% of these failures are caused by lack of design
and requirements gathering.

– The software works, but it doesn't do anything
useful.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 2

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

4

OO Is Not What You Think It Is

• People think that Object Orientation means objects,
classes, design patterns, UML diagrams, Java/C++,
etc.

• They’re wrong.
• OO is all about process.

– Good design cannot happen outside the context of good
process.

– Good programming cannot happen outside the context of
good design.

• We’re going to cover the whole process.
– If that upsets you, you may as well leave now.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

5

Why Do It? (1)

• OO code is much easier to build and
debug than procedural code.

• Typically, the cost of moving an existing
system to OO, no matter how large the
system, is recouped the first time a
significant maintenance issue comes up.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

6

Why Do It? (2)

• OO Systems solve the real problems of
real users.
– OO organization mandates that the program

reflects the actual business model in the
user's mind.

• Every hour spent in design replaces 3
hours of coding/debugging.

• Helps you keep your best employees.
– Once you "get" it, it's actually fun.
– You can be extremely productive in a 40-

hour work week

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 3

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

7

Why not do It? (1)

• Moving to OO typically requires extensive
training of both existing and new staff.
– management training is essential and often omitted.

• OO is really a new way of thinking, difficult to
pick up from a book, so requires lots of
interaction with experts to learn,

• It's rare for a programmer off the street to
understand OO even superficially.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

8

Why not do it? (2)

• Disruption
– The core structure of the software

oganization might have to change

• Some programmers resist the change
so much that there will be no place for
them in the new organization.
– Amongst this group will be the grizzled

gurus who hold the entire program in their
heads, and are unable (or unwilling) to
write English rather than code.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

9

Myths

• OO==A radical shift in thinking
• OO==good
• OO==new (dates from 1967.)
• OO takes longer
• You need certain tools (Rose, Java) to

do OO.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 4

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

10

Realities

• OO requires a radical shift in thinking.
• OO systems are faster to build and are easier to

maintain.
– Bugs in OO systems are localized.

• OO systems are very flexible, easily adaptable to
new business requirements.

• OO systems do what the users want.
• OO processes are for grown ups.

– Fire the “cowboys."

• OO is understood by perhaps 5% of the
programmer population.
– Most claimed OO systems are not in the least bit OO.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

11

Determinism and Complexity

• All large computer programs are
nondeterministic,
– Given an arbitrary set of inputs, it's impossible

to predict the outputs with 100% accuracy.

• So don’t act as if they were.
– Program assuming that nothing works (now or

ever) and that everything will change.

• OO renders complexity manageable, but
doesn’t eliminate it.
– OO systems tend to be larger, more complex,

and vastly easier to maintain than equivalent
procedural systems.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

12

Conway's Law

The structure of a system tends to mirror the
structure of the group producing it.

—Mel Conway (April, 1968 Datamation)

• Introducing a new process requires you to change the
structure of the organization.

• These changes are often both radical and disruptive, but
are often fun and interesting as well.

• If things were working great the way they are, you
wouldn't be looking at alternative methodology, would
you?

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 5

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

13

Resistance

• Institutional (turf wars)
– The Directory of QA won't be happy when

the QA department is dispersed amongst
the design teams

• Personal
– OO isn't "right"
– I won't be an expert any more.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

14

Correcting Some Common
Misconceptions

• Design is about communication, not
coding.

• Collaboration ≠ negotiation

• Documentation ≠ Understanding

• Discipline ≠ Formality

• Process ≠ Skill

• Experience/Knowledge ≠ Effectiveness

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

15

Good Designs Provide the Minimal (Least
Costly) Solution.

• Do exactly what’s required. Nothing
more. Nothing less.

• Solve the user's problem. Period.
• But design the system to be flexible

enough to accept change.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 6

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

16

Written Communication Is
Ineffective

• In order of effectiveness: (Cochburn)

1.Two people at a white board
2.Phone conversation
3.Email
4.Video Tape of someone at a whiteboard
5.Audio Tape of someone at a whiteboard
6.Paper

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

17

Written communication is
ineffective… BUT

• Written artifacts of the design process
are essential parts of the process itself.

• You cannot design (period) unless you
can transcribe your thoughts to paper
with precision.
– Which came first, language or thought?

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

18

Beware the cargo cults

• Process ≠ Artifacts
• Don't confuse the artifacts (UML, Requirements

documents, etc.) with the process itself.
• Simply following a process does not guarantee

good results.
• Simply creating a set of documents does not

mean that you'll create a good program.
• There are such things as bad designs.
• See Steve McConnell's Editorial:

http://computer.org/software/so2000/pdf/s2011.pdf

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 7

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

19

Artifacts Are Unimportant

• The point of design is to think deeply about the
problem, not to produce documents.

• The various artifacts of design (UML, etc.):
– make your thinking concrete.
– help you present that thinking to others and work

collaboratively.
– provide documentation for the finished product.

• It's the act of creating the documents that's
important, not the documents themselves.
– Writing things down clarifies your thinking.

• It doesn't matter if a document changes.
– Changes just mean that you've learned more about the

problem.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

20

Brook’s Law

"Adding manpower to a late software project
makes it later."

• In general, larger groups are less productive.
– The larger the group, the more difficult the

communication.
– There are exceptions when simultaneous parallel

activities can go on:
• testing and coding.
• Drawing on a whiteboard, using a CAD program/CASE

tool.

• See: Fred Brooks, The Mythical Man Month, Anniversary Edition
(Reading: Addison Wesley, 1995).

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

21

No Silver Bullets

• You spend 70% of your time thinking
(more if you don't design).

• The best improvement an automated
process can give you is 30% (unless
you change the way you think).

• E.g. Longs & Forté ($30-$40Million)

Fred Brooks, The Mythical Man Month, Anniversary Edition
(Reading: Addison Wesley, 1995).

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 8

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

22

Programming is Writing

• Properly written, grammatically correct, fully-
formed English is essential.

• "It's trivial" means "I don't understand the
problem fully and can't be bothered to think
about it now."

• If you can't say it in English, you certainly
can't say it in Java.

• The OO process has more to do with formal
linguistic modeling than with traditional
programming.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

23

Tools & Environment

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

24

CASE Tools

• For the most part, not worth the money.
• Round-trip engineering doesn't work.

– Design, code, reverse-engineer …
– Encourages ad-hoc programming with no design work up

front.

• None of them integrate the entire design process.
– Rational Rose is particularly worthless.

• But if you insist:
– MagicDraw (www.magicdraw.com) Java drawing program.

Quirky. Incomplete.
– Together (www.togethersoft.com) has good graphics.
– ArgoUML (www.argouml.org) is free, written in Java, and

just as good as the others.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 9

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

25

Tools I Use

• Bound engineering notebooks.
– U.S. patent law awards the patent to whoever came

up with the idea first. Filing date is irrelevant.

• Sketch pads.
• Giant post-it pads.
• White boards.
• A digital camera & Whiteboard Photo
• ArgoUML if pressed (www.argouml.org)
• A drafting program (Visio, AutoCad) only if

client demands pretty pictures.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

26

Whiteboard Photo (before)

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

27

Whiteboard Photo (after)

• http://www.websterboards.com/products/flash.html

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 10

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

28

The Environment (1)

• A comfortable quiet dedicated design room
is essential:
– Conference rooms don't work
– No telephones.
– Couches.
– LCD Projector for written docs.
– LOTS of white-board.

• Movable ones are great
• Put the boards where the people are. (Halls, break

rooms…)

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

29

The Environment (2)

Gerald McCue, “IBM’s Santa Teresa Laboratory---Architectural Design
for Program Development” (IBM Systems Journal 17:1, pp. 320-341)

get from www.holub.com/goodies/.
Tom DeMarco & Timothy Lister, Peopleware: Productive Projects and

Teams.

• 100 sq. ft./programmer, 30 sq. ft. of desktop.
• Sssssh!

– A 1-second distraction costs 15-minutes of productivity.
– Are people hiding in conference rooms trying to get work done?
– Mute the phones, disable the PA system.

• Natural light (windows) increase productivity
• 4 people per office (all members of the same team).
• A door that closes.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

30

The Environment (3)

• NO CUBES.
• A village: ideal workspaces grow organically,

and are individualized by their residents.
• Irregular shapes are desirable
• Lots of whiteboards, scattered all around.
• Work gets done during casual conversations

(in the hall, in the kitchen making coffee).
• Put whiteboards everywhere people

congregate.
• An outside garden.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 11

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

31

The Room (XP version)

• Dedicated Workstation clusters, not
assigned to individual programmers.

• 2 programmers per workstation!
• Whiteboards around the perimeter.
• Integration system on the side.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

32

Methodology
and

Process

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

33

Management Books

• Adele Goldberg and Kenneth Rubin,
Succeeding with Objects: Decision
Frameworks for Project Management
(Reading: Addison Wesley, 1991).

• Tom Demarco and Timothy Lister Peopleware :
Productive Projects and Teams, 2nd Ed. (New
York, Dorset House, 1999).

• Tom Demarco The Deadline : A Novel About
Project Management (New York, Dorset House,
1997).

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 12

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

34

More Management Books

• Gerald Weinberg, The Psychology of
Computer Programming, Silver
Anniversary Edition (New York, Dorset
House, 1998).

• Alistair Cockburn, Surviving Object-
Oriented Projects: A Manager's Guide
(Reading: Addison Wesley, 1998).

• Steve McConnell, Rapid Development
(ISBN:1556159005)

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

35

Methodology is like Elephant
Repellent

"What's that?"
"Elephant repellent, I just got it for 100
bucks"
"100 bucks, are you crazy? There are
no elephants around here!"
"See, it works!"

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

36

Beware the Methodologists

• In the pursuit of good software,
methodologists usually assume that it
was their methodology that brought
about an improvement.

• They overestimate their own
importance.
– Everyone works better when a high-priced

consultant looks over their shoulder.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 13

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

37

"Software Engineering" Is An Oxymoron

• Building software is a cultural activity.
• Booch equates building software to

playing a game.
• A dance, not a sport. (Participants

cooperate, not compete.)
• The artifacts of the design process are all

primarily communication aids.
• For example: UML is semantic modeling.

– You're doing linguistics, not math.

• Large projects require more process
because communication is more dificult.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

38

Good Software Is Created by Good People.

• OO requires excellent people.
– both design and programming.

• All methodologies require excellent people.
– DeMarco: "Superbly Trained" people

(IEEE Computer 35:6, p. 90)

• 10:1 rule:
– A program that can be put together by 10

excellent programmers will require 100 average
programmers.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

39

They're Not Lying; They're
Clueless.

• Many people use OO technologies procedurally.
– They think they know OO, but they're wrong.
– They'll (honestly) claim OO ability on a résumé.

• Experience with specific technology isn't
meaningful.
– Java, C++, EJB, J2EE, AWT/Swing, Etc., can all be used

procedurally.

• Good designers have strong:
– verbal and written communication skills.
– "people" skills.
– organizational skills and self discipline.
– an ability to think abstractly
– technical abilities

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 14

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

40

Superb "Training"

• It's best to hire smart people, then educate
them.
– "You educate people. You train animals."

• "Superb" training requires
– Education

• You can't learn OO solely from classes and books.
• You must learn from somebody who's done it.

– Mentoring
• You have to do it to "get" it.
• You won't get it right on your own.

– Time
• Good design is as hard to learn as programming.

• Hire a consultant to help.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

41

Good Process is Organic

• Externally imposed processes are usually rejected
within a few months.

• Teams must define their own methodologies.
• Select processes that make sense for your culture.
• Continuously refine your processes.

– Toss the ones that don't work.

• Document your processes.
– change the document as necessary.

• Based on "best practices" with proven track record.
– Steve McConnell, Rapid Development (ISBN:1556159005)

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

42

The Ideal Development Curve

• The solid line is the (achievable) ideal.
• The dashed line is what we're afraid of.
• The only way to flatten the curve is through

good design.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 15

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

43

OOD is a Formal Process

• Cannot do OO in an ad-hoc way, even
for trivial programs.

• Up-front design is critical.
– OO systems are more complex than

procedural ones, but manage the
complexity more effectively.

• Good process does not mean that you'll
have a good program.
– There's such a thing as a bad design.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

44

"Process" Means Many Things

• Heavyweight processes work well when
the entire problem can be full defined
before development begins.
– E.g.: SEI, RUP

• Lightweight processes work well when
the problem definition changes as
development is in progress.
– E.g.: Extreme Programming (XP), Feature

Based design.

• Agile processes are essential when
requirements change.
– Agile ≠light.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

45

OOD Is Done In Teams

• Like Volvo builds cars.
• Brooks/IBM "Surgical-Team" Model

– Chief Architect (surgeon)
– Copilot
– Toolsmith
– Tester (1:1 programmer:tester min.)
– Domain Expert (A real end User)
– Language Lawyer (English and Java)
– Clerical/Drafting support
– Secretary/Document Manger

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 16

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

46

Brooks/IBM: “Producer/Director”

• The director makes the movie.
• The producer makes sure the director

can work.
• Must be equals:

– Same salary.
– Same perks.

• Can't work in a non-collaborative
environment.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

47

Producer/Director (2)

• Product Manager: works for marketing.
Owns the specification and feature set.

• Lead Programmer: works for
engineering. Owns the schedule.

• Project Administrator: works for
operations, facilitates. Owns the
budget.
– Does the laundry, walks the dog, buys the

equipment.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

48

Essential Process Elements

• Think before you code (design)
• Regular code/design inspection
• Adherence to coding standards
• No ownership of pieces of the program
• Automated regression testing
• Incremental development (short cycle

times)
• Document management
• Source-code control

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 17

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

49

SEI Capability Maturity Model

1.Initial chaotic.
2.Repeatable policies for managing software

are established.
3.Defined standard processes in place

across the organization.
4.Managed quantitative goals are set and met.

5.Optimizing focus on process improvement.

You must be operating at SEI level 3 to full
leverage OO design/development.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

50

SEI CMM Is Proven

• CMM is Scalable (PSP/TSP)
– Watts Humphrey, Introduction to the Personal Software

Process (ISBN: 0-201-54809-7).
– Watts Humphrey, Introduction to the Team Software

Process (ISBN: 0-201-47719-X).

• Can be used to formalize "agile" processes:
"When rationally implemented in an appropriate
environment, agile methodologies address many SW-
CMM Level 2 and 3 practices. The ideas in the agile
movement should be carefully considered for adoption
where appropriate..." (Mark Paulk, "Agile Methodologies and
Process dicipline," CrossTalk, Oct. 2002, pp.15-18).

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

51

Putting CMM Into Perspective

• Works well with very large, high-ceremony, low
flexibility projects.
– 318 "best practices" organized into 18 "key" process areas

followed rigorously.
– Mark Paulk et al, The Capability Maturity Model: Guidelines

for Improving the Software Process (ISBN 0-201-54664-7)

• Programmers are "fungible assets."
• Can't handle rapidly-changing requirements.
• Guarantees repeatability, maintainability, on-time

delivery, low defects.
• Does not guarantee that the software does

anything useful.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 18

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

52

So, What Good is SEI?

• The real value is in the activities, not the
ceremony:
– Design before you build (Level 2).
– Standardize tools and languages across the

organization (Level 3).
– Measure what you do, and make decisions

based on these measurements (Level 4).
– Continually refine the processes, throw out

what doesn't work (Level 5).

• Large projects require more ceremony.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

53

Motorola's Experience with SEI
(Defects)

IEEE Software 14:5 (September/October 1997), pp. 75-81.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

54

Motorola's Experience with SEI
(Development Time)

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 19

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

55

Motorola's Experience with SEI
(Overall Productivity)

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

56

The "Unified" Process

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

57

"RUP" isn't Rational

• Call it the "Unified Process"
– Renamed to the "Rational Unified Process" by Rational

Software's marketing department.

• Grady Booch, Ivar Jacobson, and James Rumbaugh
amalgamated several software-development
processes then in common use.
– They cataloged the processes, not invented them.
– The processes described in "RUP" were not developed by

Rational Software.

• No Rational-Software products are required.
– CVS (free) is great for collaborative source-code control.
– Innumerable tools work better than Rose for UML

diagrams, and many of these are free as well.
– Etc.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 20

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

58

The Unified Process is Big

• 4 "phases," 9 core "workflows," 31
"workers," 103 "artifacts," 136 "activites,"
guidelines, ...
– Mix and match from the list to fit the situation.
– Some combination of these describe most

known software methodologies.
• Thus all software methodologies are UP!

• UP is, nonetheless, more flexible and less
formal than the SEI/CMM processes.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

59

UP Best Practices

• Develop Iteratively
• Manage Requirements
• Use Component Architectures
• Model Visually
• Verify Quality
• Control Changes

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

60

The Essentials

• It's not so much "unified," as it is a catalog of
techniques from various processes.
– When two notations/processes were in conflict, both were

incorporated.
• E.g. UML Sequence and Collaboration diagrams represent

identical information in different ways. One came from
Rumbaugh's OMT, the other from the Booth notation.

• No project applies all of the Unified Process.
– Pick the part that works for you.

• We will examine a subset process suitable for
small-to-medium sized teams.
– 1-to-40 programmers

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 21

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

61

UP: Vision

• High-level description of what the
system will do, what problems it solves,
how it will solve them.

• Makes a business case for the software.
• Provides a check on "gold plating."

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

62

The Artifacts of "Vision"

• Glossary (key terms)
• Problem Statement
• Stakeholders/Users and their needs
• Product Features
• Use cases (OO version of "functional

requirements")
• Non-functional requirements
• Design constraints

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

63

"Plan the Flight, Fly the Plan"

• Project Organization, Team Structure
• Schedule

– Project plan, Iteration plan, resources, tools

• Requirements-Management Plan
• Configuration-Management Plan
• Problem-resolution Plan
• QA Plan
• Test Plan

– Formal test cases

• Evaluation Plan
• Product-Acceptance Plan

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 22

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

64

Risk Management

• Identify highest-risk activities early in
the project and address these risks
first.

• List them out on paper, then come up
with a way to address them.
– E.g. The risk that user's will reject the

program because it imposes an unwieldy
process can be mitigated by developing the
activity flow collaboratively with the users.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

65

Issue Management

• Formal "issue" management necessary
only in very-large projects.
– Issues include new risks and how to

address them, management issues,
technical issues.

• Issues are tracked like bugs
– They're assigned numbers, and must be

"retired" within a certain time frame.
– Regularly updated at "status" meetings.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

66

Business Case

• Programmers usually don't "get" the
business case for a program, so they
loose track of what's important and
what isn't.

• Detailed economic plan, covers many
eventualities and scenarios.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 23

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

67

Architecture

• An overall design is essential for
success, though the size and detail level
of design varies with the complexity of
the project.

• I'll discuss the artifacts of the design
process (UML, etc.) in depth, below.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

68

Component Architecture

• The UP folks believe that systems can
be built using course-grained
components.

• The premise is arguable.
– The work that goes into creating a robust

generic component is considerable, and the
risk is high—there's no way to predict if that
component will be reused, or whether it's
capabilities match the requirements of the
next system.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

69

Configuration & Change
Management

• Changes will be requested as soon as
code is released
– Almost immediately if you're doing things

"right."

• Recording requests, either for new
capabilities or fixes for broken ones.
– Not "features."
– You must prioritize requests.
– You must track their development.

• Software version control

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 24

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

70

Support is Part of the Process

• Manuals, etc.
– Should exist before the product is built.

• Reporting
– Must feed back to design/development group.
– It's okay for level-one support to handle RTFM

problems, but if the answer is not in the manual, the
question must go to a real engineer.

• Companies that make it too difficult to get past level-
one support are guaranteeing failure by keeping
essential information from the developers.

– Three categories of problems need to be tracked
• X blows up the program (implementation)
• I need to do X, but it's difficult or frustrating (design)
• I need to do X, but it's impossible. (analysis)

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

71

Agile Processes

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

72

Agile Development (1)

• A set of principles, not a methodology.
• http://www.agilealliance.org/ (Alistair Cockburn,

"Crystal")

• Our highest priority is to satisfy the customer
through early and continuous delivery of valuable
software.
– Deliver working software frequently, from a couple of

weeks to a couple of months, with a preference to the
shorter timescale.

– Working software is the primary measure of progress.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 25

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

73

Agile Development (2)

• Welcome changing requirements, even
late in development. Agile processes
harness change for the customer's
competitive advantage.

• Business people and developers work
together daily throughout the project.

• The most efficient and effective method
of conveying information to and within
a development team is face-to-face
conversation.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

74

Agile Development (3)

• Agile processes promote sustainable
development. The sponsors, developers, and
users should be able to maintain a constant
pace indefinitely.
– 40-hour weeks, mandatory vacations, etc.

• Continuous attention to technical excellence
and good design enhances agility.

• Simplicity—the art of maximizing the amount
of work not done—is essential.
– It's hard to make things simple.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

75

Agile Development (4)

• Build projects around motivated individuals.
– Give them the environment and support they need,

and trust them to get the job done.
– No room for second-string people.

• The best architectures, requirements, and
designs emerge from self-organizing teams.
– Process and team structure is not imposed from

outside.
– Developers are trusted to do their work.

• At regular intervals, the team reflects on how
to become more effective, then tunes and
adjusts its behavior accordingly.
– "Postmortem" (Highsmith: Postpartum).

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 26

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

76

Extreme Programming (XP)

• An example of both Agile and "lightweight" UP.
– Grady Booch, Using the RUP for Small Projects

(http://www.rational.com/media/products/rup/tp183.pdf)

• Goes directly from "use cases" to code
– Design is informal and incremental (design as you code).

• Can easily accommodate changing requirements.
• Lots of good ideas that can be applied to more

rigorous processes.
– Kent Beck, Extreme Programming Explained: Embrace Change

(ISBN: 0201616416).

– IEEE Software 20:3 (May/June 2003), entire issue.
– http://www.extremeprogramming.org

– http://www-106.ibm.com/developerworks/java/library/j-xp/

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

77

The Dark Underbelly of XP

• Often used as an excuse to abandon process
entirely.

• Doesn't scale well to large groups or large programs.
• Fails miserably with undisciplined programmers.

– XP is a formal process built on interrelated best practices.

• 80/20 rule:
– Adopting only 80% of XP yields only 20% of the benefit.

• Provides few design artifacts.
– Long-term maintenance is difficult.
– The only documentation is the code.

• Pete McBreen, Questioning Extreme Programming
(ISBN: 0-201-84457-5).

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

78

XP Options Pricing for Software

• How much money/time will it cost to add it
now?

• How much money/time will it cost to add it
later?

• What's the probability of it actually being
used?
– Is this SWAG (stupid wild-ass guessing)?

• Building a feature that's not used is a waste of
time and money.
– Build exactly what's required; no more; no less.
– But build it in such a way that it can evolve easily

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 27

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

79

The System Metaphor

• A high-level metaphor that describes
what the program does.

• The user's image of the system
– should be reflected in the underlying

structure.

• A good start for a design, but usually
inadequate (IMHO).

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

80

The Planning Game:
Programming to Use Cases

• The "Planning Game."
– Use cases (Beck "stories") identify tasks

that must be performed by a user to solve a
particular problem.

– Plan development based on use-case
dependencies.

– Develop your program one use case at a
time.
• Use cases factored into "activities" that can be

implemented on a two-week cycle by one "pair."

– Daily "stand-up" meetings.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

81

Write the tests first.

• Start by designing the messaging system and
interfaces.

• Write code in terms of the interfaces to see if
the interfaces work.
– If it doesn't, the design has failed the test.
– E.g. Write code that uses the library before you write

the library (to test if the interface to the library is
usable).

• Write "stubs" that allow your test to to compile.
• Fill out the stubs one at a time.
• Test constantly.

– Every 10 minutes.
– After every change.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 28

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

82

Constant Refactoring

• Refactoring: Modify a system to make it better
without changing external behavior.

• Every time you look at a design or code, ask "how
can I improve it?"
– When you see a problem, fix it. NOW!

• You cannot refactor safely (or efficiently) without
automated regression tests.
– If the tests that worked before the change still work, you're

okay.

• XP: design as you code; design changes over time.
– You must refactor to accommodate the new design.

• Reduces code size.
– XP projects typically ½ the size of non-XP projects with

similar functionality.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

83

Simplicity

• Design and build exactly what's required. No
more. No less.
– But do it in a way that permits easy additions.

• Use the simplest (most "transparent") algorithm.
• Simplicity requires more work than complexity.

– The first attempt is always too complicated.
– As the design/code improves, it gets simpler.

• Simpler code is easier to maintain and extend.
• Metrics based on quantity (e.g. lines of code per

day) encourage bad design and unmentionable
code.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

84

Pair Programming
& Collective Ownership

• Two programmers share a single workstation.
– One types.
– One worries.

• Continuous code review lowers the bug count.
• Encourages collective code ownership:

– Everybody works on all the code.
– You can go on vacation without the house falling down.
– No surprises.

• To read further:
– Laurie Williams et al, "Strengthening the Case for Pair

Programming," IEEE Software, July/Aug., 2000, pp. 19–
25.

– Laurie Williams and Robert Kessler. Pair Programming
Illuminated (ISBN 0-201-74576-3).

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 29

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

85

Code to a Standard

• Code must be self documenting:
– transparent structure.
– well-chosen names.
– consistent style.

• Everyone works on all the code.
– Code becomes unreadable without a consistent standard.

• Standard must be developed collaboratively, but
someone must be "in charge" so that silly disputes
can be resolved.
– There is such a thing as a bad standard.

• Many standards are arbitrary. Live with it.
– If you can't follow the standard, you're fired.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

86

On-Site Customer

• An on-site domain expert, ideally an
actual customer or two, is essential.
– Refines requirements on an ongoing basis.
– Improves efficiency.
– Minimizes wasted effort.
– Provides instant feedback and advice.
– Improves the odds that the software will be

useful to someone.

• E.g. Fireman's Fund: 12 best insurance
adjusters reassigned to IT for a year.

• A "customer" can be a group of people.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

87

The 35-40 Hour Week

• Kent Beck:
– "Overtime is a symptom of a serious problem

on the project...If you come in Monday and
say 'To meet our goals, we'll have to work
late again,' then you already have a problem
that can't be solved by working more hours."

– "No one can put in 60 hours a week for many
weeks and still be fresh and creative and
careful and confident."

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 30

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

88

Get it to the User's Quickly

• Two-week release cycle.
• Continuous integration.

– New capabilities added to the code daily.

• Gets code into the user's hands quickly,
so potential design problems are
identified early.

• Uncovers unanticipated requirements.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

89

Detailing A Workable Process

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

90

Analysis Paralysis

• Two main causes:
– Indecision.

• It's not clear what to do, so you discuss endless
possibilities.

– Lack of information.
• It's not clear what the user wants, so you discuss

endless possibilities.

• On-site customers eliminate both
problems by providing answers.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 31

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

91

Delivery Trade-Offs

Quality

TimeCost

Features

Excessive or irrational schedules are
probably the single most destructive
influence in all of software.

–Caspers Jones

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

92

Estimation

• An estimate is a tool, not a bludgeon.
• Irrational estimates increase development time.
• Estimates are not negotiable.

– but feature sets and cost (which affect time) are.

• Use Probabilities:
– We have a 50% chance of delivering by July.

• A Spreadsheet is all you need:

– Multiply similar (future) tasks by velocity

Task Estimate Actual Velocity
Task A 1.5 days 1.6 days 0.0
Task B 3.0 days 6.0 days 2.0
Task C 2.0 days 1.0 days 0.5

...

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

93

Mock-ups and Prototypes

• A Mock-up is an informal throw-away model of
some piece of the program, meant to answer
a question that comes up in design.
– E.g. "is 8-point type readable at this resolution?"

• A Prototype is a partially constructed program.
– E.g. Do I have enough bandwidth for X?

• A program is a continually defined prototype.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 32

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

94

Executable Release

• Our goal is to get working code into the
hands of the users as quickly as possible.

• An executable release is a fully functional
subset of the entire system.
– OO systems are heavily modularized.
– Systems built by "use case" can be made useful

very quickly.
– Executable releases are real, production code,

not throwaway hacks.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

95

The Waterfall Model Doesn't
Work (Never Did Work)

E.g.: Bugs passed
from Test to
Engineering aren't
fixed because
Engineering is too
busy with version 2.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

96

Four Primary Tasks

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 33

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

97

Recursive/Parallel Development

• Pervasive
testing.

• Every step
finds flaws in
the previous
step.

• Constant
refactoring.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

98

Spiral Development

• Two weeks around the spiral (one "cycle").
• "Executable release" to user at end of every cycle.
• Requirements will change with releases.
• Constant refactoring.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

99

1. Learn the Problem Domain

• "Problem Domain:" The area of
expertise in which a problem is
specified.
– E.g.: The problem domain for an accounts-

payable package is "accounting.“

• When designing, you must stay in the
problem domain for as long as possible.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 34

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

100

Communicate

• You must be able to have a
conversation with a domain expert at
the level of an “intelligent layman.”
– If you’re doing an accounting application,

read an “Accounting 101” text or take a
junior-college class in accounting.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

101

Avoid The “Bathroom Effect”

• Suppose we built houses the same way we
build software?

• Puzzled owner: “Where are the bathrooms”
Contractor: “Whadaya mean ‘bathrooms,’

there are no bathrooms in the spec.!”
Angry owner: “Who’d be dumb enough to

build a house without bathrooms? It never
occurred to me to require them.”

• Sometimes, it’s the most obvious (to the user)
functionality that’s not mentioned when
gathering requirements.
– You need to know the domain to find these.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

102

2. Identify User Goals

• What is the user really trying to accomplish?
• Knowing the goals dramatically effects the

entire program.
– BART
– Meeting Scheduler

Alan Cooper, About Face: The Essentials of User Interface Design
(Foster City, IDG Books, 1995).

Joel Spolsky, User Interface Design for Programmers (Berkeley:
Apress, 2001)

emerge from the system
not to go

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 35

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

103

Conflicting Goals are Normal

• Different users often have conflicting
goals.

• E.g.:
• To teach kids to save money (Parent)
• To show how compound interest works

(Parent)
• To keep an accurate accounting of money

earned (Parent).
• To maximize my account balance (Kid).

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

104

3. Working With An End User, Develop The
Problem Statement

• A description of the problem that
needs to be solved and any domain-
level solutions.

• A problem statement is not a
description of a computer program, it
is a description of the problem itself.

• An English essay describing what the
program must do.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

105

Stay in the Problem Domain

• It is essential that the problem statement be
written in the vocabulary of the problem
domain.
– For example, the problem statement for an

accounts-payable package should be defined in the
vocabulary of an accountant, not that of a computer
programmer. If there's any jargon at all, it should be
accounting jargon.

– This means that, at minimum, you'll have to read a
book on accounting before you're qualified to write
an accounting-related problem statement.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 36

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

106

Your Audience is the Domain
Expert

• A well-crafted problem statement does
not mention computers or the behavior
of a specific computer program.

– Since the problem domain is "accounting,"
not "computer programming," Describe the
problem, not the solution.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

107

An Example Problem Statement

The Bank-of-Allen(TM)
One of the best ways to teach kids how to manage money
(and how interest works) is by having a bank account. Real
banks, however, don't pay enough interest to catch a kid's
interest, so to speak. (At a nominal annual rate of 3.5%,
$20.00 earns a big $0.72 after a year—not very
impressive). Taking a cue from a piece I heard on National
Public Radio's "Marketplace," I decided to open the Bank of
AllenTM (or BofA), which pays out an effective 5%/month
(that's right, per month—60% annually), but compounded
daily. At this rate, $20.00 deposited in the Bank of AllenTM

earns $15.91 over a year. The Bank of AllenTM otherwise
works like a real bank. Kids have their own accounts, over
which they have control of everything but the interest rate.
They can look at (or print) their passbooks whenever they
want. They can make deposits and withdrawals...

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

108

4. Identify the Use Cases

• A use case is a stand-alone task that has a
useful outcome.

– Logging on is not a use case.

• The complete set of use cases identify all
tasks necessary to solve all problems defined
in the "Problem Statement."

– Typically, the "boundary" or analysis-level use
cases are the ones that the user thinks about.

– Other use cases define tasks that are performed
internally by the program to implement the
boundary cases.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 37

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

109

Use-Case Factoring

• Large use cases can be "factored" into
smaller ones.
– "Authenticate" might be a "subcase" of

several uses cases, or appear several times
in the same use case.

• Use cases should be factored into
pieces that take no longer than a couple
weeks to implement.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

110

The Essential Parts of a Use Case

• Executive Summary
– What task is being performed.

• Detailed Description
– How the task is performed.

• Scenarios
– How does it "play out" in various situations.

• Register for classes: All classes available
• Register for classes: Some classes are full (wait list)
• Register for classes: Some classes are full (I'm a

senior)

• Activities (UML "Activity Diagram")
– What activities are performed, in what order?

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

111

A Use-case Template (1)

1. Use-case name.
2. "Customer" contact information.
3. Executive summary.
4. Desired outcome.
5. User goals.
6. Participants/roles.
7. Dependencies to other use cases.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 38

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

112

A Use-case Template (2)

8. Preconditions.
9. Inputs (forms, etc.).
10.Scenarios.
11.Activities (UML Activity Diagram).
12.Postconditions.
13.Outputs (reports, etc.).
14.Business rules (domain related).
15.Implementation notes & requirements.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

113

The Use-Case Name

• All use cases should be named.
• Constantine recommends using a gerund

followed by a direct object ("withdrawing
funds" or "examining the passbook").

• convention encourages the use-case name to
succinctly identify the operation being
performed and the object (or subsystem)
that's affected by the operation.

• Names should be user-centric, not system-
centric.
– "making a deposit" (user-centric) versus "accepting

a deposit" (system-centric)

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

114

Customer Contact Information

• One of the more unpleasant experiences I've
had was working with a Marketing guy who
put together use cases based on a fantasy of
what the customer wanted, rather than asking
the customer. It unfortunately didn't occur to
me that his (quite well done) use cases were
created from whole cloth. The result was a lot
of time and money wasted specifying a
product that was of no interest to the
customer whatever.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 39

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

115

Use-case Description

• Describe what the use case is
accomplishing.

• What will the user be doing while
"withdrawing funds" or "examining a
passbook," for example. Go into detail,
but don't describe how the user might
use a computer program.

• Don't mention "the system.”

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

116

Example Description

• A bank customer might make a withdrawal by
filling out a withdrawal slip and presenting the
slip to the teller. The teller then takes the
withdrawal slip to a bank officer for approval.
The bank officer checks the account balance
and issues an approval, etc.
– Note that nowhere in this discussion have I talked

about computer programs, menus, dialog boxes, etc.
These sorts of implementation details are irrelevant
at this level. (Though, of course, you'll need well-
defined implementation details before you can code,
we're not there yet).

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

117

Desired Outcome

• The work of value is performed.
• Describe the outcome here.

– could be a report (in which case you should
include an example of what the report will
look like)

– an event or condition (an employee will now
receive health benefits)

– etc.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 40

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

118

User Goals

• What are the real goals of the user with
respect to the use case?

• Goals are not the same thing as the
use-case description. If the "Desired
Outcome" section describes what the
user hopes to accomplish, the "Goals"
section describes why the user is doing
it.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

119

Roles and Actors

• An actor is a physical human being.
• A role is taken on by the actor.
• A given actor can take on multiple roles

(in the same use case or in different
ones).

– This is Constantine's definition. Jacobson
uses "actor" to mean "role."

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

120

Actors Are External

• Actors are outside the program.
– Actors are hardly ever represented by

objects.
• An object makes a User Interface that is filled in

by the actor. The actor is external.

• The fact that the same physical person
might take on several roles at some
juncture is irrelevant.
– E.g. the employee and manager roles within

a program might be filled by the same
person (actor).

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 41

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

121

Specify Roles in CRC Form

• For each role, we need to establish two critical
pieces of information:
– The responsibilities of actor when in this role. For

example, bank tellers get deposit and withdrawal
requests from customers, and get approvals for
withdrawals from bank officers.

– The actor's collaborators—the roles with which
communication is necessary. For example, a bank teller
collaborates with both the customer and the bank
officer, but the officer never collaborates directly with
the customer.

• Add a Class name, and you have a CRC card,
discussed in more depth below.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

122

Use-Case Dependencies

• Might not exist, but that's unusual
• Various possibilities:

– subset/combines.
– uses/is-used-by (includes).
– precedes/follows.
– requires.
– extends/is-specialization-of.
– resembles.
– equivalent.

• Diagram dependency relationships using a
UML static-model diagram rather than “Use-
Case Diagrams”

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

123

Preconditions

• What assumptions are you making
about the state of the world when the
use case begins?
– For example, customers must have an

account with the bank before they can
withdraw money.

– As a consequence, the "customer opening
an account" use case must have been
performed before the "customer
withdrawing money" use case can be
performed.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 42

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

124

Inputs

• Documents used to do the work. A course
catalog, for example, is necessary to register
for classes. Specify where the documents
come from. (What are their origins?) Was the
document an output from another use case?

• Knowledge required by the actors to perform
their role.

• Skill required by the actors to perform their
role.

• Note that the information gleaned while
executing a use case is not an input to the use
case itself, it's an output.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

125

Scenarios

• Scenarios are small narrative descriptions of
someone working through the use case.

• They describe how a use case might "play out"
in the real world.

• Use a fly-on-the-wall approach: describe what
happens as if you're a fly on the wall
observing the events transpire.

• Keep the scenarios in the problem domain
(talking about how a bank, not a computer
program that simulates a bank, is used):

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

126

Many Scenarios in a Use Case

• Scenarios specify several paths to success.
• E.g. Inside the “sign up for a class” use

case, are:
– I sign up for a class and get in (the “happy

path”).
– I want an elective, but I'm wait listed.

• I'm automatically transferred and notified.

– I'm wait listed for a required class:
• I’m a senior, and the class is required for graduation.

Freshmen in the class are dropped and notified.

• Failure conditions typically aren't scenarios.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 43

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

127

Example Scenario

"Philip needs to make a withdrawal to
buy groceries. He digs out his passbook
from under the 3-foot pile of dirty socks
in the top drawer of his dresser, and
finds that his balance is big enough to
cover what he needs, and he heads off
to the bank..."

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

128

Activities (Workflow)

• Describe the activities that have to be
performed.
– Often the use-case description is sufficient

to describe the flow of work through a
simple use case ("do A, then do B, then do
C").

• Use a UML "Activity Diagram" (next
slide) for complex activities.

• A single Activity Diagram amalgamates
all scenarios of a use cases.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

129

An Activity Diagram

• Specifies flow,
parallelism ("in any
order"), and decision.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 44

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

130

Postconditions

• The state of the world after the use
case executes. (e.g. the account
balance is now lower)

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

131

Outputs

• Documents are created during the
course of the use case.
– The output of our class-registration system

is a schedule of classes, for example.

• Also list where the documents go.
– Who will receive the document? How do you

get it to them? (This last might be a use
case in its own right.)

• Knowledge gained while executing the
use case. What do the actors know now
that they didn't know before they
performed the use case?

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

132

Business Rules

• Domain-level constraints.
– Do not describe the computer program.

• Policies that the business establishes
that might effect the outcome of the
use case.

• For example, "You may not withdraw
more than $20 dollars within a 7-day
period."

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 45

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

133

Implementation Requirements

• Customer-specified behavioral constraints on
the implementation of a system. ("You must
support 10,000 transactions per minute.")

• Note that some things that are called
"requirements" actually aren't. (e.g. UI
design).
– A good test for whether or not a requirement is valid

is to reject any so-called requirement that specifies
up front something that is a natural product of the
design process (UI look and feel, program
organization, etc.). Such "requirements" are just bad
knee-jerk design.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

134

A Digression: Feature Lists

• It's impossible for an OO designer to
work from a list of "features."

• Feature lists tend to be long,
disorganized collections of poorly-
thought-out ideas that some customer
suggested to a salesperson off the top
of their heads.

• If given one, reverse engineer to a
problem statement by asking “why do
you need that feature?”

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

135

Implementation Notes

• Implementation details that naturally
occur to you as you work through the
scenarios and workflow.

• These notes aren't bolted in concrete
– They aren't an implementation

specification; rather, they're details that will
affect implementation and are relevant to
the current use case.

– They will guide, but not control the
implementation-level design.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 46

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

136

5. Design the UI

• A good UI design guides the user through
the activities identified in Use-Case
analysis.
– You can't do a good UI without having done the

use cases.

• Use the UI Design to verify your use cases
• Use the UI to help identify objects/classes.
• An abstract UI is fine here (post-its)

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

137

Do the UI Early (and Often)

• It tells you whether you've successfully
learned the processes from your users.

• Iterate until you get it right.
• Low-Fidelity prototype == High-Fidelity

conceptual model.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

138

Use Cases Specify UI
Organization

• The Activity Diagram in a use case defines the
flow through the UI for that use case.
– The UI and Use Cases are often developed

simultaneously.

• See Larry Constantine and Lucy Lockwood's
Book:

Software for Use: A Practical Guide to the Models
and Methods of Usage-Centered Design
(Reading:Addison Wesley, 1999; www.foruse.com).

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 47

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

139

Good User Interfaces are Dense

• A good UI shows you what the numbers
mean.

• Density ≠ clutter.
– A perfect UI shows you everything you need

to do a task or understand a problem it in a
clear and understandable fashion.

– That’s all it shows you.

• See Edward R. Tufte, The Visual Display
of Quantitative Information (Graphic
Press, 1983)

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

140

An Example of Density

• Napeolean’s March to Moscow (from Tufte)

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

141

Another Dense UI: Tennis-Court
Scheduling

Monday Tuesday Wednesday Thursday

10:00-10:30

10:30-11:00

11:00-11:30

11:30-12:00

12:00-12:30

Reserved by
Fred Smith

email

• Each timeslot represents a map of the six courts.
• Implies that timeslot objects contain court objects.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 48

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

142

Yet Another Dense UI: Amazon

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

143

The UI Must Reflect the User’s
Model: Quicken

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

144

The UI Must Reflect the User’s
Model of the System/Process

• Example from Donald Norman, The Design of
Everyday Things.

Cooler

Cooler

Cooler

high

low
Freezer

high

low
Fridge

high

low
Fridge

high

low
Freezer

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 49

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

145

Bad Metaphors

• File:Save
– Assumes that the user's goal (the default

operation) is to throw away the last three
hour's work.

– The metaphor is self-erasing paper.

• Moving tabs
– The metaphor is cards

magically jumping around in the box.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

146

Assume Competence

• Assume the user is an expert.
• Don't ask twice.

– Do what they ask, but always allow undo.

• No OKAY boxes
– "Formatting hard disk. OKAY?"

Alan Cooper, www.cooper.com

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

147

Ask the User Before You Code

• Users must not
be asked to
make decisions
best made by
programmers.

• Find out what's
best during
analysis.

• If you get it
wrong, refactor.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 50

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

148

Don’t Let The UI Design Guide
The Process

• The UI is a natural artifact of the design
process, not a precursor to it.

• A computer program is not a UI with
intelligent warts hanging off of it.
– The VB model of programming is

fundamentally incorrect.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

149

6. Develop The Dynamic Model

• A set of diagrams (one per use-case
scenario) that show:
– The objects that exist while some scenario

is acted out.
– The messages that these objects send to

one another over time.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

150

Cunningham/Beck CRC Cards

• Class / Responsibility / Collaborators
• Give up the need for global control
• OO Systems are cooperating networks of

peers:
– A program is a conversation between objects of

some class.
– Objects talk only to their collaborators,

requesting operations within their area of
responsibility

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 51

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

151

The Dynamic Model is a
Conversation (1)

• Create CRC Cards.
• Decide on a Use case.
• Assign roles to people and hand them a

CRC card.
– The card is the "class definition." People are

objects.
– Several people might have identical cards if

several objects of the same class participate
in the use case.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

152

The Dynamic Model is a
Conversation (1)

• Solve the problem by talking to other people:
– You can do only those things that are listed as

responsibilities on your CRC card.
– You can only talk to collaborators.
– You cannot give anybody any of the information

that you use to do your work.

• The cards will change as the exercise
progresses.

• The dynamic model is the conversation.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

153

Dynamic Model

• Shows how the program behaves at
runtime as the various scenarios play
out.
– Shows the interactions (messages sent)

between objects, not classes.
– Typically made up of several diagrams,

each showing the objects involved in some
use case and the messages sent between
these objects while executing the task.

– There should be an English description
accompanying each diagram.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 52

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

154

A Dynamic-Model Diagram

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

155

7. While Dynamic Modeling, Capture
Structure in the Static Model.

• A tape recording of the conversation is the the
dynamic model.
– It shows how objects interact at runtime.

• The CRC cards are the static model.
– It shows the relationships between classes.

• The static model is driven by the dynamic
model—it is not created first.
– The static-model diagram captures relationship info found

in the dynamic model (e.g. who talks to whom).
– The CRC cards change to make the conversation possible.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

156

The Static Model

• A static-model (structure) diagram
shows:
– The classes of objects that comprise the

system as a whole.
– The relationships between objects of those

classes.
• who talks to whom and what do they say?

• You cannot create a static model in
isolation.
– It should show only those interactions that

appear in the dynamic model.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 53

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

157

A Static-Model Diagram

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

158

8. Develop The Implementation
Model

• Adds implementation-specific
information to all of the foregoing.

• The problem statement is expanded to
describe the implementation.

• The use cases are expanded to cover
commonplace failure scenarios.

• The static and dynamic models are
expanded to show objects and classes
that are implementation specific.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

159

Design the Database

• Database design is one of the last things
you do.
– Schema must allow you to populate objects

efficiently.
• One table per class mandates too many joins.
• Database often deliberately denormalized (flattened).

– Ad-hoc queries are difficult in a database
optimized for OO.

• Object/Relational mapping is a difficult
problem, not yet solved effectively.
– Automated tools do a miserable job.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 54

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

160

When Are You Done?

• Think “architectural design” (as in
buildings).
– You show where the walls go, but not how to

build a wall.
– Plans for a skyscraper have more details than

those for a house.

• You’re done when a competent programmer
can implement.
– E.g. You would never design the interface to a

stock Java package like Swing.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

161

9. Implement

• Implement one use case, modifying
model as necessary.
– Implementation can start as soon as you

have a well-designed use case
– Implementation and design are often

parallel activities (next slide)

• Incrementally add use cases until your
done, modifying model to reflect new
insights, refactoring to accommodate
modifications.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

162

Staggered Development

• A staggered development model helps when
business rules change (or are discovered) on the
fly.

• Gets working code into the hands of the users
quickly

• Reduces designer fatigue.

Specify
Use-Case 1

Specify
Use-Case 2

Specify
Use-Case 3

Specify
Use-Case 4

Model Use-
Case 1

Model Use-
Case 2

Model Use-
Case 3

Model Use-
Case 4

Implement
Use-Case 1

Implement
Use-Case 2

Implement
Use-Case 3

Implement
Use-Case 4

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 55

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

163

Design and Code Reviews

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

164

Design Review Checklist (1)

• Does the design reflect the problem statement
exactly? (No additions or omissions.)

• Do the use cases solve every problem specified
in the problem statement without
embellishment.

• Does the design realize the user’s goals, even if
those goals were not identified adequately in the
original problem definition?

• Can an average user perform all the use cases
using the UI alone and no manual?

• Does the runtime flow through the UI match the
use-case activity diagrams?

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

165

Design Review Checklist (2)

• Can an expert user read your problem
statement and scenarios without you ever
having to say let me explain that?

• Can an expert user understand the entire design
(problem statement, UI, use cases and activity
diagrams, sequence diagrams, class diagrams)
with you doing nothing but explaining how the
notation works?

• Are the problem statement and use cases
specified entirely in the vocabulary of the
problem domain?

• no computer jargon

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 56

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

166

Design Review Checklist (3)

• Is every class and object name in the model
a legitimate domain term (up to the point
where you start the implementation model)?

• Do associations between classes exist only
when, in some dynamic-model diagram, an
object of one class sends a message to an
object of the other (excluding derivation
associations)?

• Does the set of operations in the static
model exactly mirror the set of messages
used in the dynamic model?

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

167

Design Review Checklist (4)

• Does the name of every object in the
dynamic model appear as a role in the
static model?

• Are the message names sentences
that describe what you’re asking for?

• Messages names must contain verbs!

• Has the design gotten simpler since it
was first conceived?

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

168

Code Review Checklist (1)

• The phrase “let me explain how that
works” is itself a defect.

• Every class and object name in the code
must exactly match the design.
• Object names are roles.
• Message names should not be changed.

• All public methods must appear in a
dynamic-model diagram.

• Method calls in the code must exactly
match the message sequence shown in
the dynamic model?

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 57

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

169

Code Review Checklist (2)

• All messages sent only to objects of the
same class as the sender must be
private.

• All fields are private. Period. No
exceptions. Ever. I mean it! Really.

• When two diagrams show an object
reacting differently to an identical
message, is either an argument to the
method or a previous message (that can
force a state change) present?

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

170

Code Review Checklist (3)

• All identifiers must be words or short
phrases in English.
– The code should pass without errors

through a spell checker to which the Java
documentation has been added as an
exception list.

• The coding style must exactly match
the company style guide, even if you
don’t like it.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

171

Adoption Strategies

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 58

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

172

Pilot Project, Characteristics

• Showcases OO (complicated).
• Well funded and resourced.
• Staffed with top people.

– You’re training project leaders.

• Ideally, an off-site autonomous “skunk
works” project.

• Does not reimplement a legacy system.
• Does not have a fixed delivery date.
• Has an internal customer.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

173

Pilot Project, Considerations

MUST be mentored by an experienced
designer.
– Training is not sufficient. You need experience.
– Typically a consultant.

• In-house experts usually too busy.

It takes a long time to do the first design
and the results are often not ideal. The first
experience you have is that OO is hard to
do.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

174

Or Start with a Design

• Hire an architect to do a complete
design for you.

• Train your staff on how to read (and
implement from) the design documents.

• Have them implement under the
guidance of the architect.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 59

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

175

Starting with a Design,
Considerations

Your project will be better quality, since
it implements a solid design.
The first experience you have with OO
is a good one.

You see how fast the code goes together
and how few bugs there are. People are
then motivated to learn how to design
themselves.

Disadvantage: It takes longer to
develop in-house design expertise.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

176

OO Concepts and Terms

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

177

Principles vs. Maxims

• A principle is an inviolate precept—a
fundamental truth.
– You do not violate your basic principles.
– E.g. "If it exposes implementation, it's not object

oriented. Period."

• A maxim is a “rule of thumb.”
– Goldberg: a guideline that is helpful in making

decisions.
• often broken when the situation requires it, but well

conceived maxims tend to give you better results.
– E.g. An implementation-inheritance hierarchy should

be no more than three levels deep.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 60

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

178

Cohesion

• The similarity (or similarity of purpose)
of the components of a class.
– All elements of a class should be focused

on achieving a common purpose. An
“operating system” class, or a “graphical
subsystem” class would be a bad idea
because of a lack of cohesion.

• Maximize cohesion.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

179

Coupling

• The interdependence of various components of
the system on one another.
– Global variables are a bad idea because the

subroutines that use them are “coupled” to both the
variable and to each other rather strongly. If you
change a subroutine that modifies the variable, all
subroutines that use the variable might have to
change too.

• Minimize Coupling
– A fully reusable class cannot be coupled to other

classes at all (or at least, can be coupled to only a
small number of other classes).

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

180

OO vs. Procedural Thinking

• Procedural: Data flows through the
system, and intelligent agents act on it
as it goes by. The data model is central.

• OO: A network of cooperating agents
ask each other to do work. Data is
hidden and data flow is minimized. The
active behavior of the system is central.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 61

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

181

It's Not the Language, Stupid

"Many people tell the story of the CEO of
a software company who claimed that
his product would be object oriented
because it was written in C++. Some
tell the story without knowing that it is
a joke"

-Adele Goldberg

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

182

OO Structure Is Not Sufficient

• The physical structure of OO systems is
just an implementation detail.

• Simply using OO structural elements
(inheritance, etc.) do not make a
system object oriented.
– “I can program FORTRAN in any language”

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

183

So, What Makes it OO?

• The system is a network of cooperating intelligent
agents, communicating via messages.

• Message-implementation details are unknown to
the users of an object.

• The objects that have the data, do the work on that
data.
– Data is not exported or imported to or from objects.
– Data flow is minimized.

• The system is a model of the user’s notions of the
problem to be solved and the domain-level
solution.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 62

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

184

What is an OO System?

• A network of intelligent agents,
communicating via messages.
– There’s no spider in the middle of the web

pulling the strands.

• An abstract model of the User’s view of
the problem.
– E.g.: Model a bank.

• Customer asks Teller for a Withdrawal Slip and fills it
in.

• Teller takes Withdrawal Slip to a Bank Officer.
• Bank Officer authorizes transaction.
• Teller dispenses money.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

185

Messages

• Request the services of an object by
sending a message to that object.

• The implementation of message passing
varies considerably with the language.

• In Java:
some_object receiver = new Receiver();
receiver.message(args);

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

186

There's no such thing as "data"

• Fallacy: "Suppose you need to represent the
data as a spreadsheet over here, and a graph
over there..."

• Numbers mean something.
• There’s only one optimal UI for making the

meaning clear.
– If there's more than one optimal UI, then

any will do.
• The main attributes of an OO system are

operations, not "data."

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 63

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

187

An Example: Cellular Automata

• The "Game of Life:"
– Each cell has 8 neighbors.
– If 1 or fewer are alive, die from loneliness.
– If 2 exactly, cell remains unchanged.
– If 3 exactly, cell comes alive.
– If 4 or more are alive, die from overcrowding.
– Otherwise, the cell is healthy.

• Cells have behavior, but are black boxes
– implementation of behavior is unknown.

• Each cell is aware of surrounding cells only,
not of program as a whole.

• Each cell can ask neighbor "are you alive?"
• Used in aerodynamics, traffic modeling, etc.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

188

So What is an Object?

• An object is a bundle of capabilities.
– Objects are not data structures + methods.
– Objects communicate by messages, and never

expose their implementation.
• thereby eliminating the rippling effect of a change.

• Objects are defined by what they do, not
what they contain.
– See supplementary notes:

• A String should not export the characters.
• An Employee should not tell you its name.
• An ATM machine should not know your account balance.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

189

Strings Should Not Export
Characters

• Code like this:
Byte[] b = my_string.getBytes();

cannot be internationalized.
– Characters must be represented as bytes.
– Fixing this is very difficult.

• You must find every call and modify all the code that
surrounds the call.

• There's nothing you can return that's
character-set independent.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 64

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

190

Employees Should Not Reveal
Their Identity

• What does getIdentity() return?
– A String?
– A Name Object?
– An employee ID number?
– A picture, thumbprint, retinal scan?
– You shouldn't care.

• Use:
– compare_ID(anId) // compare one ID to another
– export_ID_as_XML() // returns arbitrary XML
– print_name(here) // or identity().print()
– change_name() // creates a user interface
– etc.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

191

OO User Interfaces Do Achieve
Traditional Goals

• OO systems separate UI code from "business logic"
using an abstraction layer—a set of objects that
build a platform-independent UI for you.

• OO systems reduce clutter by hiding even the
abstract code inside low-level objects that have a
"business" purpose. (e.g. Text, Money, etc.).

• See "Building User Interfaces for Object-Oriented
Systems" on www.holub.com/publications/articles.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

192

A Procedural ATM

1. User inserts the card, and punches in his or her PIN.
2. The ATM formulates a query of the form "give me the

PIN associated with this card," sends the query to the
database, and verifies that the returned value matches
the one provided by the user. The ATM sends the PIN to
the server as a string -- part of the SQL query -- but the
returned number is stored in a 16-bit int to make the
comparison easier.

3. The user requests a withdrawal.
4. The ATM formulates another query, this time: "give me

the account balance." It stores the returned balance in a
32-bit float.

5. If the balance is large enough, the machine dispenses
the cash, and then posts an "update the balance for this
user" to the server.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 65

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

193

Difficulties

• You can't change the database.
– explicit: SQL is in the client.
– implicit: code assumes an "account

balance" exists.

• You can't change the algorithm.
– fallback to credit card not supported.

• You can't change currency.
– Consider the euro.
– A 32-bit float won't hold some currencies.
– You have to rewrite the code to sell your

machine in another country.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

194

An OO Solution Models a Bank

• A customer walks into a bank, gets a withdrawal
slip from the teller, and fills it out. The customer
then returns to the teller, identifies himself, and
hands the teller the withdrawal slip. (The teller
verifies that the customer is who he says he his by
consulting the bank records.) The teller then
obtains an authorization from a bank officer and
dispenses the money to the customer.

• Not "what is your balance," but rather "am I
authorized to dispense this money.“

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

195

Some Rules for Objects

• Do not ask an object for the data you need to
do something, ask the object that has the
data to do the work.

• Imagine a program to be a group of intelligent,
polite, and paranoid animals talking to each other
along well-defined communication paths.

• Ease of construction, testing, and maintenance is
inversely proportional to the amount of data that
flows through the system.

• Ease of modification and debugging is inversely
proportional to the number of objects you talk to
and the complexity of the conversation.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 66

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

196

Get/Set functions are EVIL

• The coupling relationships are too strong:
– If you return a field, you can't change that field's type

without also changing all the places where the returned
values are stored.

– If you set a value from outside, you can't change the way
the value is stored without changing all the places where
the value is set.

• Might be okay to return an object.
– getName() is okay when

• it returns a Name object that doesn't expose its implementation
and

• the notion of a name appears in the problem statement. (It's a
"key" abstraction.)

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

197

Objects Must Create Their Own
User Interfaces

• Objects that shun get/set methods must
participate actively in the user interface.

• All OO user interfaces are composites of
smaller UIs provided by the individual
objects represented on the screen.
– Ask: What object makes this part of the UI?

• All UI-building tools make procedural User
Interfaces.
– They will damage the structure of your program if

you use them.
– In Java, it's so easy to build a UI, you don't need

a tool

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

198

Abstraction

• The technique of hiding implementation
details within an object.
– An ANSI-C FILE is a good example.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 67

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

199

Encapsulation

• The containment of one object inside
another in such a way that the presence
of the contained object is unknown to
the outside world.

• It's essential that the state data of the
object be fully encapsulated and not
available in any way.

• All variable fields must be private.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

200

Delegation

• Often, an object that does not know
how to do something will “delegate”
that operation to another object.
– That object could be a collaborator.
– That object could be encapsulated.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

201

Attributes

• A distinguishing characteristic of an
object or class. An attribute serves to
distinguish one class of objects from
another, or one object of a given class
from other objects of the same class.

• An attribute is not a "field."
– e.g. A "salary" attribute might be inferred at

run time from a title or pay-grade field.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 68

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

202

Attributes (2)

• If the object didn't have a particular attribute,
it would not actually be an object of that sort.
– E.g., An "Employee" has a "salary" attribute; without

the salary the class of objects should be called a
"Person" or some such.

– Attributes are not fields.
• A "salary" could be stored as a double, as a fixed-point

number, as an array of binary-coded-decimal bytes, as
a string, as a character array, as a string holding the
SQL you need to get the salary from a database, etc.

• The attribute might not be stored at all — it might be
computed dynamically at run time when needed.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

203

Classes and Classification (1)

• Classification is a means for grouping similar
characteristics or attributes.

• Classes are compile-time things, objects are
runtime things.
– For example, peon’s and managers are employees

and as such will support common capabilities.
Managers have capabilities not supported by all
employees, however, so managers form a subclass
of class employee.

– New behaviors can be added to the subclass without
affecting the superclass.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

204

Classes and Classification (2)

• Objects that have the same set of attributes
are grouped together into a single class of
objects.

• A class is effectively a description of a set of
objects.

• Think “Class of objects”
– “This class of objects can do X”

• A superclass (or base class) defines behavior
shared by all subclasses. (Normalization)

• A subclass (or derived class) adds capabilities
to (extends) or modifies behaviors of the base
class.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 69

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

205

Specialization Relationship

• The derived class is a specialization of
the base class. The base class is a
generalization of the derived class.

• The derived class adds specialized
behavior (an Employee is a
specialization of Person).

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

206

Is-A

• The derived class object IS a base-class
object.

• You don’t have derivation simply
because you can say “is a:”

– Lassie “is a” collie.
– A Collie “is a breed.”
– But Lassie is not a breed, so there’s no

derivation relationship.
• Actually, Lassie is an instance of class Dog, which

has a “breed” attribute, which has the value
“collie.”

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

207

Inheritance

• The flip side of derivation.
• A derived class is said to inherit the capabilities of

the base class. That is, all messages that can be
handled by base class objects can also be handled
by derived-class object.
– The derived-class inherits all the public attributes

(including methods) of the base class. It is a base-class
object.

– Derived-class objects can be passed to methods that
expect base-class objects without difficulty, though the
method cannot safely access any facility added at the
derived-class level.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 70

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

208

Interfaces

• The set of messages that objects use to
communicate with each other.

• A contract that defines a set of methods
that the “implementer” of the interface
must support.
– If you know the interfaces that a class (or

object) supports, then you can send it
messages defined in the interface, even if
you don't know the object's actual type or
class.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

209

Implementation vs. Interface
Inheritance

• Implementation Inheritance (characterized by
is or extends). An implementation is inherited
from the base class.

• Interface Inheritance (characterized by or
implements or supports). The derived class
agrees to implement capabilities defined at the
base-class level but not implemented at the
base-class level.

• Use interface inheritance whenever possible

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

210

Methods and Fields

A class definition is made up of:
• methods: Message-handling functions.

1.The “method” a class of objects use to handle some
request.

2.All objects of the class share the same methods, so
they are attributes of the entire class of objects.

• fields: The data needed by the methods to
remember the object's state.
1.Fields are an implementation detail that should

always be hidden from the user of the class (are
"private").

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 71

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

211

Class and Instance Variables

• A field can contain a value shared by
the entire class of objects (a class
variable)

• Or it can contain a value unique to a
single object of the class (an instance
variable)

• In Java & C++, class variables are
called static fields for some
mysterious reason.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

212

Polymorphism (Abstract
Methods)

• Characterized by "modifies.“
– A derived class modifies the way in which the base class

processes a message.
– derived class effectively replaces a base-class message

handler with a different message handler for the same
message.

• A message, when received by a base-class object is handled
in one way.

• The same message, when received by a derived-class
object, is handled differently, even if the sender thinks it’s
talking to a base-class object.

• A base-class method that can be redefined at the
derived-class level is called virtual or
overrideable.

• The derived-class version is called a virtual
override or just plain override.

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

213

Abstract Methods & Classes

• Abstract classes cannot be “instantiated.”
– Their derived classes can be instantiated
– They can provide implementations of some

methods
• c.f. Interfaces, which cannot provide implementations

• Abstract methods are defined, but not
implemented at the base-class or interface
level.
– They must be implemented by a derived class.

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 72

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

214

Namespaces/Packages

• Organize code to facilitate team development.
• Separates programs into well-defined functional

units
• The class

com.holub.tools.Error_reporter
is not the same as

com.holub.tools.debug.Error_reporter

• Most languages provide an easy-to-use mechanism
to choose a default package:

import com.holub.tools.debbug.Error_reporter;
Error_reporter reporter = new Error_reporter();

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

215

Data Flow

• Maintainability is inversely proportional to the
amount of data that flows through the system.

– Send messages, not data.

• Data that must flow through the system must be
encapsulated.

• Look at an exposed attribute as a way of
splitting a useful interface from an otherwise
"heavyweight" object.

some_employee.print_your_salary();

vs.
some_employee.what_is_your_salary().print();

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

216

A Few Books on OO

• David Taylor, Object-Oriented Technology for the
Manager (Addison Wesley, 1991).

• Erich Gamma, et al Design Patterns: Elements of
Reusable Object-Oriented Software (Addison Wesley,
1995).

• Martin Fowler, Refactoring: Improving the Design
of Existing Code (Addison Wesley, 1999).

• Armour and Miller, Advanced Use-Case Modeling
(Reading: Addison Wesley, 2001).

• Fowler and Scott, UML Distilled: A Brief Guide to
the Standard Object (Addison Wesley, 1999).

• Craig Larman, Applying UML and Patterns, (Prentice
Hall, 1998)

Object-Oriented Design
www.holub.com

© 2003, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE 73

©2003, Allen I. Holub Allen Holub’s OO-Design Workshop
www.holub.com

217

Q&A

Allen Holub
www.holub.com

