
www.holub.com

© 2010, Allen I. Holub. All Rights Reserved. 1

©2010, Allen I. Holub www.holub.com 1

Allen I. Holub
Holub Associates

www.holub.com
allen@holub.com

The Google
Web Toolkit

©2010, Allen I. Holub www.holub.com 2

This Talk

•  The point of this talk is to give you an
overview of GWT suitable for evaluating it.

•  This is not a how-to talk for existing GWT
developers.

•  Hard-core-programming details, examples,
tutorials, etc. are available at:

 http://code.google.com/webtoolkit/

©2010, Allen I. Holub www.holub.com 3

Background

www.holub.com

© 2010, Allen I. Holub. All Rights Reserved. 2

©2010, Allen I. Holub www.holub.com 4

Web 1.0

•  Pull based. All real work is done on the server
–  Server creates and lays out page.
–  Server validates data

•  Must re-serve page if there’s an error.
•  New page often omits previously-entered data

•  All user input must be passed through sever.
–  Entire page is submitted, new page returned.

•  All user interaction must be form based.
•  Slow response times are inherent.
•  Reasonably easy to secure.
•  Inherently procedural.

©2010, Allen I. Holub www.holub.com 5

Web 2.0

•  Client/Server Architecture
–  Most of the U/I work is done client side in JavaScript
–  JavaScript programming is excruciatingly difficult

•  Can be OO
–  Both client-side and server-side objects can exist, and can

communicate with one another.

•  Can be push/pull.
•  Most data validation & collection done client side.

–  UI is much more responsive.

•  Dynamic pages change with user input.
–  Not form based (though it can be).
–  Drag and drop, etc., is easy.

•  More difficult to secure (larger attack surface)

©2010, Allen I. Holub www.holub.com 6

In a nutshell

•  A web 2.0 application is effectively:
– A client-side program, written in JavaScript.
– Uses the server primarily as a data repository
– Communicates with the server frequently

• Uses RPC or equivalent
•  All important user activity is typically reported to

server immediately
•  Validation usually done as soon as field is entered, and

error is reported (or fixed) immediately.
• Many small, lightweight, server requests rather than

large ones.

www.holub.com

© 2010, Allen I. Holub. All Rights Reserved. 3

©2010, Allen I. Holub www.holub.com 7

The Dark Underbelly

The most complicated part of the app,
the part of the app most visible to the user,
the part of the app on which you spend the

most time,

IS WRITTEN IN JAVASCRIPT,

the world’s worst programming language.

©2010, Allen I. Holub www.holub.com 8

High-Level Languages

•  Standard, portable.
•  Focus on the problem, not on the hardware / OS.
•  Language does high-level tasks for you (extensive

libraries).
•  Finds bugs.

•  E.g. Compiler vs. Run-time error

•  Promotes good program organization through
language structure.
•  E.g. Modules, classes

•  Large, platform independent ecosystem
•  E.g. Eclipse

©2010, Allen I. Holub www.holub.com 9

Assembly Languages

•  Machine dependent, not portable.
•  Forces you to worry about machine architecture.

Focus on the language, not the work.
•  Does nothing for you. Libraries are primitive.
•  Does not help find bugs.

–  Language complexity increases bug counts.
–  No static typing & other bug-reduction features.

•  Promotes bad program organization through
language structure.
–  E.g. global variables, goto

•  Hodge-podge of Micky-Mouse vendor-supplied
development tools

www.holub.com

© 2010, Allen I. Holub. All Rights Reserved. 4

©2010, Allen I. Holub www.holub.com 10

Examples

•  High-level Languages
– C++
– C#
– Java

•  Assembly Languages:
– 80x86 assembler, etc.
– C
– JavaScript

©2010, Allen I. Holub www.holub.com 11

Translate Java to JavaScript!

 “If all you have is a hammer, everything
looks like a nail.” - Bernard Baruch

•  Sometimes, though, a hammer is the right
tool!

Ultimate Geeks “Multi-tool Hammer”

©2010, Allen I. Holub www.holub.com 12

Java-to-JavaScript --- Why?

•  Standard development tools work on both
browser & server code (Eclipse)

•  Static type checking, etc., moves bugs to
compile time

•  Good editor support
•  Automated refactoring is possible
•  Testing is easy using standard tools (junit,

log4j)

www.holub.com

© 2010, Allen I. Holub. All Rights Reserved. 5

©2010, Allen I. Holub www.holub.com 13

System is OO front to back.

•  You have a distributed application, with
some server-side objects and some client-
side objects, talking to each other over a
remote-procedure-call mechanism.

•  Solves most of the problems that (over)
complex technologies like JSF and struts try
(unsuccessfully) to solve.

©2010, Allen I. Holub www.holub.com 14

Download From

•  http://code.google.com/webtoolkit/

©2010, Allen I. Holub www.holub.com 15

GWT is …

•  A Java-to-JavaScript compiler.
•  Libraries

–  Widgets
–  JRE Emulations (java.lang, java.util)

•  Jetty-based web-server functionality
–  runs under Eclipse, so you can set server-side

breakpoints.

•  Plugins for all major browsers
–  let you run your client-side code in the browser (Firebug

works), but under Eclipse (so you can set client-side
breakpoints, etc.).

•  An Eclipse plugin for compiling, syntax help, etc.
•  A few minor support tools that let you create

Eclipse projects, etc.

www.holub.com

© 2010, Allen I. Holub. All Rights Reserved. 6

©2010, Allen I. Holub www.holub.com 16

Compatibility (output)

•  Compiled JavaScript runs fine in:
–  IE 7.0+ (IE 6 support is marginal)
– Firefox (all versions)
– Safari (2.x 3.x …)
– Chrome
– Opera

•  Native widgets used.
•  CSS is browser dependent

– HTML5/CSS3 works

•  Server side is Java servlet
– optional

©2010, Allen I. Holub www.holub.com 17

Compatibility (input)

•  Windows, Linux, Mac OS X
•  Java 1.6

–  Including generics, for(x:y), etc.

•  byte, char, short, int, long, float, double, String
–  Some methods of String class are missing.
–  JavaScript regular exception syntax is used.
–  No strictfp

•  try/catch/finally supported
•  No synchronization, reflection, finalization
•  No serialization

–  but can send/return objects in RPC.

©2010, Allen I. Holub www.holub.com 18

Library Support

•  java.lang
– Object, String, Exception

•  Some methods of String are missing.

•  java.util
– ArrayList, Arrays, Collections, Data, HashMap,

HashSet, Stack, Vector, Iterator, & associated
interfaces and Exceptions.

– Fully<paramaterized>

•  java.io.Serializable

www.holub.com

© 2010, Allen I. Holub. All Rights Reserved. 7

©2010, Allen I. Holub www.holub.com 19

Create a Project

Use create-GWT-project button in Eclipse, or manually:
~/Foo> projectCreator -ant Foo -eclipse Foo create Eclipse project

 Created directory src
 Created directory test
 Created file Foo.ant.xml
 Created file .project
 Created file .classpath
 create skeleton application

 ~/Foo> applicationCreator -eclipse Foo com.example.foo.client.Foo
 Created directory src/com/example/foo/client
 Created directory src/com/example/foo/public
 Created file src/com/example/foo/Foo.gwt.xml
 Created file src/com/example/foo/public/Foo.html
 Created file src/com/example/foo/client/Foo.java
 Created file Foo.launch
 Created file Foo-shell launch in hosted mode
 Created file Foo-compile create final (compiled) ver.

©2010, Allen I. Holub www.holub.com 20

Uses Standard War Layout

•  /myproject
•  /myproject/src (sources go here)
•  /myproject/war (can use jar to distribute)

 MyProject.html (root page for your app)
 MyProject.css

•  /myproject/war/WEB-INF
–  classes/ (compiler puts output here)
–  lib/ (you put .jar files that you need here)
– web.xml (standard servlet config)

©2010, Allen I. Holub www.holub.com 21

Project Structure

•  Directory/package structure is proscribed
–  …/src

•  Files in this directory will be in (server-side) application class path.
–  …/src/com/holub/myApp (com.holub.myApp)

•  “Module” XML files have to go here
–  …/src/com/holub/myApp/client (com.holub.myApp.client)

•  Client-side classes (and shared client-sever classes such as
constant definitions) go here or in subpackages.

–  …/src/com/holub/myApp/server (com.holub.myApp.server)
•  Server-side classes go here
•  May use classes in client-side packages

–  …/src/com/holub/myApp/public
•  static resources (.html, images, css, etc.)
•  These files end up in a subdirectory directory of the war file.

www.holub.com

© 2010, Allen I. Holub. All Rights Reserved. 8

©2010, Allen I. Holub www.holub.com 22

Modules

•  In main “package” directory. Eg: …/src/com/holub/login/Login.gwt.xml
•  Tell various programs where to find things and what libraries to use.
•  Default version created for you by applicationcreator

<module rename-to=‘login’>
 <inherits name='com.google.gwt.user.User'/>

 <inherits name='com.google.gwt.json.JSON'/>
 <inherits name="com.google.gwt.http.HTTP"/>

 <inherits name='com.allen_sauer.gwt.dragdrop.DragAndDrop'/>
 <entry-point class='com.holub.todo.client.MyApp'/>
 <servlet path="/myApp/rpcHandler”
 class="com.holub.myApp.servlets.RPCHandler"/>

</module>

©2010, Allen I. Holub www.holub.com 23

Widgets

©2010, Allen I. Holub www.holub.com 24

Panels

www.holub.com

© 2010, Allen I. Holub. All Rights Reserved. 9

©2010, Allen I. Holub www.holub.com 25

CSS

•  All Widgets (and all the panels are Widgets)
support: w.setStyleName(“css-style”).!

•  CSS is not abstracted,
–  is browser dependent.

•  Include style sheet in the normal way:

<link rel="stylesheet" type="text/css”
 href="todo.css" >

File is src/com/holub/myApp/public/todo.css

©2010, Allen I. Holub www.holub.com 26

Creating a widget

TextBox b = new TextBox();	
b.setStyleName("box-style"); // must be in .css	
b.addChangeHandler	
(new ChangeHandler()	
	{ 	public void onChange(ChangeEvent event)	
	 	{ 	
	 	 	//...	
	 	}	
	}	
);!

©2010, Allen I. Holub www.holub.com 27

FlexTable

 !
FlexTable layout = new FlexTable();!
layout.setWidget(0, 0, new HTML("Your email”));!
layout.setWidget(1, 0, returnAddress);!
layout.setWidget(2, 0, new HTML("Subject:"));!
layout.setWidget(3, 0, subject);!
layout.setWidget(4, 0, new HTML("Message:"));!
layout.setWidget(5, 0, message);!

www.holub.com

© 2010, Allen I. Holub. All Rights Reserved. 10

©2010, Allen I. Holub www.holub.com 28

Installing into a Panel

 Panel centerPanel = new HorizontalPanel();!
 centerPanel.add(Toolbar.getInstance());!
 centerPanel.add(listArea);!
 !
 Panel mainFrame = new VerticalPanel();!
 mainFrame.add(new HTML(“Hello”));!
 mainFrame.add(centerPanel);!
 !
 RootPanel.get("application").add(mainFrame);!

In app.html:
	 	<div id="application"></div>	

©2010, Allen I. Holub www.holub.com 29

RPC

©2010, Allen I. Holub www.holub.com 30

RPC Implementation (server
side)

!public interface MyService!
!{ !public String hello(String msg); }!

!
!
!public class MyServiceImplemenation implements MyService  

! ! ! ! extends RemoteServiceServlet  
{ !public String hello(String msg)  

!{ !return “Received” + msg;!
! !}!
!}!

www.holub.com

© 2010, Allen I. Holub. All Rights Reserved. 11

©2010, Allen I. Holub www.holub.com 31

RPC Implemenation (client side)

interface MyServiceAsync {!
!public void hello(String msg, AsyncCallback
callback); }!

!
class MyClientSideClass!
{!
 MyServiceAsynch server;!
 static {!
 String moduleRelativeURL = GWT.getModuleBaseURL() +  

! ! ! ! !“/myapp/MyServlet” ; !
 server = (MyServiceAsync) GWT.create(MyService.class);!
 ((ServiceDefTarget) server).  

! !setServiceEntryPoint(moduleRelativeURL);!
!}!
!//. . .!

!

©2010, Allen I. Holub www.holub.com 32

RPC implementation (client side)

void f()!
{ !server.hello(“Foo”, !
! !new AsychCallback()!
! !{ public void onFailure(final Throwable caught)!
! ! { !Window.alert(“call failed:” + caught);!
! ! }  

! public void onSuccess(Object result)!
! ! { !String s = (String) result;!
! ! }!
 }
);

}

©2010, Allen I. Holub www.holub.com 33

RPC method arguments

•  Primitives (char, byte, int, etc.)
•  String, Date, Character, Byte, Integer, …
•  Serializable or IsSerializable objects
•  Arrays of Serializable or primitives
•  Has at least on Serializable sublcass.
•  Polymorphic returns & args are okay.
•  Your Serializable objects:

– All non-final, non-transient fields must be
Serializable

– Must have a public no-arg constructor.

www.holub.com

© 2010, Allen I. Holub. All Rights Reserved. 12

©2010, Allen I. Holub www.holub.com 34

Exceptions under RPC

•  Service-interface methods may have
throws clauses and throw defined
exceptions.

•  They are passed to the AsynchCallback’s
onFailure method.

•  InvocationException is passed if the
network connection breaks.

©2010, Allen I. Holub www.holub.com 35

public class FooTest extends GWTTestCase {

 /*
 * Specifies a module to use when running this test case. The returned
 * module must cause the source for this class to be included.
 *
 * @see com.google.gwt.junit.client.GWTTestCase#getModuleName()
 */
 public String getModuleName() {
 return "com.example.foo.Foo";
 }

 public void testStuff() {
 assertTrue(2 + 2 == 4);
 }
}

JUnit Integration

junitCreator builds test
cases for you

©2010, Allen I. Holub www.holub.com 36

JSNI

•  Acessing Methods:
[instance-expr.]@class-name::method-name  

! !(param-signature)(arguments)
•  Accessing Fields:
[instance-expr.]@class-name::field-name!
!
this.@com.google.gwt.examples.JSNIExample::  

! !instanceFoo(Ljava/lang/String;)(s);

public static native void alert(String msg) /*-{!
 $wnd.alert(msg);!
}-*/;

www.holub.com

© 2010, Allen I. Holub. All Rights Reserved. 13

©2010, Allen I. Holub www.holub.com 37

JSNI

!
!
public static native void alert(String msg) /*-{!
 !$wnd.alert(msg);!
}-*/;

©2010, Allen I. Holub www.holub.com 38

Other JSNI Issues

•  It’s possible to pass Java objects (including
null) into JavaScript and vice-versa.

•  Exceptions thrown from JavaScript can be
caught as a JavaScriptException

©2010, Allen I. Holub www.holub.com 39

Drag And Drop

•  Not supported by GWT, but easy to add
– http://code.google.com/p/gwt-dnd/

www.holub.com

© 2010, Allen I. Holub. All Rights Reserved. 14

©2010, Allen I. Holub www.holub.com 40

Implementing DnD

private PickupDragController dragController =!
! new PickupDragController(RootPanel.get(), false);!

	
dragController.makeDraggable(someWidget);!
	
dragController.registerDropController(dropController);	

	

©2010, Allen I. Holub www.holub.com 41

A Drop Controller

private class TrashDropController  
! ! ! ! !extends SimpleDropController !

{public TrashDropController() {super(TrashIcon.this); }!
 public void onDrop(DragContext context)!
 {super.onDrop(context);!
 //...!
}!
public void onEnter(DragContext context) { }!
public void onLeave(DragContext context) { }!
public void onPreviewDrop(DragContext context) ... {}!
}	

©2010, Allen I. Holub www.holub.com 42

Q&A

Allen Holub
www.holub.com

get slides from
http://www.holub.com/publications/

notes_and_slides/

