SRR —
v woeriece yo”

m { wx Gapina sfributea ome |
e gorers }.', yadr rewof X 5
i : 5
L i '
“H =" M. Agile

S U R Architecture

aach  ngx Lner _dectace()

Mach  wgx bty

Ok Al |-

e |}

2t _fetd e oo Clms_name,
ety TG

i Sty Mo Lo |
e e ]
. ocator: Pacisese |

oonT e
i

Allen |. Holub

Holub Associates
www.holub.com

aflen@holub.com

@allenholub

© 2012 Alwo L HOAS ey DD i ww 1

Aage & Niels Bohr. (sciencephoto.com)

ly o The Problem

There are many badly designed libraries with

™y Famili c millions of users (Struts, Spring, EJB, ...)
M amiliar # Correct Just because it looks like X, doesn’t mean that

it’s “good.”

"A long habit of not thinking a
thing wrong, gives it a
superficial appearance of
being right, and raises at first
a formidable outcry in defense
of custom.”

~Thomas Paine

© 2012 Alwo L HOAS el




g People don't know what
A == they don’t know

...consider the ability to write grammatical English.
The skills that enable one to construct a grammatical
sentence are the same skills necessary to recognize a
grammatical sentence, and thus are the same skills
necessary to determine if a grammatical mistake has
been made. In short, the same knowledge that
underlies the ability to produce correct judgment is
also the knowledge that underlies the ability to
recognize correct judgment. To lack the former is to
be deficient in the latter.

Krnger o Dnnnmy Ohndalod onwd Clamore of 11 Howr DigSoadbes iv Roompving U s Uw

Daompviinr Load 0 Mfland S Ao

D 2012 Alwo L AN o falad cmw

i

{
ot
i
U

Basic Principles.

X012 Alwo L AL

e D i

M -=SF OO0 # Procedural

D 2012 Alwo L AN

«Cloud of peers.

«Messages flow;
data stays put.

)7\

«Centralized
control.

«Data passed

between
functions.

Justin Kruger and David Dunning’s original
journal article is at http://www.apa.org/journals/
psp/psp7761121.html. There’s a copy on my
web site at http://www.holub.com/goodies/
DunningKruger.pdf .

It’s easier to get David Dunning’s book: Self-
Insight: Roadblocks and Detours on the Path
to Knowing Thyself (Essays in Social
Psychology). 1ISBN-10: 1841690740.

I’ve gotten death threats when I've written
about this stulff!

Even experienced programmers may know
nothing about design.

A central controller is a “bad smell”
No “God classes.”



Flexible

U= 4 Abstract =

eThe less you know ab;:n;t’how it
works, the better.

«Program in terms of the abstraction,
not the concrete implementation.

D 2012 Alwo L AN o feladcmw

~|1 - 4 What is an object?

Ob]ects are defined by what

they do, not what they
contain.

= gbjects # data + functions.

= objects have responsibilities,
not data.

Hide the way the object
does the work (Encapsulation).

X012 Alwo L AL e fadadcmw L

i ‘2afp Delegation

Ask for help, 'h1 |
not information. (help)

Don‘t ask an object to give you the information
you need to do the work — ask the object that has
the information to do the work for you.

D 2012 Alwo L AN o felad cmw v

The Three Wise Monkeys carved on a stable
housing sacred horses at Toshogu shrine,
Nikko, Japan. Photo Copyright © 2003 David
Monniaux (http://en.wikipedia.org/wiki/
File:Hear_speak_see_no_evil_Toshogu.jpg)
Use List, not LinkedList. Use Composite, not
Button.

The fact that this box contains a woman is
irrelevant to the outside world, and will not
impact the interface to box: (open(), close(),
etc.)



T < Orthogonality

Changes to an object/class
should not impact other

objects/classes. 21 s
{0 ens,
No side effects! *2! P e
£ ;; AT S I‘
L it Coyotls
> g i1 Words
-
i~ S
o = - Holub Replacement Principal

You should be able to radicallychange a
class without affecting any of the objects
that use that class.

X012 Alw L AL wory felad cmw

. Symptoms of bad design

* Rigidity - hard to change.
e Fragility - easy to break.
e Immobility - hard to reuse.

e Viscosity - easier to hack than fix properly
 Complexity

e Repetition - duplicate code / bad structure
* Opacity - hard to understand.

© 2012 Alwo L HOAS el

The “objects that use the class” are usually
called “client” objects.

By “complexity,” | mean “needless complexity.”
Sometimes, things are just complicated.

Viscosity can apply to projects as well. Multi-day builds,
hours required for testing, everything is difficult.
Repetition (duplicate code) implies that you're not using
derivation or design patterns appropriately. The problem
is not just identical code, but similar code as well. Often,
results from cut-paste-and-modify strategies for code
development.



Single Responsibility
Open Closed
Liskov Substitution

Interface Segregation
Dependency Inversion

D 2012 Alwo L AN o fadadomw

.n'- = Single Responsibility Principal

A class should have only
one reason to change.

A Manager authorizes time sheets.
A Peon fills them out.

No shared operations, so
theyre distinct classes,
with minimal coupling.

X012 Alwo L AL e fadadcme

{ ,'I
O
o
m
T
@]
o
wn
m
Q.
0
= 2
=
0,
=
m

|
I

B
i
i

Open for extension;
Closed for modification.

Changes shouldn’t ripple out to
dependent classes/objects/module

) —— | — -
M.w;m jo— *—[1-“ o
(LURTL0MD ) |
ﬂg&_ﬂg
BORLapout T ppe yow | .
WLy A | -
"f N S

D X012 Alwd L AN

From Robert C. Martin, Agile Software Development,
Principles, Patterns, and Practices, ISBN:
0135974445

Closet by Livio DeMarchi

The fact that managers and peons are both
employees irrelevant.

We’'re trying for classes that are stable in the face of
change, so they'll last longer than the first change in
requirements.

Should NEVER need to modify base class to add a
derived class.

Ideally, adding an extension should not require that
another class be recompiled.

Note the direction of the dependencies out of Frame.
Frame can change without affecting other classes.



§ ‘=l Problems with OCP

You can't predict the
future!

You risk adding
complexity that solves
nonexistent problems

Sometimes, to make
one class less rigid,
you need to make
another more so

© 2012 Alwo L HOAS ey DD i ww

Fool me once, shame on you.
== Fool me twice, shame on me.

Go with the
simplest
solution first,
but if you have
to change it,
do it right!

‘There's an old sayng In
Tennessee—I know It's In
Texas, probably in Tennessea—
that says, fool me once, shame
on—shame on you. Fool me—
[leng pause]—you can't g=t
fooled again.*

X012 Alw L AL wory felad cmw

| aalE Liskov Substitution Principle
'. X \, Subtypes must be
‘substitutable for their base

types. List
: . acdHead(o: Object)
,g’ A B bty addTako: Object)
: { insert(index:int)
l.clear(); remove()
clear()
1l.addHead("x"); itarator():lterator
} i
Stack aStack...; Stack
f(astack); stackPonter: im
push(o: O_Dged)
Context Matters! :

© 2012 Alwo L HOAS el

e

It’s better to err on the side of simplicity, at least
for the initial implementation of a class. Add
interfaces, etc., when they’re required.

One can “stimulate” the change to find out where
the flexibility is needed. (TDD, short cycles, work
on disparate stories that leverage the same
classes).

An agile approach mandates going with the simple
solution, but the “right” solution often isn’t simple.
Don’t add unnecessary complexity right off the
bat, but if the simplistic solution needs
refactoring, do it right.

Barbara Liskov, Data Abstraction and Hierarchy.
SIGPLAN Notices, 23.5 (May, 1988)

Corollary: subtypes must be substitutable for each
other.

Is-a FAILS, here. A Stack is not the same thing as a
list!

Inverse: If you never use inherited methods, then
you shouldn’t be using inheritance (e.g. Window/
Dialog)

In example, you could implement clear() in the
Stack, but addHead() has no meaning whatever to
a stack!



Don’t force clients to depend
on methods they do not use.

- minimize coupling
- maximize cohesion

© N1 b L A o fadad imw

T e
b = An LSP-compliant Stack
SO— List contains
0 methods
o) ok meaningful to a
: 5 List.
N R S I
liii‘_ Usi
e M ) [ Stack contains
:-Mo) y ' ::'n'von-»w methods
pushie: Oofect ssmnocemes . | meaningful to a
——— w—_ Stack.
o —
= Interface-Segregation Principle
Avoid FAT
interfaces

M SE ISP Bad Smells

e "Extends” adds generic capability.

e Empty implementations of interface methods.

e Base-class overrides do nothing
but throw exceptions.

e Changing an interface method
affects classes that don't use
that method.

® A recomplle counts as an effect.

Some of these symptoms are
also symptoms of LSP

D 2012 Alwo L AN o felad cmw




-1

=

~

accitoneriobaorver) sateners

= s

Fixing ISP problems

Tienee - “J TimerUistonar
A3 nteneciobmareer) Ssterers -

SO TSN CEAT Lalees

gt

|

D X012 Alwo L AN

Timertistenss
«interface-
%

o fadadomw

High-level
modules should
not depend on
low-level
modules.

They should both
depend on
abstractions.

X012 Alw L AL

The details should
be in the

implementation, not
the abstraction.

e D i

E
1
:
i
]
|

D 2012 Alwo L oMY

e Dddad i

The timer illustrates the Observer pattern, but the
real issue is how the pattern is applied.

Jennifer Allora and Guillermo Calzadilla's Tank
Treadmill @ 2011 Venice Biennale: http://

www.youtube.com/watch?v=-0Dmptetj1s

In the first (procedural) version, dependancies go
down. If you change something in a lower layer,
the higher layer has to change.

In the DIP version, messages flow in the same
direction, but dependancies go up: if you change
an interface, then the lower version has to change.



Depends
On
| [
P The Hollywood Principle:
L s Don't call us, we'll call you
oy lr—ni
— Depends ony
terrcn
Do ovmd
'Degends on
0 e { Button
T ey

X012 Alw L AL oy fadad cmw

" 5 Depend on Abstractions

L \‘
S

Pointers/references should point at interfaces.
Classes should only derive from interfaces.
Never override an implemented method

© 2012 Alwo L HOAS oy Dbdad i mw

In the first (procedural) version, dependancies go
down. If you change something in a lower layer,
the higher layer has to change.

In the DIP version, messages flow in the same
direction, but dependancies go up: if you change
an interface, then the lower version has to change.

Notice how the dependency relationships are
inverted between the first and second (listener)
version.

Notice how the “policy” method (turnOn) went
from public to private when when we introduced
the interface.

This particular example is the “Observer” design
pattern.

Rule 2 implies that you should NOT use “extends”
unless there’s no alternative.

The obvious exception to rule 3 is the Template
Method pattern where the base-class method
defines a reasonable default.

Otherwise, if you find yourself overriding an
implemented method, that method should
probably be defined in a common interface.
Various design patterns make it easier to follow
these rules. For example, Abstract Factory lets you
create an object that implements some interface
without knowing the actual concrete class of the
object.



e Problems with
a_" == Extends

A v den v of b vaing ol il haleling of Cothort Samm b G Timer.”

B
';u; r; Two kinds of Inheritance

—— T e

« Interface inheritance (@Iuni’i’)

-The base class Is nothing but prototypes of metmds that are
implemented by the aenveu dass

« Implementation Inhe‘rltahde (.xmds)
- The base class has methods.and fields which are effectively
part of (are inherited by) the defivgﬂ class =
-Too-Tight coupling! -
« Increases rigidity, fragility, and other bad mlngs
- Can replace with Interface inheritance a_nddelegatlonf

© X012 Al L HOAS -

B
) o Interfaces = Flexibility

= .

LinkedList list = new LinkedList();

g{ list ); Changing the list type
g( LinkedList list ) .
{ last.?dd( aea )3 o

92( list ) srourisce-
\ 23 Coecio)

- - T 3 ;

Collection list = new LinkedList(); r«««««y -~

. . ! I
g{ list ); [ Unkeciint

200 o) e o)

g{ Collection list )

{ list.add{ ... );
g2({ list ) Changing the list type
doesn‘t impact g{}.

L e .o - m— »n




Design patterns add even more

i o= flexibility
void £2()
{ Collection ¢ = new HashSet();
//eee

g2( c.iterator() );
}

void g2( Iterator i )
{ while( i.hasNext() ;)
do_something with( i.next() );

}

© 2012 Alwo L HOAS ey DD i ww

R Behavior is everything!
IS-A
really means:

Behaves exactly like...

D X012 Alwo L AN o fadad s

When “is-a” fails.

- Manager is an Employee in every sense,
but is categorized differently.

- Manager authorizes time sheet,
Employee fills it out.

¥ Mangers do a little more than normal
Employegs. ' Non-overlapping

responsibilities

= distinct classes

Additional
responsibilities
= implementation

Identical
[Inheritance.

responsibilities

=> Identical classes

© 2012 Alwo L HOAS el

When designing, two classes are the same (or two
objects are members of the same class) when they
behave identically. That’s the only meaningful
criterion. Attributes are irrelevant.

There are three possibilities, but only one
implies inheritance.

The fact that Managers are Employees in real
life is immaterial.

What we care about is the role that they take
on in the context of the program’s problem
domain.



D 2012 Ao L AL

&2
4

|
Rl
il
n

,
)
I

Class normalization

TR

When two classes have
a common subset of

— operations, and those
[ operations are
ﬁ implemented identically,

factor those operations

f@—] ‘ﬁ’ into a shared

e =) superclass, otherwise
. they probably should be
- tﬁ defined in an interface
- implemented by both
Sirengine classes.
B

Fragile base classes

4

|
\Ii
a“

& B

* The main problem with implementation
inheritance is "fragility.”

-Derived classes often depend on base class
behaving in a certain way.

-If you change the behavior of a base-class method,
you can break the derived class.

-This base-class change is often an IMPROVEMENT.

D 2012 Ao L AL oy Fdad e

—r "
o ——
iy - -
’
2 .

b je— Consider this code

class Stack extends ArrayList
private int stackPointer = {;

public void push{ Object article )
{ add( stackPointer++, article );

ublic Object popl()
? return remove| =-stackPointer );
)

public void push _many( Object|] articles )

{ for( int i = 0; i < articles.length; ++i )
push( articles(i] );

)

)

e Cdad i »




So what's wrong?

.

==

* What if a user leverages inheritance and uses
the ArrayList's clear() method to pop
everything off the stack:

Pop Quiz
Stack astack = new Stack({): Which prlnclple
astack.push(*1"); does Stack break?
astack.push(*2%);
e Liskov Substitution

e stackPointer still points at stack[1].
The stack now holds garbage.

Bt Lo,
% How about using encapsulation?

class Stack

( private int stackPointer = 0;
private ArrayList theData = new ArraylList();
public void push( Object article )
{ theData.add{ stackPointer++, article );
}
public Object pop()
{ return theData.remove( =-stackPointer );
}
public veoid pushMany( Object[] articles )
{ for( int i = 0; i < o.length; ++1i )

push( articles(i] );

}

} There's no clear () [that's good], But ...—»
s

= Now we’ll extend to add behavior

class MonitorableStack extends Stack
{ private int highWaterMark = 0; «~Added
private int currentSize;
@override public void push( Object article )
{ if( ++currentSize > highWaterMark )
highWaterMark = currentSize;
super.push(article);

)
80verride public Object pop()
{ ~wgurrentSize;
return super.pop();
’

public int maximumSizeSoFar() +4=This is NEW
{ return highWaterMark;

H
+ pushMany() IS INHERITED -+

L A.‘}l Alwir L AL o feladcmw »




4 = Someone improves the base class

class Stack

({ private int atackPointer = -1;
private Object| ) stack = nev Object|1000);
public void push( Cbjeot article )

i /Moo No longer
P calls push()
public void pushMany( Ob | articles )

{ assert (stackr, wr + articles.leagth) < stack.length;

System.arraycopyl(artioles, 0, stack, stackPoiater+l,
artioles,length))

stackPointer +» articles,length;

)
H
-
X012 Alwd L AN o fadad cme o
But...

MonitorableStack myStack = new MonitorableStack();

myStack.pushMany(new String[){“a", “b*, “c"});

int size = myStack.maximum size so_far();

What's the value of size?

X012 Alwo L AL e fadadcme ‘o

Let’s fix it!

interface Stack
{ wvoid push{ Object o });
Object pop();
void pushMany{ Object|) source );

class SimpleStack implements Stack

e "\’ss
C




| -OF Fixed version

class MonitorableStack implements Stack
{ private SimpleStack stack = new Simple:ta. BECAUSE We're
private int highWaterMark = 0, currentSize US“\Q interface
public void push({ Object © )
{ if( ++currentSize > highWaterMark ) Inheritance,
highWater mark = currentSize;

We delegate to simplestack,
3 g which could be a base class,

public void pushMany( Object|) source ) but isn’t
{ if( curremt_size + sSource.length > highWaterMark )
highWaterMark = gurrentSize ¢ source,length;
stack.pushMany( source );

} and we're forced to

LEETY which also  jmplement push_many(),
' delegates.

© 2012 Alwo L AN ey Dbdad i mw a9

stack.push|o);
}

-I}‘ %= Delegation/Inheritance pattern

Rather than:
class Simple{ void £{){ /*...*/ ) )
class Specialization extends Simple{ /*...*/ )
Use:
interface Simple
{ void £{):
static class Implementation implements Simple
{ weoid £(){ }
)

)
class Specialization implements Simple

{ Simple delegate = new Simple.Implementation();
void f£(){ delegate.f(); )
}

X012 Alw L AL e fadadcme “

| ==SF A few observations

* At any time in the future, anyone can add a
method to a base class (e.g. clear()) that
might break the derived class.

* Avoid "Framework” architectures. (in which you
must use implementation inheritance to
customize base-class behavior)

* Since you can implement as many interfaces as
you like, you can use the “inheritance” pattern
to implement multiple inheritance in Java.

P 2012 Alwo L AL wory felad cmw o

The Monitorable stack USES a a SimpleStack,
it IS NOT a SimpleStack.

*Create an interface, not a class.

*If you would normally inherit base-class
methods, provide a default implementation of
the interface that implements those methods
that would have been implemented at the
base-class level.

*Instead of extending a base class, implement
the interface.

*For every interface method, delegate to a
contained instance of the default
implementation.



o Restrict access!

Accessors

& Mutators

AR T TURNS You W10
WATEER D e DB

ansvact. Shape

~hraCokr Color

Add new property without changing derived classes!

A Challenge

~ AV .
1 - a1 Shape
~hraCokr Color

~lneThickness  Size
Carkany()

Garkny )
getColor() /aetColer()
getMopertySheet(): Wdget

sabatract- crawy( Graptees g )

thicken)

getihopotysheet() Wdget

sabaracts crawy Graphecs g )

[+] [+)
— —
£ 3% -
. - - > o— ) -
Cirche = )
s Conter: Pownt > e— Iy ]
— Lino ’ — Line
sart. Fos . St Fowt &
ond Port . ° ond Port
5T

CoUC=T

ey Dddad i ww

Protected fields/methods give you too much
access to implementation. Use only for
“Template Methods.”

Avoid overriding base-class methods (unless
you’re implementing an interface).

Avoid virtual (Java: make as many as possible

final) methods.
Don’t leverage the base-class implementation.

eget/set methods (or protected Color), are the
problem: Adding thickness requires modification
to every derived class (to getThickness()).

eYou don’t need a get/set Color if the object
provides it’s own property sheet.



A solution (delegation)

=abs¥act- Shape
- lineColor: Color
- lineThickness: Sixe
carken()
thicken()
getPropertySheet(): Widget
- setUp{ Graphcs g )
sabstracts cdranf Gaphics g )

Ete

Circle
corter: Point
raciugd

Une
start: Point
ond: Point ‘

P 2012 Alwo L AL ey Fdad mw

Simple delegation (ask the object that has the
information to do the work) solves the problem.
No getColor(). Color can be private!

BUT --- it’s too easy to forget to call
setUpGraphics().

“»

A better solution (Template
Method)

A

iy
fine, |
nul

sabs¥act« Shape

~ lewColor. Color
- limeThickness: Size
darken|()
thicken()
gotPropenyShaet(): Widget
~ 80lUp{ Geaphics g ) -

draw{ Graphics g )
«abs¥ract« randev] Graphics g )

X012 Alw L AL

The Template-Method design pattern is better.

o ———

The object that has the
information should do the work!

o o

System.out .println( someString ):

new PrintWriter |
new BufferedWriter(
new OutputStreamWriter (System.out )))
.println( someString )

someString.print( System.out );

P 2012 Alwo L AL o fadad cmw

The top line is Java 1.0

The problem is the getBytes() call in String.
Because the object-with-the-information (the
string) should do the work (print itself) rule
wasn’t followed, the red version is needed to
support unicode.

But, if the rule had been followed (3rd version),
no changes would have been necessary at the
client level.




i = Ask for help, not information.

class Money

{
private double value;
public double getValue()
public wvoid
£/eaa

{ return value; )
setValue(double v} ( wvalue = v; )

e
:&

D 2012 Alwo L AN o fadadomw

Ask for help, not information.

Customer remoteCustomer = getRemoteCustomer();
Money request - L.
Money balance = remoteCustomer.getBalance();
double balanceVal = balance.getValue();
double regquestVal = request.getValue();
if( balance.getCurrency{) != EURO )
balanceval =
CQurrencyConverter.convert{ balance.getValue(),
balance.getCurrency(), EURQ);
if( requested.getCurrency() != Currency.EURD |
reguestVal =
CurrencyConverter.convert( reguested.getValue(),
requested.getCurrency( ), EURD);

if{ requestVal < balanceVal)
dispenseFunds{ requested );

X012 Alwo L AL e fadadcme

1 % Ask for help, not information.

if( remoteCustomer.yourBalancelsAtLeast(requested) )
dispenseFunds( requested );

class Money
{ private double wvalue;
private Currency currency;
public boolean largerThan{Money m)
{
if( currency != m.currency )
mrcurrency.covertTo¥YourCurrency(m);
return value > m.value ;

}

public Money addTo ( Money = ) {...)
public Writer printTo ( Writer out ){...)
public String toXML () {:ss)

D X012 Alwd L AN }

By not exposing customer balance, you don’t
need to do any coversions at all!

This philosophy apples all the way down.
Money doesn’t expose a value either.

Adding currency to the money class (in blue)
doesn’t affect the outside world.

Other methods (addTo, printTo, etc.) work the
same way.



Y == The obvious conclusion

Gefters and Setters are evil!

They make the class
"“immobile”™ (hard to
reuse in different
environments).

They expose
implementation (just like
public fields)

They encourage indirect
coupling (like global

variables) el

They make the class/
"rigid” (you can't cha(kd 0
it because of extern w heavily imp
oz aeez ad@pendancies). ..o clients).

\}
vp-e the class
» " (hard to modif

_ Protect yourself from changes to
= £ the Model!

e Every object builds it's own user interface.

e The larger Ul is a composite.
-individual cbjects construct subcomponents.

« When the class changes, the Ul code is right
there.

* Change the business object, the Ul changes.
Everywhere.

Ask: who created that part of the UI?

X012 Alw L AL oy fadad cmw

. But the business object needs to be
' .- decoupled from the user interface!
e Why?
-Agile projects are not generic!

-When the business object changes, the Ul usually
changes as well.

-There’s usually one best way to present an object,
even If the object will be reused.

~There are architectural solutions if you really need
the flexibility.

-Coupling with the OS is handled with an
abstraction layer.

Procedural programmers sees nothing
wrong, People blindly copy the idiom
without considering the consequences.
Many books recommend putting
mutators and accessors on all
fields!
JavaBeans introduced the getter/setter
“design pattern” because it was
“easy.” (There’s a better alternative,
called a BeanCustomizer, but nobody
uses it. @annotations are better)

Compare this situation with a VB Ul. When the
model changes, you need to identify
hundereds of places in the Ul where the
change impacts the screen, and fix each one
separately.

Compare this situation with a VB Ul. When the
model changes, you need to identify
hundereds of places in the Ul where the
change impacts the screen, and fix each one
separately.

The notion of generic component architectures
built on general business objects is
discredited. See the IBM “San-Francisco”
project.

Building for the general case is NOT agile. You
can create a generic class by using an existing
class in a new project and adding methods,
etc., as needed, but that makes for a lot of
bloat.

Bloat is bad.



© 2012 Al L WA

= “Draw yourself” isn't practical

e fdad i

4

{
ot
i
e

The Builder design pattern

Abstract
mployeeExporter mployee
. sinterface- BUI|d€I’ moesur.g
expovtNamey...) - -id: integer
exportidy ... ) -address: String
@, TAdcvess( ... ) +0Xport| Duiicer
"EJ— EmployeeExporter)
' S ——
R  ApEt T : Director
' 1 etBuilder
: LI bt Product
axportName| exportiQ( ) rodu
axoonrmu exportiDy ... ) | #xponAcdress( ... )
exportiD( ... ) | @xPonAddress 4

X012 Alwo L AL

sAdd creale ): Widget
o dooy axportToic: Connection
it Tod Writee 0ut ) Concrete

Builder

e D i

RDEMSImporter importer =

D 2012 Alwo L AN

- 4 Building objects

JSONImporter importer =
Employee fred = new Employee( importer );

Employee fred = new Employee( importer );

e Dddad i

new JSONImporter(stream);

new RDEMSImporter(stream);

All builders implement the same interface, so
are interchangeable to an Employee.
Construction isn’t mentioned as an application
of Builder in GoF “Design Patterns” book, but it
seems reasonable to me.



o 5 Building output

JSONBuilder exporter = new  JSONBuilder():;
Employee.exportTo( exporter )
exporter.printTo( response );

HTMLBuilder exporter = new  HTMLBuilder():
Enployee.exportTo( exporter )
exporter.printTo( response )

RDBEMSBuilder exporter = new RDEMSBuilder():
Employee.exportTo( exporter );
exporter.storeln( database ):

WidgetBuilder exporter = new WidgetBuilder():
Employee.exportTo( builder );
someFframe.add( builder.getComponent() );

D 2012 Ao L AL o fadadomw L2
Egﬁe;..n.
b, s - A Director
G B
ublic class Employee
? private Name name;
private Employeeld id;
private Money salary;

public interface Exporter

{ void addName ( String name )
void addID ( String id )
void addSalary ( String salary )

-

)

public void export( Exporter builder )

{ builder.addName ({ name.toString() )
builder.addID { id.toString{) )
builder.addsalary({ salary.toString() ):

B

EE*%?-—~—
by R - A Director

public interface Importer
{ String provideName();
String providelD{);
String provideSalary();
void open{);
void close();

}

public Employee( Importer builder )

{ builder.open();
this.nane = new Nane (builder.provideName()} ):
this.id = new Employeeld(builder.providelID() ;
this.salary = new Money (builder.provideSalary(),

new Locale(*en”,"Us"));

builder.close();

)

R

)

D 2042 Al L oA e Cdad i L3

All builders implement the same interface, so
are interchangeable to an Employee.



™

B EF Build a Product (Swing UI)
o s

class JComponentExporter implements Employee,Exporter

{ private String name, id, salary;

public void addNane ( String name ){ this.name = nanme;)
public woid addID ( String id }{ this.id = id; )
public void addSalary( String salary ){this.salary=salary;)

JConponent getJConponent()

{ JComponent panel = newv JPanel();:
panel.setLayout| new GridLayout(},2));
panel.add{ new JLabel( Name: ") );
poanel,add{ new JLabel( name ) };
panel.add{ new JLabel( 'Employee ID:")}):
panel.add{ new JLabel( id } );
panel.add{ new JLabel(“Salary:")
panel,.add{ new JLabel( salary })

)i
i

return panel; Mome:  Frod Fintwione
} Enplnyee O 200V
} Selwy 900000
X012 A0 L AN ey [l “
B e
|

U= Build a Product (HTML)

HTMLExporter implements Employee.Exporter
{ prgsate final String HEADER = “<table border=\"0\">\n";
private final StringBuffer out = naev StringBuffer(HEADER);

public void addName({ String name )

{ out,append|”\t<tr><td>Name:</td><td>" );
out.append| “<input typae=\"text\® name=\"name\*value=\"");
out,append| name };
out.append| "\ "></ed></tr>\n" );

public void addID ( String ) { fv.. 2/ )
public void addSalary| String salary ) f%.. ./}
String getHTML|()
{ out,append|”</table>");

String htmnl = out.toString();

out.setlength(0); /{ erase the buffer
out.append|HEADER) ;
return htnl;

) ATHL Exparter & = rax HtalBaporter;
soeminplcoyes . axparty & )
) sormBtrear.point | w.QetNTHLI) 12
D 2012 AlwO L WO o adad e L]

f ;_Z Build an object (from HTML form)

class HTMLImporter implements Employee.Importer
{ ServletRequest reguest;
public wvoid oYen() { /*nothing to do*/ }
public void close(){ /*nothing to do*/ }
public HTMLImporter( ServletRequest reguest )
{ this.request = request;

}
public String provideName( )
{ return request.getParameter(“name”);

}
public String providelID{)
{ return regquest.getParameter(“id"});

}
public String provideSalary()
{ return regquest.getParameter(“salary”);

Employee e =
new Employee( new HTMLImporter(request) );

© 01 Al L AN e Dddad i mw “




[

T Hide the implementation!

© 2012 Alwo L HOAS

S Design by Responsibility

Objects are defined by what they DO,
not by what they contain.

X012 Alw L AL o L imw

- 4 Focus on responsibilities

[

.

e,

* Ask the object that has the information to
do the work for you.
-then you don't need to "get” anything.

* Develop code using Agile Object Modeling:
-Develop from User Stories (Use-case scenarios).
-Model the problem domain, not the computer.

-Use a CRC-card approach (but not the cards)
-Bulld around the messages, not the class structure.

e TAKE A CLASS!

2012 Alw L AL o fadad cmw

Domain-level methods are public. Nothing

else!
Avoid accessors/mutators (C# properties).

Avoid protected (or package-level) access.




— "
R‘J o ——
pu— . .
»
2 .
|

I 4 References
= ms

* These siides
Mt S www. o, conty puiications/nates_and_shdes

* Why extends (s evil: Improve yowr code by replacing concrete base classes
with intarfaces

Mg fwww javamorid comyavamond/ w08 2003/ w080 1 2ol box. htmd

« Why getter and setter methods are ewi: Make your code mare
mantainadle by avoiding accessors

Mg SSwww javamorid comyavamontd pw09: 2003 /- 0905 2oai box. hited

* Mare on getrers and satters; Build user intevfaces without getters and
setters

- Betp o Siwww javawmorid :.'-"wj.)r.;u:dr{n‘_m«ﬂ]-2|‘¢‘,-|.'J~-v' L02-tosibos hbmd

D 2012 Ao L AL o fadadomw

B
b Je= So, what’s a mother to do?

* Design is a series of trade-
offs.

* The get/sat idiom has a significant cost.
* But if you must, you must.
-Retumn interfaces if possible.
-May be required for generic code,
UI Toolkits, OS-level wrappers, etc.
{(anywhere where you don't know
how an object is used).
-If you don‘t know how an object is

used, you're usually doing something
wrong!

D 2012 Al L AL

e fdd -

_.lff
djl o

1)
|

)

Rl
0
f

What's this all
mean?

D 2012 Ao L AL




WS e
— i
.

1 = There is no such thing as perfect

il

e Design is a series of trade-offs.

¢ Assess risk, then make reasonable
decisions.
-If you use implementation inheritance, then you
run the risk of a fragile-base-class related bug.

-If you expose implementation (with getters and
setters) then you run the risk of a change to
the exposing class rippling out to the entire
proegram, with concomitant maintenance
headaches.

-That might be okay. Use your brain!

D X012 Alwo L AN e fdad i

i S There's often a better solution

I

* Approach popular libraries with skepticism

-Use them, but don't hold them out as a model of
good design.

* There's almost always a way to do it “right.”

~-Move the work into the class that has the
information needed to do the work.

-Replace implementation inheritance with interface
inheritance.

« You will learn to think in an OO way with
enough practice.

« Study design.

X012 Alw L AL o L imw

M =2 Shameless self-promotion

The first couple chapters
discuss these issues
in depth.

2012 Alw L AL o fadad cmw




Allen Holub
www.holub.com
allen@holub.com

D 2012 Al L AL

e fdad i




