
Aage & Niels Bohr. (sciencephoto.com)

There are many badly designed libraries with
millions of users (Struts, Spring, EJB, ...)
Just because it looks like X, doesn’t mean that
it’s “good.”

Justin Kruger and David Dunning’s original
journal article is at http://www.apa.org/journals/
psp/psp7761121.html. There’s a copy on my
web site at http://www.holub.com/goodies/
DunningKruger.pdf .
It’s easier to get David Dunning’s book: Self-
Insight: Roadblocks and Detours on the Path
to Knowing Thyself (Essays in Social
Psychology). ISBN-10: 1841690740.
I’ve gotten death threats when I’ve written
about this stuff!
Even experienced programmers may know
nothing about design.

A central controller is a “bad smell”
No “God classes.”

The Three Wise Monkeys carved on a stable
housing sacred horses at Tōshōgū shrine,
Nikkō, Japan. Photo Copyright © 2003 David
Monniaux (http://en.wikipedia.org/wiki/
File:Hear_speak_see_no_evil_Toshogu.jpg)
Use List, not LinkedList. Use Composite, not
Button.

The fact that this box contains a woman is
irrelevant to the outside world, and will not
impact the interface to box: (open(), close(),
etc.)

The “objects that use the class” are usually
called “client” objects.

By “complexity,” I mean “needless complexity.”
Sometimes, things are just complicated.
Viscosity can apply to projects as well. Multi-day builds,
hours required for testing, everything is difficult.
Repetition (duplicate code) implies that you’re not using
derivation or design patterns appropriately. The problem
is not just identical code, but similar code as well. Often,
results from cut-paste-and-modify strategies for code
development.

From Robert C. Martin, Agile Software Development,
Principles, Patterns, and Practices, ISBN:
0135974445
Closet by Livio DeMarchi

The fact that managers and peons are both
employees irrelevant.

We’re trying for classes that are stable in the face of
change, so they’ll last longer than the first change in
requirements.
Should NEVER need to modify base class to add a
derived class.
Ideally, adding an extension should not require that
another class be recompiled.
Note the direction of the dependencies out of Frame.
Frame can change without affecting other classes.

It’s better to err on the side of simplicity, at least
for the initial implementation of a class. Add
interfaces, etc., when they’re required.
One can “stimulate” the change to find out where
the flexibility is needed. (TDD, short cycles, work
on disparate stories that leverage the same
classes).

An agile approach mandates going with the simple
solution, but the “right” solution often isn’t simple.
Don’t add unnecessary complexity right off the
bat, but if the simplistic solution needs
refactoring, do it right.

Barbara Liskov, Data Abstraction and Hierarchy.
SIGPLAN Notices, 23.5 (May, 1988)
Corollary: subtypes must be substitutable for each
other.
Is-a FAILS, here. A Stack is not the same thing as a
list!
Inverse: If you never use inherited methods, then
you shouldn’t be using inheritance (e.g. Window/
Dialog)
In example, you could implement clear() in the
Stack, but addHead() has no meaning whatever to
a stack!

The timer illustrates the Observer pattern, but the
real issue is how the pattern is applied.

Jennifer Allora and Guillermo Calzadilla's Tank

Treadmill @ 2011 Venice Biennale: http://

www.youtube.com/watch?v=-0Dmptetj1s

In the first (procedural) version, dependancies go
down. If you change something in a lower layer,
the higher layer has to change.
In the DIP version, messages flow in the same
direction, but dependancies go up: if you change
an interface, then the lower version has to change.

In the first (procedural) version, dependancies go
down. If you change something in a lower layer,
the higher layer has to change.
In the DIP version, messages flow in the same
direction, but dependancies go up: if you change
an interface, then the lower version has to change.

Notice how the dependency relationships are
inverted between the first and second (listener)
version.
Notice how the “policy” method (turnOn) went
from public to private when when we introduced
the interface.
This particular example is the “Observer” design
pattern.

Rule 2 implies that you should NOT use “extends”
unless there’s no alternative.
The obvious exception to rule 3 is the Template
Method pattern where the base-class method
defines a reasonable default.
Otherwise, if you find yourself overriding an
implemented method, that method should
probably be defined in a common interface.
Various design patterns make it easier to follow
these rules. For example, Abstract Factory lets you
create an object that implements some interface
without knowing the actual concrete class of the
object.

When designing, two classes are the same (or two
objects are members of the same class) when they
behave identically. That’s the only meaningful
criterion. Attributes are irrelevant.

There are three possibilities, but only one
implies inheritance.
The fact that Managers are Employees in real
life is immaterial.
What we care about is the role that they take
on in the context of the program’s problem
domain.

The Monitorable stack USES a a SimpleStack,
it IS NOT a SimpleStack.

*Create an interface, not a class.
*If you would normally inherit base-class
methods, provide a default implementation of
the interface that implements those methods
that would have been implemented at the
base-class level.
*Instead of extending a base class, implement
the interface.
*For every interface method, delegate to a
contained instance of the default
implementation.

Protected fields/methods give you too much
access to implementation. Use only for
“Template Methods.”
Avoid overriding base-class methods (unless
you’re implementing an interface).
Avoid virtual (Java: make as many as possible
final) methods.
Don’t leverage the base-class implementation.

•get/set methods (or protected Color), are the
problem: Adding thickness requires modification
to every derived class (to getThickness()).
•You don’t need a get/set Color if the object
provides it’s own property sheet.

Simple delegation (ask the object that has the
information to do the work) solves the problem.
No getColor(). Color can be private!
BUT --- it’s too easy to forget to call
setUpGraphics().

The Template-Method design pattern is better.

The top line is Java 1.0
The problem is the getBytes() call in String.
Because the object-with-the-information (the
string) should do the work (print itself) rule
wasn’t followed, the red version is needed to
support unicode.
But, if the rule had been followed (3rd version),
no changes would have been necessary at the
client level.

By not exposing customer balance, you don’t
need to do any coversions at all!
This philosophy apples all the way down.
Money doesn’t expose a value either.
Adding currency to the money class (in blue)
doesn’t affect the outside world.
Other methods (addTo, printTo, etc.) work the
same way.

Procedural programmers sees nothing
wrong, People blindly copy the idiom
without considering the consequences.

Many books recommend putting
mutators and accessors on all
fields!

JavaBeans introduced the getter/setter
“design pattern” because it was
“easy.” (There’s a better alternative,
called a BeanCustomizer, but nobody
uses it. @annotations are better)

Compare this situation with a VB UI. When the
model changes, you need to identify
hundereds of places in the UI where the
change impacts the screen, and fix each one
separately.

Compare this situation with a VB UI. When the
model changes, you need to identify
hundereds of places in the UI where the
change impacts the screen, and fix each one
separately.
The notion of generic component architectures
built on general business objects is
discredited. See the IBM “San-Francisco”
project.
Building for the general case is NOT agile. You
can create a generic class by using an existing
class in a new project and adding methods,
etc., as needed, but that makes for a lot of
bloat.
Bloat is bad.

All builders implement the same interface, so
are interchangeable to an Employee.
Construction isn’t mentioned as an application
of Builder in GoF “Design Patterns” book, but it
seems reasonable to me.

All builders implement the same interface, so
are interchangeable to an Employee.

Domain-level methods are public. Nothing
else!
Avoid accessors/mutators (C# properties).
Avoid protected (or package-level) access.

